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HOMOGENEOUS APPROXIMATIONS AND LOCAL OBSERVER DESIGN

Tomas Ménard1, Emmanuel Moulay2 and Wilfrid Perruquetti3

Abstract. This paper is concerned with the construction of local observers for nonlinear systems

without inputs, satisfying an observability rank condition. The aim of this study is, �rst, to de�ne

an homogeneous approximation that keeps the observability property unchanged at the origin. This

approximation is further used in the synthesis of a local observer which is proven to be locally convergent

for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer

with the classical linear approximation observer on an example.

1991 Mathematics Subject Classi�cation. 93B07, 93B29, 16W25.

The dates will be set by the publisher.

Introduction

Observers design for nonlinear systems has been an active research area for the last decades. Explicit
constructions for nonlinear systems have been investigated, for example high gain observers (see [8,9,16,20]) or
backstepping observers (see [2, 19]). But these constructions only apply to very speci�c class of systems. That
is why many tools have been developed in order to transform systems into a suitable form for observer design.
The �rst results have been obtained using di�erential geometry. Necessary and su�cient conditions for exact
linearization of nonlinear systems can be found in [17] for systems without inputs and in [18] for systems
with inputs. These papers give explicit change of coordinates, nevertheless there is two restrictions to there
application. First, the class of systems which are exactly linearizable is restrictive. Second, even if the conditions
are met, the computation of the transformation becomes quickly very heavy as the dimension increases, see [22].
A theory which has similar considerations has been developed in the early 90's, see [6] and [7] for recent
developpment. The algebraic observability characterizes systems for which the state can be written as a function
of the input and output and a �nite number of their derivatives. This theory uses di�erential algebra, and instead
of solving di�erential equations to �nd the transformation, we need to solve algebraic equations. Just as exact
linearization, these equations can be very complex for nonlinear systems.
The restrictions of the previous approaches have been alleviated since then. Conditions for the transformation
of nonlinear systems into more general forms than exact linear systems have been explored. These classes of
systems consists in systems which are made up of a particular linear part and a nonlinear part satisfying some
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conditions, and are characterized using algebro-geometric tools, see [3, 5, 10, 21, 24] for example. The common
point in all these approaches is that the output function is always linearized, hence, this still restrict the class
of systems considered while it allows to obtain global or semi-global convergence.
Another construction which does not require to linearize the output function has been developed in [15], it uses
the Lyapunov auxiliary Theorem and a direct coordinate transformation. Conditions for the existence of this
transformation have been further study, especially in [1]. The main drawback is that it requires to solve a set
of partial di�erential equations and is then not constructible in general.
An alternative method is to consider approximations and to design the observer considering only a part of
the system. This allow to reduce the complexity of the system and then to actually design an observer. But,
generally, only local convergence is obtained for the observer. Nevertheless, if the considered system is too
complex, this can be the only possibility since other methods cannot be applied in practice.
Some of the previous approaches cited here, especially the one derived from exact linearization, can be viewed
as approximation design, since the observer is designed using the linear part only while the conditions on
the nonlinear part ensure convergence of the observer. Here, we are interested in a dedicated approach to
approximation for the observability problem, which applied to a wide class of systems, that is systems verifying
an observability rank condition. Unlikely to the works derived from the exact linearization, here we aim at
designing an approximation for both the vector �eld and the output function.
The simplest strategy when the system is too complex is the linear approximation. It gives an e�cient procedure
to design a local observer and apply to a wide class of systems. Two options are available, we can consider the
linear approximation in the neighborhood of a point or along a trajectory. Although the linear approximation
along a trajectory leads to better results, a very few results exist about the convergence and lead to very
restrictive conditions. Thus, we consider here approximation in the neighborhood of a point, without loss of
generality, we assume that this point is the origin.
We believe that a more e�cient approximation can be designed, since the linear one is not directly induced by the
problem of observability. We want to construct an approximation which is specially adapted to the observability
problem. In order to obtain such an approximation, we consider the tool of homogeneity which gives the
necessary freedom for this construction. This tool has already been used for the construction of homogeneous
approximations for controlled systems and has been worked out by numerous authors [4,12,13,25,27]. It is rooted
from the theory of hypo-elliptic operators [11, 23]. It has been proved that for any nonlinear control system
which is fully accessible, there always exists an homogeneous approximation which remains fully accessible,
see [13]. More precisely, given a control system

ẋ = f0(x) +
m
∑

i=1

uifi(x), x ∈ R
n, (Σ)

the rank of the Lie algebra spanned by the vector �elds f0, . . . , fm is assumed to be n. A change of coordinates
is derived from a suitable �ltration of this Lie algebra. The homogeneous approximation of system (Σ) is then
obtained by taking the �rst term in the homogeneous expansion of the vector �elds {f0, f1, . . . , fm} written in
the new system of coordinates.
To the best of our knowledge, the dual problem of the existence of an observable homogeneous approximation
for an observable nonlinear system has not been investigated yet. This problem is solved next (locally at the
origin). It is shown that this homogeneous approximation always exists and is explicitly constructed. Similarly
to the case of controllability we construct a �ag on the space of observability, which is spanned by the one-forms
associated to the output functions and their Lie derivative along the vector �eld of the system. There are two
main issues which make the di�erence between accessible homogeneous approximation and observable homoge-
neous approximation. First, the space of observability is a subspace of the space of one-forms on R

n and not
the algebra of vector �elds. Second, an homogeneous approximation has to be constructed that copes with both
state equation and output equation. The resulting system has to consist simultaneously of an approximation
for the vector �elds and of an approximation for the output function.
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The approximation obtained here is further used in order to construct an observer for a general class of non-
linear systems. Su�cient conditions are given for the convergence of the obtained observer. The construction
presented here is compared with the linear approximation observer. The performance of both methods is illus-
trated by an example.

The paper is organized as follows. In section 1, de�nitions and notations are given, which will be used in
the paper. Section 2 contains the main theoretic development of this paper. The approximation induced by
the observability property of a system without inputs is constructed. Properties of the space of observation of
the approximating system are stated. An observer is designed using the previously constructed approximation,
in section 3. Su�cient conditions for the convergence of this observer are stated. In section 4, an example is
given which illustrate the performance of the observers obtained by a linear approximation and an homogeneous
approximation. Section 5 contains the proofs. Finally, the conclusion is given in section 6

1. Definitions and notations

1.1. Notations

In the sequel, we denote:

• R the set of real numbers,
• N the set of nonnegative integers,
• �span� the linear span on the corresponding vector space over the �eld R,
• Lfh the Lie derivative of the function h : Rn → R along the vector �eld f : Rn → R

n,
• [f, g] the Lie bracket of the vector �elds f, g : Rn → R

n,

• adifg, where i ∈ N is de�ned by induction with ad0fg = g and adif = [f, adi−1
f g] for i ≥ 1,

• ω(g)(x)
∆
= ω(x)(g(x)), x ∈ R

n, where ω is a 1-form on R
n and g is a vector �eld on R

n,
• (t, ξ) → exp(tf)(ξ) the solution of ẋ(t) = f(x(t)), x(0) = ξ ∈ R

n, where f : Rn → R
n is a smooth vector

�eld,
• an open subset U of Rn is said to be positively invariant under system ẋ(t) = f(x(t)) if every solution

x(t) of this system starting in U stays in U .
• ‖.‖i,k the i-norm on R

k, where i, k ∈ N (if not speci�ed, norm 2 will be used),
• ‖.‖M the norm associated to the symmetric de�nite positive matrix M ,
• B‖.‖(x, ǫ) = {z ∈ R

n | ‖z − x‖ < ǫ}, where x ∈ R
n, ǫ > 0 and ‖.‖ is a norm on R

n,

• δji the usual Kronecker symbol which equal 1 if i = j, 0 otherwise,
• |α| =∑n

i=1 αi, where α ∈ N
n is a multi-index,

• ‖α‖r =
∑n

i=1 riαi, where α, r ∈ N
n,

• zα = zα1
1 . . . zαn

n , where α ∈ N
n and z ∈ R

n,
• ∂α/∂zα = ∂α1/∂zα1

1 . . . ∂αn/∂zαn
n , where α ∈ N and (z1, . . . , zn) are coordinates.

Throughout the paper, the functions and vector �elds are supposed to be analytic.

1.2. Homogeneity

We recall here the de�nition of homogeneity and direct properties, see [13,14] for more details.

De�nition 1. The function

∆r
ǫ : R

n → R
n,

(x1, . . . , xn) 7→ ∆r
ǫx = (ǫr1x1, . . . , ǫ

rnxn),
(1.1)

is called a dilation with respect to the weights r = (r1, . . . , rn) ∈ N
n, where ǫ > 0.
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De�nition 2. A real valued function h : Rn → R is said to be homogeneous of degree d with respect to the
dilation ∆r

ǫ if

h(∆r
ǫx) = ǫdh(x), ∀x ∈ R

n, (1.2)

for all ǫ > 0. Equivalently, we say that h is homogeneous of degree d with respect to the weights (r1, . . . , rn).

Example 1. The function h(x1, x2) = x1x
2
2 + x2

1 is homogeneous of degree 4 with respect to the weights
(r1, r2) = (2, 1).

De�nition 3. A vector �eld f : Rn → R
n is said to be homogeneous of degree d with respect to the dilation ∆r

ǫ

if

f(∆r
ǫx) = ǫd∆r

ǫf(x), ∀x ∈ R
n, (1.3)

for all ǫ > 0.

Example 2. The vector �eld f(x1, x2) = (x1x
2
2)

∂
∂x1

+(x1x2)
∂

∂x2
is homogeneous of degree 2 with respect to the

weights (r1, r2) = (2, 1).

The following lemma shows that the Lie derivative and the Lie bracket are compatible with the notion of
homogeneity.

Lemma 1. The following results holds true:

a) if h1, h2 : Rn → R are homogeneous functions of degree d1 and d2 respectively, with respect to ∆r
ǫ , then their

product h1h2 is homogeneous of degree d1 + d2 with respect to ∆r
ǫ ;

b) if h : R
n → R is an homogeneous function of degree d with respect to the dilation ∆r

ǫ , then the partial
derivative ∂h

∂xi
of h relative to the i-th coordinate is homogeneous of degree d− ri with respect to ∆r

ǫ ;

c) if f1, f2 : Rn → R
n are homogeneous vector �elds of degree d1 and d2 respectively, with respect to ∆r

ǫ , then
the Lie bracket [f1, f2] of f1, f2 is a homogeneous vector �eld of degree d1 + d2 with respect to ∆r

ǫ ;
d) if h : Rn → R and f : Rn → R

n are a function and a vector �eld homogeneous of degree d1 and d2 respectively,
with respect to the dilation ∆r

ǫ , then the Lie derivative Lfh of h along the vector �eld f is a homogeneous
function of degree d1 + d2 with respect to ∆r

ǫ .

Proof. a), b) are given by property 2 and c) by property 1 in [13]. A direct computation gives d). �

1.3. Order induced by homogeneity

Let h : Rn → R and f : Rn → R
n be a function and a vector �eld, respectively. Let ∆r

ǫ be a dilation with
nonnegative integer weights. Then h and f admit an homogeneous expansion of the following form

h(x) =

+∞
∑

l=0

hl(x), (1.4)

f(x) =
+∞
∑

l=−max
i

{ri}
fl(x), (1.5)

where each hl : R
n → R and fl : R

n → R
n are homogeneous function and vector �eld, respectively, of degree l

with respect to ∆r
ǫ . Indeed, h an f are analytic, therefore an expansion in polynomial functions exists. Since the

weights are nonnegative integer, each polynomial function is homogeneous of a certain degree. We can switch
the terms of this series, because it is absolutely convergent, in order to obtain the homogeneous expansion.

De�nition 4. An analytic function h : Rn → R (respectively, an analytic vector �eld f : Rn → R
n) is said

to be of order o(h) (respectively o(f)) greater or equal to m ∈ Z if all the terms of degree d ≤ m − 1 in the
homogeneous expansion vanish.
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Example 3. The vector �eld f(x) = (x2 + x1 + x2x1)
∂

∂x1
+
(

x3
1 + x1x2 + x2

2

)

∂
∂x2

with the weights (r1, r2) =

(1, 2), admits the following homogeneous expansion

f(x) =
2
∑

l=−2

fl(x), (1.6)

with f−2(x) = 0, f−1(x) = 0, f0(x) = (x1)
∂

∂x1
, f1(x) = (x2)

∂
∂x1

+(x3
1+x1x2)

∂
∂x2

, f2(x) = (x1x2)
∂

∂x1
+(x2

2)
∂

∂x2
.

Furthermore f is of order o(f) ≥ 0.

2. Construction of an homogeneous approximation for the observability

problem

Consider the following system

{

ẋ = f(x), x ∈ R
n,

y = h(x) = (h1(x), . . . , hp(x)), y ∈ R
p,

(2.1)

where x is the state and y is the measured output. Functions f and h are supposed to be analytic and to satisfy
f(0) = 0 and h(0) = 0. We assume that system (2.1) ful�lls an observability rank condition, i.e.

dim (dO(0)) = n, (2.2)

where
dO = {dγ, γ ∈ O}, (2.3)

and
O = span

{

Li
fhj , i ∈ N, j = 1, . . . , p

}

. (2.4)

The space O is called the observability space of system (2.1).
The construction of the approximation is divided into two parts. First, we construct a change of coordinates
z = ϕ−1(x). Then, we show that these new coordinates allow us to de�ne an approximation which keeps
observability properties unchanged at the origin.

2.1. Construction of new coordinates

The construction of the change of coordinates is split into four part

(1) de�nition of a �ag on dO
(2) de�nition of a basis of 1-forms for the �ag, at the origin

(3) construction of a dual basis of vector �elds
(4) de�nition of the change of coordinates

2.1.1. De�nition of the �ag

In order to de�ne an approximation which keeps the informations of the observability space at the origin of
the original system, we need to put a structure on this space. This structure has to describe the action of the
vector �eld f on the output function, performs by the Lie derivative. Therefore, we consider the following �ag

Lj = d
(

span{Li
fhk : 0 ≤ i ≤ j − 1, k = 1, . . . , p }

)

. (2.5)

The �ag {Lj}j≥1 has the following properties

• Lj ⊂ Lj+1, j ≥ 1,
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• LfLj ⊂ Lj+1, j ≥ 1,
• dO = ∪j≥1Lj .

Remark 1. The subsets Lj, j ≥ 1, contain only exact 1-forms because of their construction. Hence, the
Lie derivative LfLj of the subspace of 1-forms Lj is de�ned via the Cartan formula Lfdh = dLfh, where
h : Rn → R.

2.1.2. De�nition of the basis

Now that a structure on the space of observability has been de�ned, we need a related basis. Let us de�ne
�rst

n0 = 0, (2.6)

nj = dim Lj(0), j ≥ 1, (2.7)

and

d = min{k : dim Lk(0) = n}, (2.8)

where the number d is a �nite integer because of (2.2). We de�ne next a basis (ωi)1≤i≤n, following a recursive
procedure:

• pick ω1, . . . , ωn1
in L1 such that ω1(0), . . . , ωn1

(0) is a basis of L1(0),
• pick ωn1+1, . . . , ωn2

in L2 such that ω1(0), . . . , ωn2
(0) is a basis of L2(0),

...
• pick ωnd−1+1, . . . , ωnd

in Ld such that ω1(0), . . . , ωnd
(0) is a basis of Ld(0).

Remark 2. By the de�nition of dO, each ωi, 1 ≤ i ≤ n is exact, then we can associate a unique real function
hi : R

n → R to ωi by

dhi = ωi, (2.9)

hi(0) = 0.

2.1.3. Construction of the dual basis of vector �elds

The delicate part for the construction of the change of coordinates is to �nd a dual basis of vector �elds with
the required properties. We proceed as follow, �rst we state what properties are needed for the dual basis and
then, we show that there always exists such a basis.
We de�ne a basis of vector �elds at the origin, of R

n, as a set of n vector �elds g1, . . . , gn de�ned on a
neighborhood U of the origin and such that g1(0), . . . , gn(0) are independent.
Let V be the Lie algebra generated by g1, . . . , gn and f , and (Vj)j≥0 the increasing sequence of subspaces of V ,
de�ned by

Vj = {g ∈ V : ωi(g) = 0, 1 ≤ i ≤ nd−j}. (2.10)

A dual basis adapted to the �ag (2.5) is de�ned as a basis g1, . . . , gn of vector �elds at the origin which verify
the following assumption:

Assumption 1.

(i) Vj ⊂ Vj+1,
(ii) [Vj , Vk] ⊂ Vj+k,
(iii) ∪0≤j≤dVj = V ,
(iv) For all i = 1, . . . , n

(

Dhi

)

(0) = 0, ∀D ∈ Bd−j ,
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where j ∈ {1, . . . , d} is such that nj−1 + 1 ≤ i ≤ nj, and

Bd−j−1 = span

{

Lg1 ◦ · · · ◦ Lgk | k ∈ N, {g1, . . . , gk} ⊂ {g1, . . . , gn} and

k
∑

l=1

w(gl) ≤ d− j − 1

}

,

w(g) = min{k : g ∈ Vk}.

(v) For k = 1, . . . , n and j ∈ {1, . . . , d} verifying nj−1 + 1 ≤ k ≤ nj, the following equality holds true

(ωi(gk)) (0) = 0, i = 1, . . . , nj−1.

Remark 3. Conditions (i)-(iii) are the same as in [13] and are used to obtain the approximation of the vector
�eld. Condition (iv) is for the output function approximation. And the last condition ensures that the basis of
vector �elds are ordered with respect to (Vj) as illustrated on �gure 1.

ωnd
ω1

gnd−1+1

ωnd−1+1ωn1
, ωn2

g1 gnd
gn1

, gn1+1

L1

Ld−1

V1

Vd

Ld

Vd−1

Figure 1

Now, we exhibit a vector �elds basis satisfying assumption 1. Consider the matrix M(x) for which the
columns are the components of the 1-forms ω1, . . . , ωn, i.e.

Mij(x) = ωi
j(x), ωj(x) =

n
∑

k=1

ωk
j (x)dxk, x ∈ R

n, 1 ≤ i, j ≤ n. (2.11)

Since the observability rank condition is ful�lled at the origin, the matrix M is invertible on a neighborhood U
of the origin. Hence, there exist analytics vector �elds g̃1, . . . , g̃n de�ned on U , such that

ωi (g̃j) (x) = δji , ∀x ∈ U . (2.12)

Let i = 1, . . . , n, de�ne
gi(x) = (g̃n−i+1)(j+2)(x), ∀x ∈ U , (2.13)

where j ∈ {1, . . . , d} is such that nj−1 ≤ n− j + 1 ≤ nj . Then we have the following result.

Proposition 1. The dual basis de�ned by equation (2.13) veri�es assumption 1.

Remark 4. Another possible dual basis is given by

gi = g̃n−i+1, i = 1, . . . , n. (2.14)

But as demonstrated by Proposition 1, we do not need to take an exact dual basis. Furthermore, this would
make the computations for the change of coordinates unnecessarily complicated, or even impossible.
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2.1.4. De�nition of the change of coordinates

Consider a basis of vector �elds at the origin g1, . . . , gn verifying assumption 1. Then, we can de�ne new
coordinates z = ϕ−1(x), ϕ : Rn → R

n, by

ϕ(z1, . . . , zn) = exp(zngn) ◦ · · · ◦ exp(z1g1)(0), (2.15)

We call z, coordinates adapted to the �ag (2.5). In the coordinates z de�ned by (2.15), the system (2.1) becomes

{

ż = ∂ϕ−1

∂x
(ϕ(z)).f(ϕ(z)) := F (z),

y = h(ϕ(z)) := H(z) = (H1, (z), . . . , Hp(z)),
(2.16)

similarly, we denote

Hi(z) := hi(ϕ(z)), i = 1, . . . n, (2.17)

Gi(z) =
∂ϕ−1

∂x
(ϕ(z)).gi(ϕ(z)), i = 1, . . . , n, (2.18)

and we have the following result:

Proposition 2. [13, Proposition 2.1] In the new coordinates de�ned by (2.15), we have Gi(0) = ∂/∂zi,
i = 1, . . . , n.

2.2. Approximation design for the observability

We now investigate the properties of the system (2.1) in the new coordinates de�ned by (2.15). This will
allow us to de�ne an homogeneous approximation which contains the informations of the observability space at
the origin.

2.2.1. De�nition of the approximation

We �rst de�ne the weights (r1, . . . , rn) adapted to the �ltration (Lj)j≥1 at the origin by

ri = d− j, nj + 1 ≤ i ≤ nj+1, j = 0, . . . , d− 1. (2.19)

The following main result is fundamental for our study, indeed, it shows that the order of H1, . . . Hn and F are
suited to the de�nition of an homogeneous approximation with respect to the weights de�ned by (2.19).

Theorem 1. Let F be given by (2.16) and H1, . . . , Hn by equation (2.17). The order of F and H1, . . . , Hn

with respect to the weights (2.19) verify:

• o(Hi) ≥ d− j, where j ∈ {1, . . . , d} is such that nj−1 + 1 ≤ i ≤ nj,
• o(F ) ≥ −1.

Remark 5. We have obtained properties on the order of the functions (Hi)i=1,...,n. Thus, to de�ne an approxi-
mation of the system (2.16), we need to have the same property to apply to the output function. That is why, in
the following, we assume that dh1(0), . . . , dhp(0) are independent and that h1 = h1, . . . hp = hp. One can notice
that n1 = p.

The one-forms dh1, . . . , dhp associated to the output function of system (2.1) belong to L1 by construction.
Hence, applying Theorem 1, the homogeneous expansion of F and Hi, i = 1, . . . , p (given by (2.12)), with
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respect to the weights (r1, . . . , rn) can be written as

F (z) =

+∞
∑

l=−1

Fl(z), (2.20)

Hi(z) =

+∞
∑

l=d−1=r1

H l
i(z), (2.21)

where for each l, Fl and H l
i are homogeneous of degree l with respect to the weights (2.19).

De�nition 5. The approximation of system (2.16) with respect to the �ag (Lj)j≥1 is de�ned as

H̃i(z) = Hd−1
i (z), (2.22)

F̃ (z) = F−1(z). (2.23)

Remark 6. The approximation simply consists in taking the �rst term in the homogeneous approximation with
respect to the given weights.

2.2.2. Properties of the approximation

The following result states, in a precise way, the correspondence between the observability space of the
original system (2.1) and its approximating system

{

ż = F̃ (z), z ∈ R
n,

y = H̃(z), y ∈ R
p.

(2.24)

Theorem 2. Let ω ∈ L1 and let ω̃ be the corresponding one-forms given by the approximating system (2.24).
Let k ∈ {0, . . . , d− 1}, then if we denote Lk

Fω(z) =
∑n

i=1 ai(z)dzi and Lk
F̃
ω̃(z) =

∑n
i=1 bi(z)dzi, we have

ai(0) = bi(0), nk + 1 ≤ i ≤ nk+1,
ai(0) = bi(0) = 0, nk+1 + 1 ≤ i ≤ n.

(2.25)

Let (L̃j)j≥1 be the �ag associated to the approximating system (2.24), the following corollary is a direct
consequence of Theorem 2 and hence will not be proved.

Corollary 1. For each j = 1, . . . , d, we have the following equality

Lj(0) = L̃j(0). (2.26)

3. Local observer design

In this section, we present the construction of a local observer, using the approximation developed in the pre-
vious section. We consider the case of a system with an output of dimension 1 to avoid unnecessary complicated
notations, but the extension to the multi-output case follows the same lines. Let us consider the system

{

ẋ = f(x), x ∈ R
n,

y = h(x), y ∈ R,
(3.1)

where f and h are analytics. We assume that

dim
(

span{dLk
fh(0), k = 0, . . . , n− 1}

)

= n. (3.2)
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Hence system (3.1) veri�es the observability rank condition.
According to the previous section, there exists new coordinates z de�ned by z = ϕ−1(x) and weights ri = n− i,
i = 1, . . . , n, such that, in the new coordinates, F (z) = (∂ϕ−1/∂x)(ϕ(z)).f(ϕ(z)) and H(z) = h(ϕ(z)) are of
order greater or equal to −1 and r1 = n− 1 respectively. The approximating system is then given by

{

ż = F̃ (z),

y = H̃(z),
(3.3)

where F̃ (z) = F−1(z) and H̃(z) = Hr1(z) are the �rst terms of the homogeneous expansion of F and H respec-
tively, with respect to weights ri = n− i, i = 1, . . . , n.
In order to construct an observer for system (3.1), we �rst design an observer for system (3.3). We use the high
gain observer presented in [9] after having transformed the system (3.3) into an observability canonical form.

The observer for the original system is then obtained simply by replacing f̃ and h̃ by f and h.

The second change of coordinates is given by

ξ = Φh(z) =











H̃(z)

LF̃ H̃(z)
...

Ln−1

F̃
H̃(z)











. (3.4)

In the new coordinates ξ, system (3.3) is in the following observability canonical form

{

ξ̇ = Aξ,

y = Cξ,
(3.5)

where Aij = δj−1
i , 1 ≤ i, j ≤ n and C = [1 0 . . . 0]. An observer is thus given by

˙̂
ξ = Aξ̂ −K(θ)C(ξ̂ − ξ), (3.6)

where the gain K(θ) is given by

K(θ) :=











θC1
n

θ2C2
n

...
θnCn

n











, Cp
n =

n!

(n− p)!p!
, θ ∈ R. (3.7)

In the original coordinates x, the gain Kh(θ, x̂) reads

Kh(θ, x̂) =
∂(ϕ ◦ Φ−1

h )

∂ξ

(

Φh ◦ ϕ−1(x̂)
)

K(θ), (3.8)

and the observer for the original system (3.1)

˙̂x = f(x̂)−Kh(θ, x̂)(h(x̂)− h(x)). (3.9)

We have the following result of convergence for the observer (3.9).
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Proposition 3. Assume that system (3.1) veri�es property (3.2). Then, there exists θ∗ > 0 such that for all
θ > θ∗, there exist V1(θ) and V2(θ), two neighborhoods of the origin, such that:

if V1 positively invariant under system (3.1) then the observer (3.8)-(3.9) is convergent on V2.

Remark 7. Proposition 3 states that for every θ > θ∗, there exists a set in which the approximation is valid.
Thus if the solutions of system (3.1) stay in this set, the observer is locally convergent.

The following proposition is similar to proposition 3 but with di�erent assumptions.

Proposition 4. If system (3.1) veri�es property (3.2) and if its origin is Lyapunov stable, then there exists a
real number θ∗ > 0, such that for all θ > θ∗, there exists a neighborhood of the origin U(θ) such that observer
(3.8)-(3.9) is convergent on U .

Remark 8. Proposition 3 and 4 can be seen as an application of Theorem 1 in [26], which is derived from the
center manifold theory. But we propose here an original proof, derived from Lyapunov theory, which give the
possibility to obtain an analytic estimation of the domain of convergence.

4. Example

In this section, we apply the methodology developed in this paper on a particular example and we compare
it to the observer given by the linear approximation.

4.1. System

The considered system is


















ẋ1 = −x1 + x2 + x2
2 − x3

3 − x3
2,

ẋ2 = x3 − x2 + x1 − x3
3 − x5

1,

ẋ3 = −x5
3 − x3

2,

y = h(x) = x2 + x2
1 + x1x3 + x2

3.

(4.1)

This system ful�ll the observability rank condition, since

dh(0) = dx2,

dLfh(0) = dx3 − dx2 + dx1,

dL2
fh(0) = −2dx1 + 2dx2 − dx3.

Thus dimdO(0) = 3.

4.2. Observer design by homogeneous approximation

We can apply our method:

• Computation of the �rst change of coordinates:
A basis for the �ag is given by

dh1 = dh,

dh2 = dLfh,

dh3 = dL2
fh.
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It is straightforward to check that the following dual basis ful�ll the requirements of assumption 1

g1(x) =
∂

∂x2
,

g2(x) =
∂

∂x1
,

g3(x) = − ∂

∂x1
+ 2x1

∂

∂x2
+

∂

∂x3
.

Then the di�eomorphism (2.15) is given by

ϕ(z) =





−z3 + z2
−z23 + z1 + 2z2z3

z3



 , ϕ−1(x) =





x2 − 2x1x3 − x2
3

x1 + x3

x3



 . (4.2)

Hence, we obtain the following approximation



















ż1 = −z23 + z2,

ż2 = z3,

ż3 = 0,

y = z1 + z2z3.

(4.3)

• Construction of the second change of coordinates:
By de�nition

ξ = Φh(z) =





H̃(z)

LF̃ H̃(z)

L2
F̃
H̃(z)



 . (4.4)

Thus

Φh(z) =





z1 + z2z3
z2
z3



 , Φ−1
h (ξ) =





ξ1 − ξ2ξ3
ξ2
ξ3



 . (4.5)

• Construction of the observer:
The change of coordinates from x to ξ is given by

ξ = Φh ◦ ϕ−1(x) =





x2 − x1x3

x1 + x3

x3



 , x = ϕ ◦ Φ−1
h (ξ) =





ξ2 − ξ3
−ξ23 + ξ1 + ξ2ξ3

ξ3



 . (4.6)

Then

Kh(θ, x̂) =





3θ − θ3

3θ + θ3x̂1 + (3θ2 − θ3)x̂3

θ3



 , (4.7)

with K(θ) = [3θ, 3θ2, θ3]T . The observer is given by































˙̂x1 = −x̂1 + x̂2 + x̂2
2 − x̂3

3 − x̂3
2

−(3θ − θ3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3)− (x2 + x2
1 + x1x3 + x2

1)),
˙̂x2 = x̂3 − x̂2 + x̂1 − x̂3

3 − x̂5
1

−(3θ + θ3x̂1 + (3θ2 − θ3)x̂3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3)− (x2 + x2
1 + x1x3 + x2

1)),
˙̂x3 = x̂5

3 − x̂3
2 − (θ3)((x̂2 + x̂2

1 + x̂1x̂3 + x̂2
3)− (x2 + x2

1 + x1x3 + x2
1)).

(4.8)
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4.3. Observer design by linear approximation

In order to compare our approach with the linear approximation, we apply the same method:

• De�nition of the linear approximation



















ẋ1 = −x1 + x2,

ẋ2 = x3 − x2 + x1,

ẋ3 = 0,

y = x2.

(4.9)

• Computation of the change of coordinates

ξ = Φl(x) =







h̃l(x)

Lf̃l
h̃l(x)

L2
f̃l
h̃l(x)






=





x2

x1 − x2 + x3

−2x1 + 2x2 − x3



 , Φ−1
l (ξ) =





ξ1 − ξ2 − ξ3
ξ1

2ξ1 + ξ3



 . (4.10)

• Construction of the observer

Kl(θ) =
∂Φ−1

l

∂ξ
(Φl(x̂))K(θ) =





3θ − 3θ2 − θ3

3θ
3θ2 + θ3



 . (4.11)

with K(θ) = [3θ, 3θ2, θ3]T . We obtain the following observer







































˙̂x1 = −x̂1 + x̂2 + x̂2
2 − x̂3

3 − x̂3
2

−(3θ − 3θ2 − θ3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3)− (x2 + x2
1 + x1x3 + x2

3)),
˙̂x2 = x̂3 − x̂2 + x̂1 − x̂3

3 − x̂5
1

−(3θ)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3)− (x2 + x2
1 + x1x3 + x2

3)),
˙̂x3 = x̂5

3 − x̂3
2

−(3θ2 + θ3)((x̂2 + x̂2
1 + x̂1x̂3 + x̂2

3)− (x2 + x2
1 + x1x3 + x2

3))

(4.12)

4.4. Results of simulations

We have computed an estimation of the domain of convergence of both observers by numerical means. More
precisely, we have determined the larger δ > 0 such that B(0, δ) × B(0, δ) is in the domain of convergence U
of the observer. For each δ, we have run 100 000 simulations where each corresponds to a couple of initial
conditions taken randomly in B(0, δ)×B(0, δ). An initial condition is said to be into the domain of convergence
if at time tsimulation = 30s the error between the original system and the observer is less than ǫsimulation = 10−3.
The results are given in (4.13).

δ observer by homogeneous approximation δ observer by linear approximation
θ = 1 0.56 0.3
θ = 2 0.3 0.2

(4.13)

We illustrate the convergence of both observers for particular initial conditions. We consider the initial
condition x0 = [0.1, 0.1, 0.1] for the original system and x̂0 = [−0.2, 0.1, 0.05] for both observers. The results are
given in �gure 2 for θ = 1 and in �gure 3 for θ = 2, where the original system is represented with solide lines while
the observers are represented with dashed lines. We notice that the behavior of both observers is similar for θ = 1,
but for θ = 2, as expected from the estimation of the domain of convergence, the homogeneous approximation
observer is still convergent but not the linear one, which explode in �nite time, indeed ‖x0‖2 ≈ 0.17 and
‖x̂0‖2 ≈ 0.23.
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Figure 2. Original system (4.1) (solid line) and the two observers (dashed line) with a gain θ = 1.

5. Proofs

5.1. Proof of Proposition 1

In order to prove Proposition 1, we need the following technical result:

Lemma 2. Let g : U → R be an analytic vector �eld and ω be an analytic one form de�ned on U , where U is
a neighborhood of the origin in R

n, such that

ω(g)(x) = 0, ∀x ∈ U . (5.1)

If we denote g(k) the Taylor expansion of g up to order k, then

(

ω(g(k))
)

(l)
= 0, l = 0, . . . , k − 1. (5.2)

Proof of lemma 2. Since g and ω are analytics, we can write g as followed:

g(x) =
n
∑

i=1

(

+∞
∑

k=0

gik(x)

)

∂

∂xi

, x ∈ U , (5.3)

where gik(x) is the k-th term in the Taylor expansion of the real valued function gi(x), and

ω(x) =

n
∑

i=1

(

+∞
∑

k=0

ωi
k(x)

)

dxi, x ∈ U , (5.4)
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Figure 3. Original system (4.1) (solid line) and the two observers (dashed line) with a gain θ = 2.

where ωi
k(x) is the k-th term in the Taylor expansion of ωi. Thus

ω(g)(x) =

n
∑

i=1

(

+∞
∑

k1=0

gik1
(x)

)(

+∞
∑

k2=0

ωi
k2
(x)

)

, (5.5)

=

n
∑

i=1

(

+∞
∑

l=0

l
∑

m=0

gim(x)ωi
l−m(x)

)

, (5.6)

=

+∞
∑

l=0

(

n
∑

i=1

l
∑

m=0

gim(x)ωi
l−m(x)

)

, (5.7)

is the Taylor expansion of the function ω(g). Since ω(g) is analytic and vanish in a neighborhood U of the
origin, we necessarily have

n
∑

i=1

l
∑

m=0

gim(x)ωi
l−m(x) = 0, ∀x ∈ U , ∀l ∈ N. (5.8)

Hence, if g(k) is taken instead of g, the �rst (k−1) terms of the Taylor expansion of ω(g) vanish, i.e. (ω(g))(l) =
0, l = 0, . . . , k − 1. �

Proof of Proposition 1.
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Points (i) and (v)
These properties are direct consequences of the de�nition of (gi)1≤i≤n and (Vj)j≥1.

Point (iv)
Let i ∈ {1, . . . , n}, then there exists j ∈ {1, . . . , d} such that nj−1 + 1 ≤ i ≤ nj . We have to prove that for all
D ∈ Bd−j

Dhi(0) = 0. (5.9)

Since D is in Bd−j , we can write

D = Lg1 . . .Lgk , with

k
∑

l=1

w(gl) ≤ d− j. (5.10)

Let p = w(gk), by de�nition of B, gk ∈ {g1, . . . , gn−nd−p
}. Apply lemma 2 with equation (2.13), we get

(

Lgkhi

)

(l)
(0) = 0, 0 ≤ l ≤ d− p+ 1. (5.11)

We have k − 1 < d− p+ 1, because (k − 1) + p ≤ d− j ≤ d, hence

Dhi(0) = Lg1 . . .Lgkhi(0) = 0. (5.12)

Point (ii)
Since V is spanned by f and {g1, . . . , gn}, we just have to show that, for a given k ∈ N and vector �elds

g1, . . . , gk ∈ {g1, . . . , gn, f} verifying
∑k

l=1 w(gl) = j, the following property is veri�ed

adg1 . . . adgk−1
gk ∈ Vj , (5.13)

i.e., we have to prove that

ωi(adg1 . . . adgk−1
gk)(0) = 0, 1 ≤ i ≤ nd−j . (5.14)

The left hand-side of equation (5.14) can be rewritten as

Ladg1 ...adgk−1
gkhi(0). (5.15)

For two vector �elds f̃ , g̃ : U → R
n and a function h̃ : U → R

n, we have

L[f̃ ,g̃]h = Lf̃Lg̃h− Lg̃Lf̃h. (5.16)

Hence (5.15) can be written as the sum of terms of the type cLgs1
. . .Lgsk

hi with {s1, . . . , sk} = {1, . . . , k} and

c = ±1. There is two possible cases. First, assume that gsk belongs to {g1, . . . , gn}. In this case, the idea of
the proof is the same that for property (iv). Indeed, we have to prove that

Lgs1
. . .Lgsk

hi(0) = 0, (5.17)

where 1 ≤ i ≤ nd−j and
∑k

l=1 w(gl) ≤ j. Take j̃ = d − j, it comes 1 ≤ i ≤ nj̃ and
∑k

l=1 w(gl) ≤ nd−j̃ , hence

equation (5.17) can be proven exactly in the same fashion than property (iv).
The second case happens when gsk = f . In that case, we have

Lgs1
. . .Lgsk

hi = Lgs1
. . .Lgsk−1

◦ Lfhi. (5.18)
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Since Lfhi belong to Ld−j+1 and
∑k−1

l=1 w(gl) ≤ d− j − 1, then, again, we check if gsk−1
is equal to f or belong

to {g1, . . . , gn}. If there is only f vector �elds, then equation (5.15) holds true because f(0) = 0 and hi(0) = 0.
This ends the proof.

�

5.2. Proof of Theorem 1

Order of the vector �eld f . Following the notations of [13], a basis adapted to the �ltration (Vj)j≥1 is given by
gn, . . . , g1. More speci�cally, gnd

(0), . . . , gnd−1+1(0) is a basis of V1 at zero, gnd
(0),. . . ,gnd−2+1(0) is a basis of

V2 at zero, etc. According to Theorem 2.1 in [13], in the the new coordinates z de�ned by the inverse of the
function

ϕ(z) = exp(zngn) ◦ · · · ◦ exp(z1g1)(0), (5.19)

if g ∈ Vj , we have

o(G) ≥ −j, with respect to the weights ri = d− j, nj−1 + 1 ≤ i ≤ nj , (5.20)

where G(z) = (∂ϕ−1/∂x)(ϕ(z))g(ϕ(z)) is the vector �eld g written in the new coordinates. The basis taken
here is in reverse order (for the index) compared to the one in [13], it explains why the weights are reversed
too.
In particular, the vector �eld f belongs to V1, since ωi(f)(0) = 0 for all i = 1, . . . , n. Applying (5.20), we obtain
the result. �

Order of the functions Hi, i = 1, . . . , n. We need to prove the following statement

∂α

∂zα
Hi(0) = 0, ∀α ∈ N

n such that ‖α‖r ≤ d− j − 1. (5.21)

By assumption 1-(iv), we know that, in the x coordinates,

Dhi(0) = 0, ∀D ∈ Bd−j−1. (5.22)

In the following, we will prove that (5.22) actually implies (5.21). First, we rewrite (5.22) in the new coordinates.
Let us denote G1, . . . , Gn for the vector �elds g1, . . . , gn in the new coordinates, that is

Gi(z) =
∂ϕ−1

∂x
(ϕ(z))gi(ϕ(z)), i = 1, . . . , n. (5.23)

In the same fashion, we have

∇Hi(z) = (∇hi)(ϕ(z))
∂ϕ

∂z
(z), i = 1, . . . , n. (5.24)

Then, for i = 1, . . . , n and k = 1, . . . , n, we obtain

LGi
Hk(z) = (∇hi)(ϕ(z))

∂ϕ

∂z
(z)

∂ϕ−1

∂x
(ϕ(z))gk(ϕ(z)), (5.25)

= (∇hi)(ϕ(z))gk(ϕ(z)), (5.26)

= Lgi
hk(x). (5.27)

In the new coordinates z, (5.22) becomes

DHi(0) = 0, ∀D ∈ Bd−j−1, (5.28)
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where

Bd−j−1 =

{

LG1
◦ · · · ◦ LGk

: {G1, . . . , Gk} ⊂ {G1, . . . , Gn} and

k
∑

l=1

w(Gk) ≤ j

}

. (5.29)

We are now going to prove (5.21) by induction on the order ‖α‖r.

Case ‖α‖r = 1
Since ‖α‖r = 1, we necessarily have |α| = 1 and αi = 0 if i = 1, . . . , nd−1. Hence we have to prove that

∂

∂zk
Hi(0) = 0, i = nd−1 + 1, . . . , nd. (5.30)

According to Proposition 2.1 in [13], Gk(0) = ∂/∂zk, for k = 1, . . . , n, then by (5.28), we get

0 = LGk
Hi(0) =

∂

∂zk
Hi(0), k = nd−1 + 1, . . . , nd, (5.31)

which prove this case.

Case ‖α‖r = k + 1
We assume now that (5.21) holds true for α ∈ N

n, such that ‖α‖r ≤ k, k ≤ d− j − 2.
Let D = LG1 . . .LGs

belong to Bk+1. We write

Gl(z) =

n
∑

k=1

alk(z)
∂

∂zk
, l = 1, . . . , s. (5.32)

The expression

DHi(0) = LG1
. . .LGs

Hi(0), (5.33)

is a sum of terms of the form

a1i1(0)

(

∂α1

∂zα1 a
2
i2

)

(0)

(

∂α2

∂zα2 a
3
i3

)

(0) . . .

(

∂αs−1

∂zαs−1 a
s
is

)

(0)

(

∂αs

∂zαs Hi

)

(0) (5.34)

where, for l = 1, . . . , s, il ∈ {1, . . . , n}. Furthermore, we have the following property

s
∑

l=1

ril =
s
∑

l=1

‖αl‖r. (5.35)

First, we show that if ‖αs‖r ≥ k + 2 then (5.34) is equal to zero.
According to Theorem 2.1 in [13], a vector �eld G ∈ V , verify o(G) ≥ −w(G) with respect to the weights
(ri)1≤i≤n given by (2.19). If we write G in coordinates, G(z) =

∑n
k=1 ak(z)∂/∂zk, then o(ai) ≥ ri − w(G).

Hence if ‖αl‖r < o
(

al+1
il+1

)

= ril+1
− w(Gl+1), for any l = 1, . . . , s− 1 or if ri1 ≤ w(G1) then (5.34) is equal to

zero.
We assume now that

‖αl‖r ≥ ril+1
− w(Gl+1), l = 1, . . . , s− 1, (5.36)

ri1 ≤ w(G1). (5.37)
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We consider the inequality obtained by summing the inequalities (5.36) for l = 1, . . . , s− 1, we obtain

s−1
∑

l=1

‖αl‖r ≥
s
∑

l=2

ril −
s
∑

l=2

w(Gl). (5.38)

Adding inequality (5.37) and reordering, we get

s−1
∑

l=1

‖αl‖r +
s
∑

l=1

w(Gl) ≥
s
∑

l=1

ril . (5.39)

Using (5.35), we obtain
s−1
∑

l=1

‖αl‖r +
s
∑

l=1

w(Gl) ≥
s
∑

l=1

‖αl‖r, (5.40)

then

k + 1 =

s
∑

l=1

w(Gl) ≥ ‖αs‖r ≥ k + 2. (5.41)

Thus we must have ‖αs‖ ≤ k + 1.

Second, if ‖αs‖r ≤ k, by the induction hypothesis, we have that (5.34) is equal to zero.

The last case left is ‖αs‖r = k + 1.
Until now, we have proved that DHi(0) is the sum of terms of the form (5.34) with ‖αs‖r = k+1 for D ∈ Bk+1.
Let us consider E = {α ∈ N

n | ‖α‖r = k + 1} and El = {α ∈ E | |α| = l}, then E is the disjoint union of El,
l = 1, . . . , k + 1.
We are going to prove that ∂α/∂zαHi(0) = 0, α ∈ El for l = 1, . . . , k + 1, by induction on l.

Case |α| = 1
It is equivalent to prove that ∂/∂zlHi(0) = 0 for l = nd−j + 1 ≤ l ≤ nd−j+1. According to Proposition 2, we

have Gl(0) = ∂/∂zl, l = 1, . . . , n, then

0 = LGl
Hi(0) =

∂

∂zl
Hi(0). (5.42)

Case |α| = m+ 1
We assume that ∂α/∂zαHi(0) = 0 for α ∈ El, l = 1, . . . ,m, with m ≤ k. Let α ∈ Em+1, then Lα1

G1
. . .Lαn

Gn
is in

Bk+1. Furthermore Lα1

G1
. . .Lαn

Gn
Hi(0) can be written as the sum of elements in the form (5.34) with |αs| ≤ m

plus
∑

1≤i1,i2,...,is≤n ai1(0) . . . ais(0)∂
αs

/∂zα
s

Hi(0) where |αs| = m+ 1. By the induction hypothesis the terms

with |αs| ≤ m vanish. And since Gl(0) = ∂/∂zl, l = 1, . . . , n, the only term left is ∂α/∂zαHi(0) which is equal
to zero by (5.28). �

5.3. Proof of Theorem 2

Before proving the Theorem, we need the following lemma.

Lemma 3. Let Hl be a homogeneous function of degree l with respect to the weights (2.19), denote dHl(0) =
∑n

i=1 aidzi, then ai = 0 for i ≥ nd−l (for l < 0, we set nl as 0).

Proof of lemma 3. First notice that ai 6= 0 if and only if Hl contains a linear term in zi. For i = 1, . . . , n, the
function z → zi is homogeneous of degree ri = d−ni, since the weights are decreasing, a homogeneous function
of degree l cannot contains linear terms zi for i ≥ nd−l. Then ai = 0 for i ≥ nd−l. �
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Proof of Theorem 2. Let H : Rn → R be the unique function such that dH = ω and H(0) = 0. Since L1 is
spanned by H1, . . . , Hn1

, it is su�cient to prove the Theorem for H = Hi, i = 1, . . . , n1. We prove only the
cases k = 0 and 1, other cases can be proved in the exact same fashion.
According to Theorem 1, H is of order greater or equal to d − 1 with respect to the weights (2.19), hence we
can write

dH(z) = dHd−1(z) +
∑

l1≥d

dHl1(z), (5.43)

where Hl is homogeneous of degree l with respect to the weights (2.19). Similarly, F admit an homogeneous
expansion of the form

F (z) = F−1(z) +
∑

l2≥0

Fl2(z), (5.44)

where Fl is homogeneous of degree l with respect to the weights (2.19).

Case k = 0

We apply lemma 3 to the right hand-side of equation (5.43), it comes
(

∑

l1≥0 dHl1

)

(0) = 0 and dH̃(0) =

dHd−1(0) =
∑n1

i=1 aidzi. Evaluating both sides of equation (5.43) at the origin gives the conclusion.

Case k = 1
Using equations (5.43) and (5.44), we obtain

LFω = d(LFH), (5.45)

= d



LF−1
Hd−1 +

∑

l2≥0

LFl2
Hd−1



+ d





∑

l1≥d

LF−1
Hl1 +

∑

l1≥d, l2≥0

LFl2
Hl1



 , (5.46)

△
= d

(

LF̃ H̃
)

+ dHR. (5.47)

According to lemma 1,
(

LF̃ H̃
)

is of degree (d − 2) and HR is the sum of homogeneous functions of degree

greater or equal to (d− 1). Applying lemma 3 and evaluating both sides of equation (5.47) at the origin, again,
gives the result. �

5.4. Proof of Propositions 3 and 4

We are going to prove Propositions 3 and 4 in the ξ coordinates, since the Lyapunov stability is a property
independent of the coordinates. For this purpose, we introduce �rst some notations. We denote system (3.1)

{

ξ̇ = F(ξ),

y = H(ξ),
(5.48)

and the error system

ė = G(ξ + e,H(ξ))− F(ξ), (5.49)

where e = ξ̂ − ξ and G is the vector �eld associated to system (3.9) in the ξ coordinates de�ned by equation
(3.4). We need to state two lemmas before proving Propositions 3 and 4.

Lemma 4. Let Φ : R
n → R

n be a di�eomorphism, homogeneous of degree d with respect to the weights
(r1, . . . , rn) (as a vector �eld). Then, the inverse function Φ−1 is homogeneous of degree −d with respect to the
weights ri + d.
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Proof. We have the following identity

Φ−1(Φ(x)) = x, ∀x ∈ R
n. (5.50)

Hence

Φ−1(Φ(λr1x1, . . . , λ
rnxn)) = (λr1x1, . . . , λ

rnxn). (5.51)

Since the function Φ is homogeneous, we get

Φ−1(λr1+dΦ1(x), . . . , λ
rn+dΦn(x)) = (λr1x1, . . . , λ

rnxn). (5.52)

Let x = Φ(x), then x = Φ−1(x)) and

Φ−1(λr1+dx1, . . . , λ
rn+dxn) = (λ(r1+d)−d(Φ−1)1(x), . . . , λ

(rn+d)−d(Φ−1)n(x)). (5.53)

This equality is true for every x in R
n, since Φ is a di�eomorphism. �

Lemma 5. The function (e, ξ) 7→ G(e+ ξ,H(ξ))− F(ξ) can be written as

G(e+ ξ,H(ξ))− F(ξ) = Ee+ α(e, ξ)e+ γ(e), x, ξ ∈ R
n, (5.54)

where E = A−KC, α(e, ξ) is a matrix of dimension n×n such that α(0, 0) = 0 and γ is a function of the form

γ(e) =







γ1(e1)
...

γn(en)






, (5.55)

with ei = (e1, . . . , ei) and each γi : R
i → R is linear.

Proof. Denote RF (z) = F (z)− F̃ (z) and RH(z) = F (z)− F̃ (z). By construction, system (5.49) can be written
as

G(e+ ξ,H(ξ))− F(ξ) = E.e (5.56)

+
∂Φh

∂z

(

Φ−1
h (e+ ξ)

)

Rf

(

Φ−1
h (e+ ξ)

)

− ∂Φh

∂z

(

Φ−1
h (ξ)

)

Rf

(

Φ−1
h (ξ)

)

(5.57)

+
(

Rh(Φ
−1
h (e+ ξ))−Rh(Φ

−1
h (ξ))

)

K. (5.58)

But, since G(ξ,H(ξ))− F(ξ) = 0, we also have

G(e+ ξ,H(ξ))− F(ξ) = Me+ α(e, ξ)e, (5.59)

where M is a n × n real matrix and α(e, ξ) is a matrix of dimension n × n such that α(0, 0) = 0. Then, all is
left to prove is that the linear parts of (5.57) and (5.58) are upper triangular.
We �rst consider (5.57), it is su�cient to prove that

∂
(

∂Φh

∂z

(

Φ−1
h (e)

)

Rf

(

Φ−1
h (e)

))

i

∂ej
(0) = 0, j ≥ i+ 1. (5.60)

By construction, the vector �eld z 7→ Rf (z) is a sum of homogeneous vector �elds of degree higher or equal to
0, with respect to the weights ri = n− i, i = 1, . . . , n. The function Φl is homogeneous of degree 0 with respect
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to the weights ri = n− i, i = 1, . . . , n (as a vector �eld), thus, according to lemma 4, the inverse function Φ−1
l

is homogeneous of degree 0 with respect to the weights ri = n− i, i = 1, . . . , n. We obtain that the vector �eld

e → ∂Φh

∂z

(

Φ−1
h (e)

)

Rf

(

Φ−1
h (e)

)

, (5.61)

is a sum of homogeneous vector �elds of degree higher or equal than 0, which gives the result.
We now consider (5.58). It can be proved in the same way than for (5.57). Indeed, by construction the real
valued function z 7→ Rh(z) is a sum of homogeneous functions of degree higher or equal to r1 + 1 = n with
respect to the same weights (ri)1≤i≤n. Then applying lemma 4 gives the result. �

We prove propositions 3 and 4 in the meantime. Indeed, the �rst part of the proof is the same for both
propositions, only the end is di�erent.

Proof of Propositions 3 and 4. We have to prove that the error system

ė = G(e+ ξ(t),H(ξ(t)))− F(ξ(t)), ∀ξ, e ∈ R
n, (5.62)

is locally asymptotically stable. For this, we consider the Lyapunov function

V (e) = eTS∞(θ)e, (5.63)

where S∞(θ) is the solution of the Riccati equation

{

−θS∞(θ)−ATS∞(θ)− S∞(θ)A+ CTC = 0,

S∞(θ)T = S∞(θ).
(5.64)

This Lyapunov function veri�es:

• V (0) = 0,
• V (e) > 0, e 6= 0,
• V is of class C1.

Now, we need to show that the derivative of V is negative de�nite along the solutions of system (5.62). According
to lemma 5, we can write

G(e+ ξ(t),H(ξ(t)))− F(ξ(t)) = Ee+ α(ξ(t), e)e+ γ(e), (5.65)

with:

• E = A−KC,
• α(ξ(t), e) is a matrix of dimension n× n such that α(0, 0) = 0,
• γ(e) is linear and in a triangular form.

Hence, it gives

V̇|(5.62) = −θeTS∞(θ)e− (Ce)2 + 2eTS∞(θ)(α(ξ(t), e)e)2eTS∞(θ)(γ(e)). (5.66)

We overvalue the last two terms in the previous equation. The �rst over-valuation is done following the same
computations as in [9]. The second one is obtained by applying �rst the Cauchy-Schwarz inequality and then
the mean value Theorem. For all e in V2, where V2 is a neighborhood of the origin that will be set later, we
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have

|eTS∞(θ)(γ(e))| ≤ nl1C1

√
S‖e‖2S∞(θ),

|eTS∞(θ)(α(ξ(t), e)e)| ≤ ‖α(ξ(t), e)e‖S∞(θ)‖e‖S∞(θ),

≤






sup

ξ∈{ξ(t), t≥0}

e∈V2

‖η(ξ, e)‖S∞(θ)






‖e‖2S∞(θ), (5.67)

with
S = max1≤i,j≤n |S∞(1)i,j |

C1 is such that ‖x‖1,n ≤ C1‖x‖S∞(1), ∀x ∈ R
n

‖γ(e′)− γ(e′′)‖ ≤ l1‖e′ − e′′‖
(5.68)

and η(ξ, e) is the derivative of the function e 7→ α(ξ, e)e.
We obtain

V̇|(5.62)(e) ≤






−θ +M + sup

ξ∈{ξ(t), t≥0}

e∈V2

‖η(ξ, e)‖S∞(θ)






‖e‖2S∞(θ), ∀e ∈ V2. (5.69)

Let
θ∗ = 2 +M, (5.70)

where M = nl1C1

√
S and take θ > θ∗.

We have to be sure that
sup

ξ∈{ξ(t), t≥0}

e∈V2

‖η(ξ, e)‖S∞(θ) ≤ 1 + (θ − θ∗). (5.71)

Since α(0, 0) = 0, then η(0, 0) = 0. In addition, the function η is continuous, because all the functions considered
here are analytics. Hence, it ensures the existence of two neighborhoods of the origin V1,V2 such that

sup
ξ∈V1

e∈V2

‖η(ξ, e)‖S∞(θ) ≤ 1 + (θ − θ∗). (5.72)

We have proved until now that
V̇|(5.62)(e) ≤ −‖e‖2S∞(θ), (5.73)

if ξ(t) ∈ V1 for all t ≥ 0 and e ∈ V2.

proof of Proposition 3
Denote V3 a neighborhood of the origin included in V1 such that for all x, y ∈ V3, (x − y) ∈ V2. Then

limt→+∞

[

ξ(t)− ξ̂(t)
]

= 0 if ξ(0), ξ̂(0) ∈ V3 and if the set V1 is positively invariant under system (5.48).

Finally, we de�ne V1 = ϕ ◦ Φ−1
h

(

V1

)

and V2 = ϕ ◦ Φ−1
h

(

V3

)

. The sets V1 and V2 are neighborhoods of the

origin and V1 is positively invariant under system (5.48) if and only if V1 is positively invariant under system
(3.1) since the map ξ 7→ ϕ ◦ Φ−1

h (ξ) is a di�eomorphism.

proof of Proposition 4
The origin of system (5.48) is Lyapunov stable since Lyapunov stability is invariant under change of coordinates,
thus there exists a neighborhood of the origin V4 such that any solution of system (5.48) starting in V4 stays
in V1. Let V3 be a neighborhood of the origin included in V4 such that for all x, y ∈ V3, (x − y) ∈ V2. We

then obtain that limt→+∞

[

ξ(t)− ξ̂(t)
]

= 0 if ξ(0), ξ̂(0) ∈ V3. Finally, we de�ne U = ϕ ◦ Φ−1
h

(

V3

)

which is a

neighborhood of the origin since the map ξ 7→ ϕ ◦ Φ−1
h (ξ) is a di�eomorphism. �
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6. Conclusion

In this paper, we have constructed a homogeneous approximation for systems with multi-output and without
input, satisfying an observability rank condition. This approximation retains pertinent information relative to
observability, particularly, it has the same observability space as the original system. The construction given
here is not always easy to compute, even if it is explicit. But, we have exhibited su�cient conditions which give
some degree of freedom for the construction.
This approximation has been further used for the design of a local observer which has been shown to be conver-
gent for Lyapunov stable systems. Once the change of coordinates is obtained, the observer design is straight
and simple.
The performance of the proposed method has been illustrated on an example and compared with linear approx-
imation. It appears that our observer presents a substantially wider domain of convergence for this system.
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