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be modelled by a proper rheological model. A general treatment of the effect of

distributed, internal and external small dampings, on the linear stability of a con-

tinuous beam under non-conservative loads, can be found in Ref. 4.

Stability is strongly influenced by damping, which is responsible of a well-known

phenomenon, called “the destabilization paradox” (see Ref. 5), according to which

the loss of stability of a non-conservative system with vanishingly small damping

occurs at a load significantly lower than the critical value relevant to the undamped

system.

On the other hand, follower forces can also act simultaneously to gravitational

forces, as for example analyzed in Refs. 6 and 7, this interaction resulting in richer

bifurcation scenarios. Therefore, it seems interesting, to investigate nonlinear sys-

tems under both types of forces, and in presence of both types of damping, in order

to analyze the mutual interactions.

In this paper bifurcations of beams, internally and externally damped, loaded by

a gravitational and a follower force acting simultaneously, are analysed. The paper

is thus organized. In Section 2 the equations of motions are illustrated. In Section

3 the critical scenario is depicted. In Section 4 a post-critical analysis around a

double-zero bifurcation point is carried out, similarly to what was done in Refs.

8–10. Finally, in Section 5 some conclusions are drawn.

2. Model

A planar beam is considered, fixed at the end A and, simultaneously loaded at the

tip B by a follower force of intensity F (tangential to the actual configuration of the

beam axis) and by a dead load of intensity P (acting in the direction of the originally

rectilinear axis, Fig. 1). The material behavior of the beam obeys to the Kelvin-

Voigt rheological model, with elastic modulus E and viscous coefficient η (acting as

an internal damping); moreover, the beam is considered to lie on a purely viscous

linear soil of constant c (simulating the external damping). The beam is assumed

to be inextensible and shear-indeformable.

The following nondimensional equations in the variable u (s, t) are derived:
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Fig. 1. Visco-elastic beam on viscous soil under follower force and dead load: model and dis-
placements.

in which a dash denotes differentiation with respect to s, a dot denotes time-

differentiation, the index A evaluation at s = 0, the index B evaluation at s = ℓ, and

the following non-dimensional quantities have been introduced: ω2 = EI/mℓ4, α =

ηω/E, β = cωℓ4/EI, µ = Fℓ2/2EI, ν = Pℓ2/2EI.

3. Linear Stability Diagram

The linear stability diagram of the beam, is depicted in Fig. 2. All quadrants of the

(ν, µ)-plane have been displayed, to account for both tensile/compressive forces.

The divergence locus consists in a family of curves (independent of damping) la-

belled with D. An additional straight line N , of equation µ = −ν, corresponding

to unstressed beams in the undeformed configuration, is founded, but it is not a

bifurcation locus, since the transversality condition of the eigenvalues is not sat-

isfied on it. Hopf locus consists in a second family of curves labelled with H (de-

pending on damping). Of this family, the curves relevant to the undamped system

(α = β = 0 , also referred as circulatory system) have been denoted by Hu, and

curves relevant to a slightly damped sample system, (α = 0.01, β = 0.1) by Hd.

Loci D and H represent codimension-1 bifurcations. The divergence-locus D in-

tersects the ν-axis at points E1, E2, · · ·, each corresponding to an Eulerian critical

load, νE1
= π2/8, νE2

= 9π2/8, · · ·. The Hopf- locus H intersects the µ-axis at

the Beck’s loads. Only the lower intersection is depicted in Fig. 2, both for the

undamped system, Bu
1 := (0, 10.025), and for the damped system, Bd

1 := (0, 6.464).

Consistently with the destabilizing effect phenomenon, a small amount of damping

considerably reduces the critical load.

The Hopf-curves die at intersections with the divergence curves, according

to the well-known mechanism of the double-zero (or Takens-Bogdanov) bifur-

cation. Such codimension-2 bifurcation occurs at points DZu
1

:= (5.51, 3.02),

DZu
2
:= (45.87, 11.76), in the undamped case, and DZd

1
:= (2.88, 2.81), DZd

2
:=

(22.26, 22.26), in the damped case. The stable zone of the (ν, µ)-plane is denoted

in grey in the figure; it undergoes a contraction when a small damping is added.
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Fig. 2. Linear stability diagram for the undamped system (α, β = 0; u superscript) and a sample
damped system (α = 0.01, β = 0.1; d superscript); D: divergence locus, H: Hopf locus, N : zero-
stress locus; E: Eulerian bifurcations; B: Beck’s bifurcations; DZ: double-zero bifurcations.

4. Bifurcation Analysis Around a Double-Zero Point

A nonlinear bifurcation analysis is carried out around a double-zero bifurcation

point. The partial, integro-differential equations (1) are directly attacked by an

adapted version of the Multiple Scale Method and the bifurcation equation for

double-zero bifurcation, in the Bogdanov normal form, is obtained.

Two sample systems have been considered: S1 for which α = 0.01, β = 0.1 and

S2 for which α = 0.01, β = 10. Results relevant to S1 are reported in Fig. 3(a),

displaying the bifurcation chart in the neighborhood of double-zero point and

sketches of the two-dimensional phase-plane (a, ȧ) for the bifurcation equation,
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Fig. 3. Bifurcation chart in a small neighborhood around the bifurcation point and sketches of
the phase-plan for: (a) system S1; (b) system S2.
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in each significant region. In region 1 the trivial solution is stable; due to the super-

critical static bifurcation, it loses stability in region 2, where two stable nontrivial

equilibria take place; due to supercritical Hopf bifurcation, it loses stability in region

5, where a stable limit cycle exists, causing periodic motion of the beam. In region

4 two equilibria appear, but, in spite of the supercritical character of the static

bifurcation, they are unstable, as an effect of the interaction with the dynamic bi-

furcation; in region 3 two small unstable limit cycles arise, which render stable the

nontrivial equilibria. Then, at the straight line hm, a homoclinic bifurcation occurs;

after that, all cycles disappear, so that only stable equilibria survive in region 2.

Results relevant to system S2 are reported in Fig. 3(b). The static bifurcation

is subcritical and the bifurcated equilibria do not suffer Hopf bifurcation, so that

no a curve HNT exists and, consequently, no homoclinic bifurcation hm occurs. In

contrast, a new heteroclinic bifurcation h t manifests itself. In region 1 the trivial

equilibrium is stable, but two unstable equilibrium points coexist. In region 2 the

trivial equilibrium loses stability by divergence, and no other local attractors exist.

In region 4 the equilibrium loses stability by supercritical Hopf bifurcation, giving

rise to a stable limit cycle internal to the nontrivial equilibria. In region 5, however,

due to a heteroclinic bifurcation, the cycle itself disappears.

5. Conclusions

A nonlinear, visco-elastic, externally dumped beam, subjected to two independent

axial loads, one gravitational, the other tangential, has been studied.

The position of the bifurcation point and the angle of attack between the in-

cident, divergence and Hopf, bifurcation loci depend on the damping coefficients.

The properties of the undamped system are recovered only for evanescent exter-

nal damping, not for internal damping, this case being in discontinuity with the

circulatory case. Therefore, some new features of the well-known “destabilization

paradox” are revealed.

Also the nonlinear scenario around the double-zero bifurcation is strongly af-

fected by damping. When the external damping is small, the static bifurcation is

supercritical. In contrast, when the external damping is large, the static bifurca-

tion is subcritical. In the whole range studied, instead, the Hopf bifurcation has

supercritical character.

The interaction between static and dynamic bifurcations manifests itself via

homoclinic or heteroclinic bifurcations, due to the collision between limit cycles

and equilibria, or between cycles.
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