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Abstract—In this article, we present an optimized GPU im-
plementation of a granulometry algorithm which is used a lot
in the study of material domain. The main contribution to this
algorithm is the binarization of the input data which increases
throughput while reducing data allocated memory space. Also,
the optimized GPU implementation brings an order of magnitude
speedup compared to a CPU multi-threaded implementation.
Furthermore, we investigate the reasons why GPU performance
drop for different input data dimensions. Three main factors are
exposed: under-exploited threads, threadblocks and streaming
multiprocessors. This study should help the reader understand
the tight relation that exists between the CUDA programming
paradigm and the gpu architecture as well as some main
bottlenecks.

I. INTRODUCTION

GPU architecture is well adapted to 2D and 3D image

analysis. The potential of such architectures have been in-

vestigated in several studies and reveals large speedup for

various 2D and 3D image analysis algorithms in comparison

to a CPU implementation [1]–[3]. One of the most time

consuming algorithm is the granulometry algorithm which is

used to determine objects size in an image [4], [5]. In materials

science, it is often used on 3D images obtained by tomography

in metal foams. Pore size extraction and structure thickness are

possible applications of the granulometry algorithm [6], [7].

This algorithm involves a large number of erosion and dilation

with specific structural elements and therefore is quite time

consuming [8], [9]. For example, granulometry on a metal

foam performed with imorph [7], [10] on a volume 600 x

600 x 250 with maximum size objects of 50 pixels requires

15 minutes using a CPU implementation. Time optimization

can be performed but with loss of accuracy. It is important

to note that acquisition of 3D images has become very fast

since it requires less than 1 second to acquire a volume of

1024 x 1024 x 1024 [11] and therefore there is a real need

to increase the time to perform granulometry on such large

volumes, which at the moment requires several hours. The aim

of this paper is, firstly, to present a fast cpu exact computation

of granulometry and, secondly, to implement this algorithm

on the gpu architecture. At last, we present the gpu results

and investigate the reasons of the performance variations for

different sizes of input data.

II. GRANULOMETRY

Granulometry is the study of the statistical distribution of

the sizes of a population of finite elements. In other words, it

is the study of an image’s objects sizes. In physics, that would

resemble sieving (grain sorting): the image is filtered with a

series of sieves with decreasing hole sizes. A more specific

goal is to define the predominant size of objects in the image.

A. Algorithm description

Granulometry uses morphological opening operations. An

opening is the combination of two mathematical morphology

operators: it is an erosion followed by a dilation. These

operations are filters and the mask used by these filters is called

a structuring element (SE). When performing an opening on

an image, all finite element that is smaller than the structur-

ing element disappears. Thus, the granulometry application

processes an input image by computing openings with an

increasing structuring element size until all objects in the

volume disappear i.e. the volume is empty. After each opening,

we collect the number of positive pixels still present in the

image. We then plot the results on a curve: the granulometric

curve. The abscissa of this curve represents the number of

openings and the ordinate shows the number of positive pixels

left in the image. The discrete derivative of the granulometric

curve is called the pattern spectrum and the abscissa of its peak

is the predominant size of objects in the image (Figure 1).

B. Optimizations

Whereas a granulometry algorithm for grayscale images and

rectangular structuring elements had already been ported to

GPU [12], our implementation of the granulometry algorithm

is adapted to a particular post-tomographic usage. In this

context, three constraints need to be taken into consideration

and will help for further choices in optimizations. Firstly, the

input data goes through a binary threshold operation before

being processed by the granulometry algorithm. Thus, the

input data has binary values: black or white voxels. Secondly,

as shown in Figure 2, the structuring element used is a 3D

cross-shaped. Thirdly, boundary conditions are accounted.

1) Algorithmic optimizations:
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Fig. 1: Example of a granulometric curve. The pattern spec-

trum’s extrema indicates the predominant size of the objects

in the image.

a) The structuring element shape: Any rectangular,cube-

shaped structuring element is separable in 3 vector filters:

one in each x,y,z direction. This property can be used to

reduce the amount of accesses to memory and the amount

of computations. However, the 3D cross-shaped structuring

element is not a separable filter.

b) The structuring element size: An erosion/dilation with

a structuring element of size n × x gives the same output as

performing n successive erosions/dilations with a structuring

element of size x. Also, while a 3D cross-shaped structuring

element of size 1 (Figure 2a) has 6 neighboors and needs

as much memory read requests and logical AND/OR oper-

ations, a structuring element of size 2 (Figure 2b) has 24

neighboors and thus needs 4x more memory read requests

and computations. It is more efficient from a read/write

requests count perspective to compute twice the output of an

opening by a structuring element of size 1 than computing one

opening with a structuring element of size 2. Therefore, one

optimization consists in performing morphological operations

with a constant structuring element size.

c) Redundant computations: An opening with a SE of

size 1 is the succession of an erosion with the SE of size

1 and a dilation with the same SE of size 1. Based on the

previous optimization, an opening with a SE of size n is the

succession of n erosions with the SE of size 1 and n dilations

with the same SE of size 1. In fact, in order to perform an

opening with a SE of size n incremented by 1, only 1 erosion

with a SE of size 1 needs to be computed followed by n+ 1
dilations with a SE of size 1. The n first erosions computations

can be saved because they have already been computed on

the previous step. In the end, the granulometry application is

implemented as shown in Figure 3.

2) GPU implementation optimizations:

a) Maximize data reuse: In order to make the most out

of each global memory access, we save in shared memory

each voxel value that is used in computations more than

once. When there is no bank conflict shared memory latency

is nearly as quick as registers and is roughly 100x lower

than global memory latency. Our approach resembles that

(a) SE of size 1 (b) SE of size 2

Fig. 2: 3D cross-shaped structuring element is not a separable

filter.
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Fig. 3: The granulometry application decomposed.

of Paulius Micikevicius [13]. The naive approach to com-

pute an erosion/dilation refetches from global memory all

6 neighboors in the SE. Our implementation reduces read

latency by performing read requests from shared memory

instead. Since there is not enough shared memory available

per multiprocessor to store a significantly large 3D subdomain

of a problem, a 2D tile is stored instead. If we assign a

thread to compute output values for a given column along

z (Figure 4), no additional shared memory storage is needed.

Threads of a given threadblock coherently traverse the volume

along z, computing output for each slice. Each thread saves

its preceding/succeeding (x,y) voxel value on the z-dimension

in a register (Figure 5).

b) Maximal throughput per instruction: Based on Fig-

ure 5, if each thread computes one output, the erosion equation

is:

result =

up & down & left & curr & right & next & previous

NVidia GPUs’ integer ALUs perform 32-bit and 64-bit arith-

metic operations [14]. However, 64-bit integer shift and

bitwise operations are not natively supported in hardware.

Therefore, the maximal throughput per instruction is attained

when each thread processes 32-bit words. The input data is in

RAW format: each voxel is encoded on one byte. However, in

our context, the input data goes through a binary threshold op-

eration before being processed by the granulometry algorithm.

In other words, each voxel is a binary information. Thus, in



order to attain the maximal voxel throughput per instruction,

the input data is binarized before processing: each voxel is

encoded on one bit. Then, the erosion equation is slightly

modified with some bit twiddling: when fetching right and

left voxels, the 4-byte word is shifted by 1 bit:

left = ((current >> 1) | (right << 31))

right = ((current << 1) | (left >> 31))

Now, 32 voxels are output per thread per instruction. The same

occurs with the dilation equation.

c) Minimize device memory allocation: Binarizing the

input data – encoding a voxel from a byte to a bit – also divides

its size by eight. This is not negligible when volumes of size

1024 voxels or more are processed on a GPU. Allocating 128

MB of device memory rather than 1 GB is a significant econ-

omy of device memory when you know that latest GeForce

GPU cards embed between 1 ∼ 2 GB and approximately 2 GB

for mid range Quadro GPU cards. That leaves a great amount

of free device memory space for intermediate and final results

buffers.

d) Optimal memory access: Processing 32-bit words per

thread is also interesting from a memory access point of view.

With 4-byte words, the segment size adressed by a half-warp

(compute capability 1.x) or by a warp (compute capability

2.x) is maximal and thus bandwidth usage is optimal. Also,

since threads access words in sequence, memory access is

coalesced. Moreover, handling 4-byte words makes it easier

to avoid shared memory bank conflicts since each 32-bit word

is assigned to successive banks.

e) GPU-optimized reduction: The count of remainging

valuable voxels is the last step after each opening iteration

(Figure 3). This last step occurs within the same kernel as the

one which computes the last dilation. We chose to incorporate

these two computations (last dilation and counting voxels)

within the same kernel in order to save time spent during

global memory read/write requests. Since the result of the

dilation is not used afterwards, this kernel dismisses saving

the result back to global memory and saves time spent due to

global memory latency. Instead, another shared memory space

is allocated dedicated to counting voxel values. At first, each

thread uses popc() to count the number of voxels within

the 4-byte word result value. Then, this count is progressively

summed along z by each thread at its (x,y) position in shared

memory. When the volume has been traversed along z, a

parallel sum reduction [15] is done on the whole shared

memory space for each threadblock. Finally, each threadbloc

performs an atomic addition to a global memory counter.
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Fig. 4: All threadblocks in the grid compute one output slice

while traversing the volume along z.
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Fig. 5: All voxel neighboors in (x,y) dimension are stored

in shared memory while neighboors along z are stored in

registers.

III. EXPERIMENTAL RESULTS

In this section, we present a comparison of the time

consumption between a CPU multithread (4 cores/8 threads

through HyperThreading) implementation and a GPU imple-

mentation of our granulometry algorithm. Both computing

targets present the algorithmic optimizations presented in

the previous section. The CPU implementation is a plugin

developped for ImageJ [16] which is a well-known image

processing software.

Working station configuration:

• CPU: Intel Core i7-920 (@2.67GHz)

• OS: CentOS release 5.6 (Final)

• Memory: 11.8 GBytes

• GPU: GTX285 & GTX480 & Quadro4000 through PCI-

E 2.0

• CUDA Toolkit 4.0

Figure 6 shows the GPU time spent for different sizes of

input data and Figure 7 shows the speedup ratio between the

CPU’s multithreaded implementation vs GPU’s implementa-

tion for different architectures [17], [18]. The Quadro card is

not as competitive as the GeForce cards because their clock

frequency is diminished by half for better reliability during

computations. One can note that the time needed to perform a

granulometry on a volume of 1024 x 1024 x 1024 is less than

1 minute using GPU architecture and about 20 minutes for

our CPU implementation, which is quite interesting in regard

to time acquisition of data as presented in the introduction.

In the following sections, we investigate the reason why the

computation time curve is not affine or exponential and make

a link between the hardware and the CUDA programming
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Fig. 6: Computation time for different dimensions of the input

data.

paradigm. The following study is conducted on a GTX285,

with a fixed threadblock size of 16 x 16 and a volume of

variable x 512 x 512 voxels: one of the three dimensions is

varying while the two others are kept unchanged and fixed to

512.

A. Streaming multiprocessors’ workload: varying y-dimension

One of the big benefits of CUDA is its scalability: it

automatically scales the number of threadblocks to be pro-

cessed onto the number of Streaming Multiprocessors the GPU

contains [14]. However, for a perfectly balanced workload, the

number of blocks to process must be a multiple of the GPU’s

number of SMs (Figure 8).

While fixing dimBlock.y to 16, we made the y-dimension

of the volume vary with a pace of 32 pixels thus increasing the

number of threadblocks to be allocated by two for each pace

increment. Since the used graphic card: GTX 285, possesses

30 SMs, one threadblock is affected per SM if the y-dimension

is equal to nb SMs× dimBlock.y = 30× 16 = 480. When
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Fig. 7: Speedup ratio between CPU (4 cores,8 threads) and

GPUs on a volume of different dimensions and containing

objects of size 100 voxels maximum (50 openings are per-

formed).

Fig. 8: If the device contains n SMs and each SM can process

up to m simultaneously (m is occupancy dependant), at max

workload per SM, mxn blocks are scheduled simultaneously

on the device.

the y-dimension exceeds 480, at least one SM will be attributed

more than one threadblock.

This is observed on the GPU computations time on Figure 9

by a periodic time leap that appears every 480 pixels. Since

all blocks do the same operations, their computation time is

the same. Thus, the maximal number of blocks allocated per

SM fixes the time spent for the whole GPU computations: it

suffices that one SM is attributed one more threadblock for

the whole processing time to be increased.

B. Threadblocks’ workload: varying x-dimension

Let’s consider a threadblock of size 16x16, each thread

works on 4 bytes in order to optimize memory bandwidth

(coalesced memory access) and each voxel is coded on one

bit (Figure 10). Therefore, in ordrer for all threads of the x

dimension in a threadblock to be useful, the x dimension of the

image has to be a multiple of blockDim.x×4bytes×8bits =
16 × 4 × 8 = 512. Thus, the volume’s width (x dimension)

has to be a multiple of 512.

When the volume’s width is inferior to 512 pixels, one

threadblock is allocated to process 16 lines of the input
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Fig. 10: One MxN threadblock maps to a (32xM)xN 2D tile

of voxels.

volume (dimBlock.y = 16). The pourcentage of useful

threads increases with the volume’s width until it reachs

width = 512pixels and efficiency is thus maximal for the

threadblock.

When the volume’s width is inferior to 512, one part of the

created threads is active while the other part is inactive. Nev-

ertheless, whether threads are active/inactive doesn’t influence

the time spent by one warp. Since all 32 threads in a warp are

tied together, the time spent by one warp is the addition, in

case of divergence, of all paths’ time.

When the volume’s width exceeds 512 pixels another

threadblock is allocated and thus adding more time to GPU

computations. This is shown on Figure 11 by a periodic bounce

every 512 pixels corresponding to a new allocated threadblock.

When there are idle threads, the GPU gain compared to

the CPU drops. It drops proportionally to the variation of y,z-

dimensions because:

• as seen in the previous section, dimy has an impact on

the number of threadblocks that needs to be processed

• dimz represents the number of iterations along (x,y) com-

putations

So the amount of idle threads and thus the amount of wasted
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time depends directly from (y,z) dimensions.

C. Threads’ workload: varying z-dimension

While varying the z dimension, the amount of computations

per thread proportionnaly increases and so does the computa-

tion time. This is clearly shown on Figure 12 with an affine

curve.
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IV. CONCLUSION

We implemented a highly performant granulometry al-

gorithm for segmented black/white images. Thanks to the

binarization technique, the CPU implementation is already

very fast compared to other solutions the SIMAP lab used

and which needed several hours of computations. The time

needed to perform a granulometry on a volume of 1024 x

1024 x 1024 is about 20 minutes for our CPU implementation

and less than 1 minute using GPU architecture.

We also observed the factors that impact the performance

of the GPU implemented granulometry algorithm.

Note that this application was presented to illustrate the

design flow described in [19]. However, its implemented

optimizations and its performance variations were not dis-

cussed. This article presents the granulometry application with

technical details.
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