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When a body is made by several layers, or, equivalently, a homogeneous body slides on the soil, a new
form of damage appear, the wear, initially localized at the interface(s), and possibly propagating inside the
body. Although other forms of wear exist (namely by adherence, corrosion and superficial fatigue, see [4–6]),
wear produced by abrasion is of interest here, as a consequence of stick-slip phenomena [7–9]. Wear has
been extensively studied in Tribology [10] in a wider context of surface interactions. It consists in the slow
and continuous removal of a generally small amount of material from a solid surface, and it occurs when a
hard material slides on a softer material, leading to separation of fragments of the original asperities of this
latter [11,12]. Such particles, when interposed between the two bodies, can facilitate or impede the sliding,
according to their small or large dimensions, respectively. Therefore, artificial interposition of small fragments
is also used for lubrication purposes [13–15].

The studies cited, however, have often been conducted on a phenomenological ground, and have led to
empirical laws, aimed to establish, for example, the dimension of fragments, the useful life of a machinery,
and so on. In [16], for example, the influence of repeated uni-directional sliding for the prediction of wear in
sliding metallic friction is analyzed by considering a wedge which slides over of a surface of the same length.
In [17], another point of view is enveloped: the characteristic deformation of the contact layer is explained in
terms of the wave model of asperity deformation and surface damage is analyzed by considering the strain
cycle undergone by material as it flows through the wave.

A way to give a mathematical description of the contact phenomena like friction and wear in quasi-static
regime, object of many scientific studies (e.g., [18–21]), is to introduce the concept of “interface”: a plane (or
curved) layer endowed (or not) with material properties and with vanishing (or not) volume. The presence of
interfaces plays a fundamental role in several physical phenomena appearing in different frameworks, such
as diffusion and interfacial exchange in a porous media (see, for instance, [22]) or electrical conduction in
biological tissues (see [23–25]), or fiber reinforced materials (see [26]). Mathematical modeling of interface
between contact surfaces and of its constitutive behavior can be interpreted as an extensions of the phenomeno-
logical ground and of the experimental information to a better understanding and simulating friction, damage
and crack phenomena.

Thermodynamics and Damage Mechanics afford the possibility of a theoretical description of the thermo-
mechanical phenomena occurring in rubbing and wearing systems; so, in the present paper, a thermodynamical
damage constitutive model for a Cauchy’s interface is built, able to take into account different (coupled) inter-
facial phenomena, like adhesion, friction, hardening effects and wear.

The spirit of the present work is similar to the one animating the papers [27–30], in which a thermodynam-
ical model of contacting solids is built and a set of dependent variables describing the material properties of the
bodies, the interfacial layer of wear products and the contact are derived; in [27–29], the contact is described
by introducing the definition of a two-dimensional micropolar interfacial layer and its definition is enriched
with a description of the constitutive equations for friction, wear and frictional heat. Moreover, in [30], the
theory of metal fracture is applied to wear and the non-monotonic character of damage accumulation has been
taken into account.

Other relevant examples of mathematical modeling of interface between solids in contact can be found in
[31–35], where the considered interfaces are endowed with material properties like surface mass density, linear
momentum, energy or entropy. In such more sophisticated models, extra surface kinematical descriptors need
to be considered, and correspondingly, new balance equations need to be postulated, in order to determine their
evolution equations. A different approach, based instead on the application of a Hamilton–Rayleigh dissipation
principle may be also viable, by generalizing the results presented in [36].

However, although the mechanisms of wear consists in a kind of damage for the interface(s), modeling of
wear phenomena does not seem to have received sufficient attention in the contest of Damage Mechanics in
the meaning of [2,3]. Few exceptions are represented by the papers [37,38]. In [37], a generalized standard
interface constitutive model for wearing contact is derived; then, a two degrees of freedom system with a one-
point contact is considered, with thermal effects neglected, and the existence and uniqueness of the solution
is discussed. In [38] a beam with a tip in wearing contact with a moving rigid surface is studied; propagation
and distribution of damage along the beam is analyzed by using a nonlocal damage model.

Due to the scientific relevance of the topic and its importance in many engineering applications, it would be
worth to formulate the problem of wear in the context of Damage Mechanics. This paper is an initial attempt
toward this end. Here, attention is focused on damage at the interface, by neglecting any interaction with
damage of body and any propagation of damage inside the body.

Several damage models are formulated, by exploiting the formal analogies, (a) between friction and plas-
ticity and (b) between abrasion of a soft body (quasi-statically) sliding on hard soil and ductile damage of an
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elastic-plastic material. Models describe the mechanisms of superficial interaction through an ideal contact
interface, defined as a two-dimensional body of evanescent thickness, interposed between the body and the
soil and bonded to them, endowed with material properties and capable of shear strains only.

Interface constitutive laws are defined in the framework of the Thermodynamics of irreversible processes
and of the theory of internal variables. A scalar surface field w, as a measure of the “wearing capability” at
interface, is introduced and it is defined as an internal variable which can only increase with respect to time,
its growth being related to an increasing “smoothness” of the interface and, consequently, to a decrease of
its abrading capabilities. Although a more refined approach would require the introduction of a tensor sur-
face field, in the present paper, a scalar one is considered. This limitation is essentially equivalent to assume
a tangential isotropic wear process and represents a first generalization of the models proposed in [39–41].
Under the hypothesis of additive decomposition (elastic and inelastic) of interface strains and of validity of
the equivalent strain principle, the Helmholtz free energy is chosen as a state potential and it is assumed to be
additive in its elastic and inelastic parts, respectively. Thermal dissipative effects are neglected, thus referring
to an ideal isothermal process, and the dissipation potential is assumed to be additive in its stick-slip and wear
parts, respectively; for these reasons, flow laws, whose time-evolution is able to describe stick-slip and wear
phenomena at the interface, are associated for stick-slip variables and not associated for wear.

It should be remarked the fact that the models, presented in this paper, have some resemblances with
plasticity and softening in damage mechanics and that these analogies are exploited for driving a formal pre-
sentation. To the authors’ knowledge, the introduction of such an internal wear parameter, coupled with plastic
interfacial phenomena, is an original feature of the interface constitutive models.

The paper is organized as follows. In Sect. 2, some introductory concepts are illustrated and analogies with
plasticity of damaged solids are stressed. In Sect. 3, the constitutive law for the interface is formulated in the
framework of a thermodynamic approach, once a suitable choice for the internal variables has been made. For
different state and dissipation potentials, several models are obtained. They are discussed in Sect. 4 for purely
friction no-wearable bodies, and in Sect. 5 for wearable bodies. Results of several numerical integrations are
commented in Sect. 6 for one-dimensional problems and different displacement time-histories. Finally, some
conclusions are drawn in Sect. 7.

2 Basic models and analogies

Some basic ideas concerning friction and wear are introduced here. Moreover, formal analogies with other
models of Solid Mechanics are shortly discussed.

A rigid block is considered, in quasi-static contact with soil, loaded by a normal force P = const and a
tangential force F(t), depending on time (Fig. 1). Due to the contact between the solids, a tangential friction
force T (t) arises. Two alternatives can occur, namely (a) the force F is not sufficient to trigger any motions
(stick-phase, Fig. 1a), or, (b) it produces a tangential motion (slip-phase, Fig. 1b). In the classical theory of
friction, T is expressed in terms of macroscopically observed quantities. It is postulated (Coulomb law) that:
(a) in the stick-phase, the force T is equal and opposite to the force F ; (b) in the slip-phase, the force T is
opposite to the direction of the motion, constant in time and its intensity is proportional to P , that is, Tmax = μP
with μ the friction coefficient; moreover, it is independent both of the apparent contact area and of the sliding
velocity. Therefore, in order to the block moves of uniform motion, F must be kept constant and equal to Tmax.

When, however, experimental shear tests are performed on a block of ductile material, loaded by a normal
force P = Pi and by a tangential force F , results as those sketched in Fig. 2 are obtained [19]. The plot shows
the modulus |T | of the friction force versus the tangential displacement u of the body, when three different

(a) (b)

Fig. 1 Rigid body on a planar soil: P normal force, F tangential force, T friction force: a stick-phase, b slip-phase
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Fig. 2 Experimental friction force modulus |T | versus displacement u for the block in Fig. 1, reported in [19]: P0 = 25
kN
m2 , P1 = 100 kN

m2 , P2 = 200 kN
m2

(a) (b) (c)

Fig. 3 Constitutive models for friction and wear: a no-wear model, of perfect (P), hardening (H) or softening (S) type; b weak
wear model; c strong wear model

normal forces, namely P0 = 25 kN/m2, P1 = 100 kN/m2 and P2 = 200 kN/m2, are applied. It is seen
that the response is initially linear, with (positive) slope increasing with P . Successively, the slope progres-
sively decreases and monotonically tends to zero, when the normal force is low (P = P0), or it becomes first
negative and then comes back to zero (for very large displacements) when the normal force is medium/high
(P = P1, P = P2). Therefore, for quasi-static behavior, u(t) must be slowly varied in time and, moreover,
F(t) = T (u(t)) ∀t , that is, the experiment must be displacement-controlled.

The experimental results of Fig. 2 suggest the following theoretical interpretation, based on a micro-mod-
eling of the contact. Both the block and the soil are not smooth, but small asperities exist, mutually framed and
kept in contact by the normal force. When a small tangential force is applied, the asperities deform themselves
elastically, mainly for shear, producing a small tangential displacement of the body, but still remaining trapped
(stick-phase). In this phase, the larger the normal force, the larger the stiffness of the body, due to (a) the
shortening of asperities, caused by compression (elastic stiffness) and (b) a small normal displacement of the
body, requiring a negative work of the force P to be done (geometric stiffness). In order a larger displacement
occurs (slip-phase), the asperities of the body must overtake those of soil, this requiring a tangential force
threshold Tlim = T0 to be reached, where T0 denotes a property of the virgin material. Some authors also
conjecture the existence of molecular links among asperities, produced by adhesion, which must be broken,
before the motion can take place [13,14]. After that, the motion would continue indefinitely at the same value
of force, if the state of the asperities did not evolve with the motion itself (Fig. 3a, perfect curve P). Analogy
with the elastic-perfect plasticity is evident. This is what happens in the test when the normal force is low;
however, this is not the case when the force is higher, as explained soon.

First, the existence of wear is excluded, and friction alone is considered (Fig. 3a, no-wear model NW).
During the motion, the tips of the asperities are loaded by tangential and normal stresses, eventually leading
the material to enter the plastic regime. Caused by the re-iterated up and over the soil asperities, each asperity
of the block undergoes load-unload cycles, which call for additional plastic work to be spent by the external
force, with respect to the stick-phase. If the material possesses a hardening (softening) behavior, each cycle
entails an increasing (decreasing) amount of energy to be spent to sustain the motion, resulting in a hardening
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(a) (b)

Fig. 4 Rigid body sliding on a rigid soil: a elastic asperities, g gap, ue elastic displacement, u total displacement; b elastic-plastic
interface

(softening) macroscopic behavior, as illustrated in Fig. 3a (curves H and S). Hardening (softening) also entails
that, after an unload-reload cycle, the threshold value of the friction modifies as Tlim(t) = T0 + A(t), where
A(t) denotes the isotropic hardening/softening of friction at time t (A > 0 hardening, A < 0 softening), which
is a function of the displacement history. Analogy with the plasticity of solids with isotropic hardening is
self-evident. This phenomenon explains the (initially) hardening behavior of the experimental results in Fig. 2,
at medium-high normal forces.

To explain the subsequent softening, wear must be accounted for. Due to an excess of plastic deformation,
tips of the asperities detach themselves from the body, and small material particles fall down on the soil. This
phenomenon entails a damage, in the sense that several asperities of the body are no more in contact with the
asperities of the soil, so that the contact area decreases. Wear therefore can be defined as the ratio w := Sd/S
between the damaged contact area and the original undamaged contact area. Accordingly, w = 0 denotes an
undamaged surface, and w = 1 an entirely damaged surface (limit case, unreachable). Damage reduces the
elastic-geometrical stiffness, since it reduces the number of asperities; moreover, it also decreases the resistance
to the motion in the slip-phase because of the lubrication effect played by the interposed particles. Therefore,
wear introduces softening in the mechanical behavior, in accordance with experimental tests. An idealized
load-history, for a hardenable material, is sketched in Fig. 3b, c, where few unload-reload paths are considered,
showing progressive reduction of the slope of the paths, both in stick- and slip-phases. In particular, a weak
wear (WW) and a strong wear (SW) effects are considered in Fig. 3a, b, respectively, causing the threshold of
the slip-phase to move up or down the limit value T0 of the corresponding no-wear hardening model.

To evaluate the reduction of the stiffness and of the threshold caused by wear, it is worth noticing analogy
with damage mechanics of material. An effective tangential force T̃ := T/(1 −w) is defined, as the fictitious
force acting on the undamaged contact area, producing the same strain of the true force T acting on the dam-
aged contact area. By applying the so-called equivalent strain principle [2], all the relations holding for the
undamaged body, still hold for the damaged body, provided T is replaced by T̃ . Therefore, both the elastic
stiffness k0 and the threshold T0 + A(t) are reduced by the factor (1 − w), thus becoming k1 := k0(1 − w)
and T1 := (T0 + A(t))(1 − w) (see Fig. 3b, c).

Previous consideration can be formalized in a mathematical form, by exploiting analogies with plasticity
and damage. First, however, the concept of “interface” must be introduced, in order to avoid to deal with
discontinuities in the displacement field, when relative motions between block and soil occur. To this end,
one can think to substitute the“real” discrete asperities (Fig. 4a), with an “ideal” vanishingly small layer of
deformable material, capable of shear strains only and bonded to the two bodies which is interposed (Fig. 4b).
Second, it is observed that the displacement u of the body consists in an elastic part ue, in which the tips of the
(deformed) asperities are still in contact with the soil (stick-phase), and in an inelastic part g, which describes
the sliding of the tips (slip-phase), usually referred to as the gap; therefore, the decomposition u = ue + g
holds.

The constitutive law for the interface, in incremental form, consists of a state law (elastic):

Ṫ = k(u̇ − ġ) (1)

and a flowlaw:
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ġ =

⎧
⎪⎨

⎪⎩

0 if |T | < Tlim

0 if |T | = Tlim and Ṫ < 0
λ̇sign[T] if |T | = Tlim and Ṫ = 0

(2)

where a dot denotes time-differentiation and λ̇ > 0 is a scalar quantity. In Eqs. (1) and (2), the stiffness, k, and
the threshold value of the tension, Tlim, depend on the model adopted for the interface. (a) For non-hardening
and no-wear interface, they coincide with those of the virgin material, namely k = k0 and Tlim = T0, in
analogy with perfect plasticity. (b) For the hardening/softening and no-wear interface, it is still k = k0, but
Tlim = T0 + A (t), where A(t) is a function of the total gap, namely α(t) := ∫ t

0 |ġ(t)| dt , of the motion history,
which represents the isotropic friction hardening, and it is analogous to the isotropic hardening variable of
plasticity theory; Eqs. (1) and (2) must be sided by a flow equation for α(t) and by a state equation linking the
dual variables A(t) and α(t). (c) For the hardening/softening and wearable interface, it is k = k0(1 − w(t))
and Tlim = (T0 + A(t)) (1 − w(t)), where the hardening A(t) depends on the effective total gap, namely
α(t) := ∫ t

0 |ġ(t)| /(1 − w)dt and, moreover, on w(t) in analogy with damage mechanics of elastic-plastic
solids. Therefore, formulation calls for a new flow law for w(t) and for a new state law for its dual variable
W (t), having the physical meaning of energy density release rate [2,3].

In conclusion, when the motion takes place along a rectilinear trajectory, the constitutive laws for interface
assume the (incremental) form:

Ẋ = f(u̇, ẋ)

ẋ = h(x,X, Ẋ)
(3)

where f and h are constitutive functions and, in the general case, X := (T, A,W )T , x := (g, α,w)T are the
vectors of dual and internal variables, respectively.

3 An internal variable constitutive model for interface

Let us consider a deformable body Bd in contact with a planar rigid surface Sr (soil) lying in the (x, y)-plane
(Fig. 5a). A thin deformable cylindrical interface Bc is interposed between the body and the surface, of thick-
ness b, and bases S+

c and S−
c , of unit normal vectors n+

c e n−
c , respectively, parallel to the z-axis (Fig. 5b).

Surface S−
c is bonded to the soil while surface S+

c is bonded to the body, and it experiences a tangential dis-
placement field u = u(x, y). The following assumptions, based on the small thickness of Bc, are introduced:
(a) the interface is capable of shear strains only; (b) the shear strains and shear stresses are constant along its
thickness (Fig. 5c), that is, γ = γ(x, y),τ = τ(x, y). These vectors, in the (x, y)-basis, admit the following

(a)
(c)

(b)

Fig. 5 Contact scheme: a deformable body sliding on a fixed rigid surface; b, c contact interface
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scalar representation: u = (ux , uy)
T ,γ = (γzx , γzy)

T ,τ = (τzx , τzy)
T . All these assumptions are similar to

those formulated in [42].
Additional hypotheses are introduced for the interface body: (c) the absolute temperature ϑ is constant

along z, that is, θ = θ(x, y), but it differs from the temperatures at the bases S+
c and S−

c , equal to θ+ = θ+(x, y)
and θ− = θ−(x, y), respectively; (d) the heat flow across the mantle of the cylinder is negligible.

3.1 Thermodynamics and internal variable formulation

Aimed to formulate a constitutive model for the interface, the Internal Variables Theory for Standard Gener-
alized Material is applied [43–49]. First, the two principles of Thermodynamics are written in local form as
follows:

u̇ = τT u̇ − h+ − h−

ṡ + h+

ϑ+ + h−

ϑ− � 0
(4)

as a consequence of the previous hypotheses. Here, u and s are the surface densities of the internal energy and
entropy, respectively; h+ := h+ · n+

c and h− := h− · n−
c are the surface densities of thermal flows h+,h−,

leaving the surfaces S+
c and S−

c , respectively. By introducing the Helmholtz function, ψ := u − ϑs, the
Thermodynamic principles (4) are restated in the equivalent forms:

ψ̇ = τT u̇ − (ϑs)· − h+ − h− (5)

ψ̇ − τT u̇ + sϑ̇ + h+

ϑ+	ϑ
+ + h−

ϑ−	ϑ
− � 0 (6)

in which 	ϑ+ := ϑ+ − ϑ,	ϑ− := ϑ− − ϑ are the thermal jumps at S+
c and S−

c .
As a second step, a state potential and a dissipation potential are introduced. The former, which is function

of the (observable and internal) state variables, defines the state laws between thermodynamically associ-
ated variables; the latter, which is function of the associated variables (thermodynamic forces), defines the
evolution of the internal variables and therefore the dissipation flow. The observable variables considered
here are as follows: (i) the displacement u (x, y) at the contact and (ii) the absolute interface temperature
ϑ(x, y). The internal variables considered are as follows: (i) the gap g(x, y), resulting from the decomposition
u (x, y) = g (x, y) + ue (x, y), where ue (x, y) is the stick part of displacement, (ii) the isotropic hardening
variable α (x, y); (iii) the wear w (x, y).

3.2 State potential and dissipated energy

The Helmholtz free energy is chosen as a state potential and, under the hypothesis of additive dependence of
free energy from u and g, it reads:

ψ = ψ (u − g, ϑ, α,w) (7)

By differentiating Eq. (7) with respect to its arguments, substituting in Eq. (6) and observing that ∂ψ/∂g ≡
−∂ψ/∂u, Eq. (6) reads:

(
∂ψ

∂u
− τ

)T

u̇ −
(
∂ψ

∂u

)T

ġ +
(
∂ψ

∂ϑ
+ s

)

ϑ̇ + ∂ψ

∂α
α̇ + ∂ψ

∂w
ẇ + h+

ϑ+	ϑ
+ + h−

ϑ−	ϑ
− � 0 (8)

Moreover, by assuming that the thermodynamic state in the reversible processes, in which Eq. (8) must be
taken with the equals sign ∀u̇, ∀ϑ̇ , respectively, depends only from observable variables, two state laws are
obtained:

τ = ∂ψ

∂u

s = −∂ψ
∂ϑ

(9)

together with the dissipation inequality:
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τT ġ − Aα̇ + W ẇ − h+

ϑ+	ϑ
+ − h−

ϑ−	ϑ
− � 0 (10)

where the following associated variables have been defined:

A := ∂ψ

∂α

W := −∂ψ
∂w

(11)

Equation (10) expresses the fact that energy can be dissipated in three forms: (i) dissipation due to slip,
Ds := τT ġ − Aα̇; (ii) dissipation due to wear, Dw := W ẇ; (iii) thermal dissipation D	ϑ := −h+	ϑ+/ϑ+ −
h−	ϑ−/ϑ−. As usually accepted, it is assumed here that thermal dissipation is uncoupled from the other two,
so that Eq. (10) splits into two inequalities, namely Ds + Dw � 0, D	ϑ � 0. In the following, thermal effects
will be neglected, thus referring to ideal isothermal processes; moreover, the Helmholtz free energy will be
chosen in the additive form:

ψ (u − g, α,w) = ψe (u − g, w)+ ψ in (α,w) (12)

where ψe (u − g, w) and ψ in (α,w) are the elastic and inelastic parts of the energy, respectively. It should
be noticed, that, in order to take into account lubrication effects and differently from standard ductile damage
models, wear also enters the inelastic part of the energy.

It should be remarked that, in the present treatment, the constrained kinematical descriptors, relative to
compressibility of the interface, and related Lagrange multipliers are not included. A more detailed description
of abrasion phenomena would require the introduction of these extra descriptors (as done, e.g., in [50]).

3.3 Dissipation potential

The dissipation potential is a scalar function of the thermodynamic forces τ, A and W . However, to account
for damage effects, and according to the strain equivalence principle, the stress τ is substituted by the effective
stress τ̃ := τ/(1 − w) so that, the dissipation potential reads:

ϕ = ϕ
(
τ̃, A,W

)
(13)

This potential needs to be sided by a (control) slip-function F = F
(
τ̃, A

)
, able to establish, at each time, the

state of the interface, namely adherence or slip-wear. From a geometrical point of view, the slip-functions are
a family of closed curves, lying on the (τzx , τzy)-plane, parameterized by the thermodynamic force A and by
the wear w. Each curve is a boundary of a domain such that: (a) internal points characterize adherence-states,
(b) boundary points denote slip-states, (c) external points cannot be reached, unless the domain is up-dated.

(a) (b) (c)

Fig. 6 Evolution of the slip-function in the
(
τzx , τzy

)
-plane (V virgin state, H hardening state, S softening state): a no-wear (NW)

model; b weak-wear (WW) model; c strong-wear (SW) model
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Evolution of the domain depends on A and w, as depicted in Fig. 6 for three typical cases: no-wear (NW,
Fig. 6a), for which the virgin state (V) evolves to a hardening (H) or softening (S) state; weak wear (WW,
Fig. 6b) and strong wear (SW, Fig. 6c), for which a weak/strong softening effect is introduced by damage. The
figure generalizes to a bi-dimensional problem the discussion made in Sect. 2 (Fig. 3).

The flow laws for the internal variables then follow from the control function and from the dissipation
potential (13); by adopting the normality rule to the dissipation potential, they read:

ġ =

⎧
⎪⎨

⎪⎩

0 if F
(
τ̃, A

)
< 0

0 if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

)
< 0

λ̇ (∂ϕ/∂τ) if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

) = 0

α̇ =

⎧
⎪⎨

⎪⎩

0 if F
(
τ̃, A

)
< 0

0 if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

)
< 0

−λ̇ (∂ϕ/∂A) if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

) = 0

ẇ =

⎧
⎪⎨

⎪⎩

0 if F
(
τ̃, A

)
< 0

0 if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

)
< 0

λ̇ (∂ϕ/∂W ) if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

) = 0

(14)

in which λ̇ is a scalar positive parameter.
Once the flow laws and the dissipation potential are defined, Eq. (10) can be re-written as follows:

λ̇(∇ϕ)T (τ, A,W ) � 0 (15)

which clarifies the fact that the dissipation inequality, Eq. (10), is satisfied if λ̇ � 0 and ϕ is a convex function
of the associated variables.

In the following, consistently with the hypotheses introduced on dissipation [Eq. (10)], the dissipation
potential will be splitted as:

ϕ
(
τ̃, A,W

) = F
(
τ̃, A

) + ϕW (W ) (16)

in which F is the slip-function and ϕW is the part of the potential which is responsible for the wear evolution.
From this choice, it follows that Eq. (14a,b) are associated laws (since ∂ϕ/∂τ ≡ ∂F/∂τ and ∂ϕ/∂A ≡ ∂F/∂A),
while Eq. (14c) is a non-associated law (since ∂ϕ/∂W �= ∂F/∂W ).

Concerning the evolution of wear, and in order to reproduce experimental results, it is convenient to limit
the value of this variable at a critical value wc < 1. This upper bound represents the value of wear at which
the interface must be considered totally broken.

The parameter λ̇ appearing in Eq. (14) can be eliminated by using the consistency condition. By enforc-
ing the slip-wear conditions, namely F

(
τ̃, A

) = 0, Ḟ
(
τ̃, A

) = 0, and using Eqs. (7), (9) and (11), after
performing standard steps, it follows that:

λ̇ = H

(
∂F

∂τ

)T

τ̇ (17)

where H is the hardening (softening) function, defined as follows:

H :=
[(

∂F

∂A

)2 (
∂2ψ in

∂α2

)

−
(
∂F

∂A

)(
∂2ψ in

∂α∂w

) (
∂ϕW

∂W

)

−
(
∂F

∂w

)(
∂ϕW

∂W

)]−1

(18)

By summarizing, once a time-history of the total displacements u (t) has been assigned in an isothermal pro-
cess, the constitutive model of the interface is defined by the state Eq. (91) and the three flow laws Eq. (14),
containing the four unknowns τ, g, α,w; the (not independent) variables A and W , appearing in the equations,
are furnished by Eq. (11).
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4 Constitutive models for no-wear friction

Models of no-wearable friction interfaces are first discussed (Fig. 6a). Since ϕW = 0, the dissipation potential,
Eq. (16), coincides with the slip-function, which is taken as:

ϕ (τ, A) ≡ F (τ, A) = ‖τ‖ − A − τ0 (19)

Here, τ0 is a scalar, denoting the adherence limit when the interface is in its virgin state, while the ther-
modynamic force A accounts for isotropic hardening. Accordingly, the flow laws Eq. (14) simplify in the
following:

ġ =

⎧
⎪⎨

⎪⎩

0 if F (τ, A) < 0
0 if F (τ, A) = 0 and Ḟ (τ, A) < 0
λ̇ τ

‖τ‖ if F (τ, A) = 0 and Ḟ (τ, A) = 0

α̇ =

⎧
⎪⎨

⎪⎩

0 if F (τ, A) < 0
0 if F (τ, A) = 0 and Ḟ (τ, A) < 0
λ̇ if F (τ, A) = 0 and Ḟ (τ, A) = 0

(20)

Two sub-models are formulated ahead, exhibiting linear and nonlinear hardening behavior, respectively.

4.1 Linear hardening

The simplest state potential is quadratic in both the observable and internal variables. According to Eq. (7)
(where w = 0), it reads:

ψ = 1

2
(u − g)T Ka (u − g)+ 1

2
ksα

2 (21)

in which Ka is the adherence matrix that, for isotropic interface, reduces to Ka = kaI, with ka the scalar
adherence parameter and I the identity matrix; ks is the scalar slip parameter, which governs the velocity of
the linear isotropic hardening. Equations (91) and (111) then supply linear laws:

τ = Ka (u − g)
A = ksα

(22)

As a drawback of this simplest model, it appears from Eq. (222) that A is allowed to tend to infinity with α, so
that the adherence domain (quite unrealistically) grows unboundedly.

By using the potentials Eqs. (19) and (21) in Eq. (18), the hardening function reads:

H = 1

ks
(23)

so that, according to Eqs. (17) and (19):

λ̇ = 1

ks

τT

‖τ‖ τ̇ (24)

to be substituted in the flow law Eq. (20).
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4.2 Nonlinear hardening

To describe an exponential variation of hardening, the state potential Eq. (12) is modified in its inelastic part,
as:

ψ = 1

2
(u − g)T Ka (u − g)+ A∞

(

α + 1

a
e−aα

)

(25)

in which the new parameters A∞ and a have been introduced. Consequently, Eq. (221) still holds, while
Eq. (222) is substituted by the following:

A = A∞
(
1 − e−aα) (26)

From this latter, it follows that the thermodynamic force A is limited and approaches the upper bound A∞
when α → ∞, while the parameter a governs the evolution rate; accordingly, F (τ, A) < τ0 + A∞. This model
appears more realistic than the linear one, since hardening is now limited by an upper bound, preventing the
unlimited expansion of the adherence domain. By comparing Eqs. (26) and (222), since dA/dα|α=0 = a A∞,
it appears that ks = a A∞ provides a linear extrapolation from the nonlinear model, valid for small values of α.

By using the state and dissipation potentials, Eqs. (25) and (19), the hardening function (18) now reads:

H = 1

a (A∞ − A)
(27)

and therefore:

λ̇ = 1

a (A∞ − A)

τT

‖τ‖ τ̇ (28)

to be used in the flow laws Eq. (20).

5 Constitutive models for wear and friction

Models accounting for wear are now discussed (Fig. 6b, c). The dissipation potential is taken in the form of
Eq. (16), with the slip-function still given by Eq. (19) (but expressed in terms of effective stress), and with a
wear contribution ϕW (W ) added, taken as a power of W (in analogy to what is done in [2] to describe damage):

ϕ
(
τ̃, A,W

) = ∥
∥τ̃

∥
∥ − A − τ0 + �

ω + 1

(
W

�

)ω+1

(29)

where � and ω are two parameters. Accordingly, the flow laws Eq. (14) read:

ġ =

⎧
⎪⎨

⎪⎩

0 if F
(
τ̃, A

)
< 0

0 if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

)
< 0

λ̇ τ
(1−w)‖τ‖ if F

(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

) = 0

α̇ =

⎧
⎪⎨

⎪⎩

0 if F
(
τ̃, A

)
< 0

0 if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

)
< 0

λ̇ if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

) = 0

ẇ =

⎧
⎪⎨

⎪⎩

0 if F
(
τ̃, A

)
< 0

0 if F
(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

)
< 0

λ̇
( W
�

)ω
if F

(
τ̃, A

) = 0 and Ḟ
(
τ̃, A

) = 0

(30)

As for no-wearable interfaces, two sub-models are formulated, exhibiting linear and nonlinear hardening,
respectively.



F. D’Annibale, A. Luongo

5.1 Linear hardening

The state potential, according to Eq. (7), must account for wear both in the elastic and inelastic parts. As
discussed in Sect. 2, wear reduces the stiffness of the stick-phase by the factor (1 − w); moreover, its acts
as lubricant in the slip-phase, by reducing the hardening velocity. If this effect is also taken proportional to
(1 − w), the whole potential results proportional, by the same factor, to the no-wear potential, namely

ψ = 1

2
(u − g)T Ka (1 − w) (u − g)+ 1

2
ks (1 − w)α2 (31)

The laws Eq. (91) and Eq. (11), then reads:

τ = Ka (1 − w) (u − g)
A = ks (1 − w)α

W = 1

2
(u − g)T Ka (u − g)+ 1

2
ksα

2

(32)

It should be noticed from Eq. (322) that, although wear limits the growth of the thermodynamic force A, this
could still go to infinity, entailing the unbounded expansion of the adherence domain, as happens in the linear
no-wear model.

Since ∂F/∂w = ‖τ‖ /(1 − w)2, the hardening function (Eq. (18)) results to be the following:

H =
[

ks (1 − w)−
(

ksα + ‖τ‖
(1 − w)2

)(
W

�

)ω]−1

(33)

so that:

λ̇ = τT
[
ks (1 − w)−

(
ksα + ‖τ‖

(1−w)2
) ( W

�

)ω
]
(1 − w) ‖τ‖

τ̇ (34)

to be used in the flow laws Eq. (30).

5.2 Nonlinear hardening

To bound the growing of the hardening effect, the inelastic part of the state potential must be modified, by
introducing an upper bound A∞, similarly to what done for the no-wear model. Lubrication due to wear, how-
ever, reduces this limit value and the velocity whereby it is reached. Therefore, the following state potential is
adopted:

ψ = 1

2
(u − g)T Ka (1 − w) (u − g)+ A∞ (1 − w)

[

α + (1 − w)2

a
e− a

1−w α − 3

a

]

(35)

From this, Eq. (321) follows, together with:

A = A∞ (1 − w)
[
1 − (1 − w) e− a

1−w α
]

W = 1

2
(u − g)T Ka (u − g)+ A∞

{

α − 3

a
+

[
3(1 − w)2 + aα (1 − w)

a

]

e− a
1−w α

}
(36)

Since ∂A/∂ α|α=0 = a A∞ (1 − w), linearization of Eq. (361) around α = 0, still leads to ks = a A∞, when
this is compared with Eq. (322).

By using the state and dissipation potentials, Eq. (35) and Eq. (29), the hardening function Eq. (18) reads:

H =
{

a

(

A∞ − A

1 − w

)

−
[

A∞ − 2A∞e− a
1−w α

(
1 − w + aα

2

)
+ ‖τ‖
(1 − w)2

](
W

�

)ω}−1

(37)
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while:

λ̇ = τT
{

a
(

A∞ − A
1−w

)
−

[
A∞ − 2A∞e− a

1−w α
(
1 − w + aα

2

) + ‖τ‖
(1−w)2

] ( W
�

)ω
}
(1 − w) ‖τ‖

τ̇ (38)

must be used in Eq. (30).

6 Numerical results

Simulations, obtained via numerical integrations, are carried out for the four interface constitutive models
formulated above. Results concern a rigid body sliding on a rigid surface along a rectilinear trajectory, so
that the two-dimensional vector fields u (x, y) , g (x, y) and τ (x, y) reduce to scalar quantities u, g, and τ ,
respectively. However, also in this simplified situation, hardening and softening effects are both present and
relevant.

6.1 Calibration of constitutive model parameters

In order to set-up the model parameters, the experimental results reported in [19], relevant to a monotonic
history of displacements, are considered again (Fig. 2). It should be remarked that a more accurate calibration
and validation of all constitutive models presented in this paper should be carried out also by using experi-
mental results relevant to cyclic histories of displacements which, to the authors’ knowledge, are not available
in literature.

The parameters of the two wear models (with linear and nonlinear hardening, respectively) formulated in
this paper are accordingly calibrated, in order to qualitatively and quantitatively reproduce the experimental
response. However, since the linear model entails a more fast growth of stress with respect to the nonlinear
model, the former must be taken much more prone to wear than the latter, in order they give comparable results,
at least in a range of displacements. Results are shown in Fig. 7, where the response of a Nonlinear Hardening
and Weak Wear model (NLH&WW, black curves) and that of a Linear Hardening and Strong Wear model
(LH&SW, gray curves) have been plotted for two different contact pressures, namely P1 and P2 > P1 and
together with the experimental results (EXP, dashed curves). This latter effect has been simulated by modifying
the interface parameter τ0, which is indeed proportional to the contact pressure P . Moreover, the hardening
parameters have been chosen in order that both models describe the same tangent in the first slip-phase. The
stick-slip transition points of the curves have been marked with black dots.

The numerical values assumed by the parameters are the following. (a) For both models, ka =
30,000 kN/m3, τ0 = 50 kN/m2 when P = P1, and ka = 50,000 kN/m3, τ0 = 80 kN/m2 when P = P2;
moreover, ω = 0.7 for both loads; (b) for LH&SW: ks = 20,000 kN/m3,� = 0.0013 kN when P = P1, and
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Fig. 7 Wear model responses for a monotonic displacement-history; box: responses for larger displacements



F. D’Annibale, A. Luongo

Table 1 Parameters for numerical simulations

ka (kN/m3) τ0 (kN/m2) ks (kN/m3) A∞ (kN/m2) a (m−1) � (kN ) ω

LH 50,000 80 56,000 – – – –
NLH 50,000 80 – 80 700 – –
LH&SW 50,000 80 56,000 – – 0.001 0.7
NLH&WW 50,000 80 – 80 700 0.15 0.7

Fig. 8 Displacement time-histories

ks = 56,000 kN/m3, � = 0.001 kN when P = P2; (c) for NL&WW: A∞ = 40 kN/m2, a = 500 m−1,� =
0.18, when P = P1, and A∞ = 80 kN/m2, a = 700 m−1, � = 0.15, when P = P2.

NLH&WW model reproduces in a very accurate way the experimental results of Fig. 2, while the LH&SW
model, due to its strong softening, gives a good prediction only close to the starting of the slip-phase. When
the phenomenon is observed on a larger range (see the box in Fig. 7), the NLH&WW model behaves as the
linear one, since the stress goes to zero when the displacement tends to infinity. This phenomenon represents
the tendency to the complete smoothing of the interface, whose occurrence is faster when the contact pressure
is higher.

The numerical analysis carried out ahead refers to a selected contact pressure, taken equal to P2. To permit
a direct comparison, the same parameters chosen for the wear models are used for no-wearable models, namely
linear hardening (LH) and nonlinear hardening (NLH). All the numerical values are summarized in Table 1.
The four models were subject to the same displacement time-histories, as plotted in Fig. 8, namely (A) a
large-amplitude monotonic, (B) a medium-amplitude forward-backward and (C) a medium-amplitude cyclic.
Responses were evaluated in terms of stress, gap and, if any, wear evolutions, as discussed in the following
sub-sections.

6.2 Linear hardening and nonlinear hardening no-wearable models

The response of the LH interface to the three displacement histories of Fig. 8 is illustrated in Fig. 9, as stress-
displacement (first column) and gap-time (second column) plots. In the monotonic history (Fig. 9a, b), the
stick-phase (no gap) and slip-phase (linearly increasing gap) appear; however, stress and isotropic hardening
increase unboundedly in an unrealistic way. In the forward-backward history (Fig. 9c, d), a third phase adds
itself, during which the total displacement decreases. This entails an elastic unload of the interface (i.e. no
gap), since the slip-threshold strongly increased in modulus during the forward phase. In the cyclic history
(Fig. 9e, f), the slip-threshold progressively increases; unloading are all elastic, so that the slip-phases all occur
in the positive direction, this entailing the gap always increases.

The NLH model is now considered, whose results are displayed in Fig. 10. When the model is subjected to
monotonic history (Fig. 10a, b), a strongly nonlinear evolution of the stress and a weakly evolution of the gap
are observed in the slip-phase. In particular, hardening reaches saturation, so that the stress cannot overcome
an upper bound τmax, while the gap increases. When a forward-backward history is applied (Fig. 10c, d),
an elastic unloading occurs, followed by a slip-phase in negative direction, during which the stress remain
constant at the saturation value −τmax, while the gap experiences a weakly nonlinear decreasing. It is worth
noticing that, whereas the total displacement u = 0 at the end of the process, a residual gap g does exist (this
entailing an elastic displacement of the asperities ue = −g , see Fig. 4a). When a cyclic history is considered



A damage constitutive model

0 0.005 0.01 0.015 0.02 0.025 0.03
0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.002 0.004 0.006 0.008 0.01 0.012
-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012
-300

-200

-100

0

100

200

300

400

0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10-3

x 10-3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) (b)

(c) (d)

(e) (f)

Fig. 9 LH interface response

(Fig. 10e, f), the slip-threshold stabilizes when the hardening saturates; moreover, the elastic unloading are
always followed by backward slips. Accordingly, the gap evolves with increments of increasing modulus and
opposite in sign during the forward/backward slip-phases.

6.3 Linear hardening and nonlinear hardening wearable models

When the LH&SW model is used (Fig. 11), the response is described as stress-displacement (first column),
gap-time (second column) and wear-time (third column). During the monotonic history (Fig. 11a–c), the
stress (Fig. 11a) reaches a pick value; then, it decreases and tends to zero, due to the softening effect of
the wear. Meantime, both the gap (Fig. 11b) and the wear (Fig. 11c) nonlinearly increase in the slip-phase,
the latter tending to the limit 1 value. When the forward-backward history is applied (Fig. 11d–f), the stress
(Fig. 11d) experiences an elastic unloading whose slope, however, is less than that relevant to the stick-phase.
After that, a negative slip is triggered, which is soon of soft type, due to wear accumulated in the previous
slip-phase. Concerning gap (Fig. 11e), this evolves during the two slip-phases in opposite directions; a residual
gap persists at the end of the process. Wear (Fig. 11f) also evolves only during the slip, but, of course, it always
increases. When a cyclic displacement history is imposed (Fig. 11g–i), cycles of stress are observed (Fig. 11g),
with progressive decreasing values of both the slip-threshold and the slopes of the elastic unloading. The last
two cycles exhibit also negative slip. Accordingly, the gap (Fig. 11h) step-wise increases in the first cycles,
then decreases up to a residual value. Wear (Fig. 11i) always increases during slip.

The NLH&WW model is finally analyzed in Fig. 12. As a general result, due to its lower sensitivity to
wear (see the levels of damage reached in all the simulations), a less pronounced softening manifests itself, if
compared with the linear model of Fig. 11. In detail, in the monotonic history (Fig. 12a–c), a moderate softening
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Fig. 10 NLH interface response

is observed in the evolution of stress (Fig. 12a), accompanied by values of gap (Fig. 12b) comparable with those
in Fig. 11b, but much lower wear (Fig. 12c). In the forward-backward history (Fig. 12d–f), the stress (Fig. 12d)
experiences an elastic unloading occurring at a slope only slightly lesser than the initial one; moreover, the
negative sliding is of soft type because of the accumulated wear and due to the fact the hardening saturates; gap
(Fig. 12e) and wear (Fig. 12f) evolve in the usual way. In the cyclic history (Fig. 12g–i), thresholds and slopes
of the stress evolution (Fig. 12g) progressively reduce, and slips invert the sign at each unloading. Therefore,
gap (Fig. 12h) stepwise oscillates with increasing amplitudes, while wear (Fig. 12i) stepwise increases up to
moderate values.

7 Conclusions and perspectives

In this paper, a constitutive model for the planar interface of a soft body sliding on a hard body has been formu-
lated. Model accounts for stick-slip phenomena (which is caused by friction) and for wear (which is caused by
abrasion). First, a mechanical interpretation of some experimental results appeared in the literature has been
tempted, based on a qualitative micro-mechanical model. This has highlighted the (well known) analogies
between friction and plasticity and the (less known) analogies between wear and damage. In particular, an
effect of lubrication of this latter, already known in Tribology, has been considered as the cause of softening of
the interface, both in the stick- and in the slip-phases. Model has been formulated in the framework of Damage
Mechanics, by introducing gap, isotropic hardening and wear as internal variables. A suitable choice of the
state potential and the dissipation potential, as suggested by experimental observations, sided by a control
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Fig. 11 LH&SW interface response

slip-function, led to state equations and flow laws for the internal variables, resulting either of associate or
non-associate type.

Four different sub-models have been formulated, no-wearable or wearable, both with linear or nonlin-
ear isotropic hardening. The parameters of the richer model have been calibrated in order to reproduce in a
satisfactory way the experimental results. Then, parameters for simpler models have consistently been taken.

Simulations have been performed by numerical integrations, concerning a one-dimensional problem, in
which the body moves along a rectilinear trajectory. The four models have been subjected to the same three
displacement histories and results compared. The following main conclusions have been drawn.

1. The no-wearable linear hardening model leads to unrealistically high tangential stress, due to the unbounded
growth of the isotropic hardening.

2. The no-wearable nonlinear model, in which hardening is limited by an upper bound, predicts a tangential
stress which asymptotically tends to an upper value. Wearable models, accordingly to experimental results,
are able to describe the tendency of smoothing of the considered interface. With respect to the no-wearable
ones, wear induces softening, capturing the same physical phenomena and, in particular: (a) it reduces
the number of the asperities at the contact interface and, as a consequence, the slope of the stick-phase
decreases; (b) it reduces the resistance to the motion also in the slip phase because of the lubrication effect
played by the interposed particles.

3. The strongly wearable linear hardening model is able to describe the softening behavior which follows
the peak stress, as it occurs in the experimental results, as well as the degradation of the elastic properties.
However, damage evolves too fast, entailing an overestimation of the lubrication (due to the quick smooth-
ening of the interface), which fast leads the tangential stress to tend to zero in monotonic displacement
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Fig. 12 NLH&WW interface response

histories, and to reduce the elastic stiffness in cyclic histories. On the other hand, a calibration of the
coefficients rendering the interface less prone to wear would lead to much pronounced peaks of stress.

4. The weakly wearable nonlinear hardening model, in contrast, due to the richness of the parameters with
respect to the other models, better captures the phenomenon, describing a slower damage of the interface
and fitting very well the experimental results in the range in which they are available. When the numerical
simulation is carried out to larger displacements, then a quite realistic tendency to the complete smoothing
of the interface is observed, which entails complete lubrication and zero tangential stress.

5. Gap remains steady during the stick-phases, while it evolves, generally in a weakly nonlinear way, during
the slip-phases. Increments of gap can assume both signs, according to forward-backward slips. Usually,
a residual gap exists at the end of a cyclic displacement history, although the total displacement is zero.
In this occurrence, gap is equal and opposite in sign to the elastic displacement of the asperities of the
interface.

6. Wear also evolves only in the slip-phases, generally with a more strong nonlinear law. However, differently
from gap, its increments are always positive.

As further developments, hysteretic effects, which actually are not accounted in the interface constitutive
models, should be included, for example, by adapting the results presented in [51]. Moreover, constitutive
equations which are used in the present paper, account for plasticity and hardening phenomena and they have
to respect the physical admissibility requirements, as considered in [52]; however, an interfacial mathematical
theory of the kind studied in [53,54] needs to be developed.

Analogy between friction and plasticity is stressed in this paper, even if friction is considered rate-indepen-
dent, different from what is done, for example, in [55,56]; as a consequence, the interface constitutive model is
analogous to one that can be defined for a ductile and damageable material. Moreover, attention is here focused
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on plastic strains and damage accumulation and it could be interesting, as an improvement of the models, to
account for the delamination of material layers adjacent to worn surfaces (e.g., using the method presented
in [57]). This would imply, in the description of abrasive wear and damage, the introduction of model of the
interface as a thick region (with non-vanishing volume) endowed with micro-structures properties, as done, for
example, in [39,40,58–60]. Of course, in cited models, the structure of the continua constituting thick inter-
faces must be richer than that of Cauchy continua; in particular, when considering second gradient materials,
the state of stress needs to be described by a second-order Cauchy stress and by a third-order hyperstress (see,
e.g., [61,62]).

Finally, further work has to be done to validate the model, mainly in comparison with cyclic experimental
tests, and bi-dimensional displacement histories, which are left for future investigations.
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