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Computing the torsion of the p-ramified module of a number field

We fix a prime number p and a number field K, and denote by M the maximal abelian p-extension of K unramified outside p. Our aim is to study the Z p -module X = Gal(M/K) and to give a method to effectively compute its structure as a Z p -module. We also give numerical results, for real quadratic fields, cubic fields and quintic fields, together with their interpretations via Cohen-Lenstra heuristics.

) for all integers n such that n ≥ c L,v + e v . By the definition of the conductor, this proves that 2.

Introduction

We fix a prime number p and a number field K. We denote by M the maximal abelian p-extension of K unramified outside p. The aim of this paper is to study the Z p -module X = Gal(M/K) and give an algorithm to compute its Z p -structure. This module is described by the exact sequence

U K / / v|p U 1 v / / X / / Gal(H/K) / / 1, (1) 
from class field theory ([Gra03, p. 294]), where U K is the pro-p-completion of the group of units U K , U 1 v is the group of principal units at the place v above p of K, and H is the maximal p-sub-extension of the Hilbert class field of K. Leopoldt's conjecture for K and p is equivalent to injectivity of U K → v|p U 1 v . Therefore, from this exact sequence, we deduce that the Z p -rank r of X is greater or equal to r 2 + 1 and is equal r 2 + 1 if and only if K and p satisfy Leopoldt's conjecture. Hence X is the direct product of a free part isomorphic to Z r p and of a torsion part, that we denote by T p . Our algorithm checks whether K satisfies Leopoldt's conjecture at p and then computes the torsion T p .

We propose a method which is based on the fact that the Z p -module X is the projective limit of the p-parts of the ray class groups modulo p n , A p n (K). We then study the stabilization of these groups with respect to n and the behaviour of invariants of A p n (K), as n is increasing. This approach leads us to our algorithm.

Before addressing the technical part of this article, we recall the definition and some basic properties of the ray class groups modulo p n . Then, we use our algorithm to compute some cases and propose an heuristic explanation of the statistical data, using the Cohen-Lenstra philosophy [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF]). 1 2 Background from class field theory

In this section, we recall the basic notions from class field theory that we will need later. We fix v a place of K above p and π v a local uniformiser of K v , the completion of K at v. We use [START_REF] Gras | Class field theory[END_REF] and [START_REF] Serre -Corps Locaux | [END_REF] as main references.

Definition 2.1.

The conductor of an abelian extension of local fields

L v /K v is the min- imum of integers c such that U c v ⊂ N Lv/Kv (L × v ) (we recall that U c v = 1 + (π c
v ) and we use the convention We start with two lemmas.

U 0 v = U v ).
Lemma 2.2 (Proposition 9 p. 219 [START_REF] Serre -Corps Locaux | [END_REF]). Let K v be the completion of K at the valuation v normalized by v(p) = 1 and v(π v ) = 1 ev , where e v is the ramification index of the extension

K v /Q p . If m > ev p-1 , then the map x → x p is an isomorphism from U m v to U m+ev v . Lemma 2.3. Let K v ⊂ L v ⊂ M v be a tower of extensions of Q p , such that the extension M v /K v is abelian and the extension M v /L v is of degree p.
We denote respectively by c M,v and c L,v the conductors of the extensions

M v /K v and L v /K v . If c L,v > ev p-1 , then we have c M,v ≤ c L,v + e v .
(2)

Proof. By definition c L,v is the smallest integer n such that U n v ⊂ N Lv/Kv (L × v ).

Local class field theory gives the diagram

Definition 2.4. Let n be a positive integer. We denote by • H the maximal abelian unramified extension of K;

• H p n the compositum of all abelian extensions of K whose conductors divide p n ;

• H p n the compositum of all abelian p-extensions of K whose conductors divide p n ;

• M the maximal extension of K which is abelian and unramified outside p.

So the Galois groups Gal(H/K) and Gal(H p n /K) are respectively isomorphic to the p-parts of Gal(H/K) and Gal(H p n /K).

Proposition 2.5 (Corollary 5.1.1 p. 47 [START_REF] Gras | Class field theory[END_REF]). We have the exact sequences

1 / / K × v∤p U v v|p U nev v / / I K / / Gal(H p n /K) / / 1 1 / / K × v U v / / I K / / Gal(H/K) / / 1,
where I K is the group of idèles of K.

We denote the Galois group Gal(H p n /K) by A p n (K). It is the p-part of the Galois group Gal(H p n /K) which, in turn, is isomorphic to the ray class group modulo p n of K. By definition, we have a natural inclusion H p n ⊂ H p n+1 , the union n H p n is equal to M and the projective limit lim ← -A p n (K) is canonically isomorphic to X.

Proposition 2.6. For any integer n > 0, the Galois groups of the extensions M and H p n of K are related by the exact sequence

1 / / U (p n ) K / / v|p U nev v / / Gal(M/K) / / Gal(H p n /K) / / 1, where U (p n ) K = {u ∈ U K such that ∀v|p, u ∈ U nev v } and 
U (p n ) K / / v|p U nev v / / X / / A p n (K) / / 1, where U (p n ) K is the pro-p-completion of U (p n ) K , i.e lim ← - m U (p n ) K /p m . If moreover K and p satisfy Leopoldt's conjecture, then U (p n ) K → v|p U nev v is injective.
Proof. To obtain the second exact sequence, we apply the pro-p-completion process to the first. Note that the injectivity of U

(p n ) K → v|p U nev v
is equivalent to Leopoldt's conjecture. Now we prove exactness of the first sequence. From the definition of the extensions M and H p n , we deduce the commutative diagram

1 / / K × v∤p U v v|p 1 / / _ I K / / Gal(M/K) / / 1 1 / / K × v∤p U v v|p U nev v / / I K / / Gal(H p n /K) / / 1.
By the snake lemma, we have that

ker(Gal(M/K) → Gal(H p n /K)) = (K × v∤p U v v|p U nev v )/(K × v∤p U v v|p 1).
Now, we define the map

θ : (K × v∤p U v v|p U nev v ) → ( v|p U nev v )/U (p n ) K , by setting for k(u v ) v ∈ K × v∤p U v v|p U nev v , θ(k(u v ) v ) = (u v ) v|p , where (u v ) v|p is the class of (u v ) v|p in ( v|p U nev v )/U (p n ) K .
We first check that the map θ is well defined, i.e. that if

k(u v ) v = k ′ (u ′ v ) v in K × v∤p U v v|p U nev v , then θ(k(u v ) v ) = θ(k ′ (u ′ v ) v ). By definition, for all v, k(u v ) v = k ′ (u ′ v ) v if and only if i v (k)u v = i v (k ′ )u ′ v , where i v is the embedding of K in K v . We deduce that for all v, i v (k ′ k -1 ) ∈ U v and that for all v|p, i v (k ′ k -1 ) ∈ U nev v . So we get k ′ k -1 ∈ U (p n ) K and (u v ) v|p = (u ′ v ) v|p .
It is clear that (K × v∤p U v v|p 1) ⊂ ker(θ) and that the map θ is surjective. We will show that (

K × v∤p U v v|p 1) = ker(θ). Let k(u v ) ∈ ker(θ). Then there exists an x ∈ U (p n ) K such that for all v|p, u v = i v (x). We consider the element x(u ′ v ) v , where u ′ v = 1 if v|p and u ′ v = i v (x) -1 u v if v ∤ p. We have (u v ) v = x(u ′ v ) v ⇒ k(u v ) v = kx(u ′ v ) v and as kx(u ′ v ) v ∈ (K × v∤p U v v|p 1), we have ker(θ) ⊂ (K × v∤p U v v|p 1) and finally (K × v∤p U v v|p U nev v )/(K × v∤p U v v|p 1) ≃ ( v|p U nev v )/U (p n ) K .
We deduce the first exact sequence.

Explicit Computation of T p

In this section, we present our method to check that K satisfies Leopoldt's conjecture at p and then to compute T p . The main point is that, for n large enough, A p n (K) determines X.

Stabilization of A p n (K)

For simplicity we denote Y n = ker(A p n+1 (K) → A p n (K)). Let K be the compositum of all the Z p -extensions of K. We denote by r the Z p -rank of X, so that r ≥ r 2 + 1.

Proposition 3.1. There exists an n 0 such that K ∩ H p n 0 / K ∩ H p is ramified at all places above p. Also, for all n n 0 , Y n surjects onto (Z/pZ) r .

Before proving the proposition, we need a lemma.

Lemma 3.2. If the extension K ∩ H p n / K ∩ H p is ramified at a place v above p, then c n,v > ev p-1 , where c n,v is the conductor of the local extension ( K ∩ H p n ) w /K v and w is a place above v.

Proof of Lemma 3.2. As M contains the cyclotomic Z p -extension, there exists an n 0 such that K ∩ H p n 0 / K ∩ H p is ramified at all places v above p. As K ∩ H p n 0 / K ∩ H p is ramified at v then, for n ≥ n 0 , K ∩ H p n / K ∩ H p is ramified at v, so that there exists an m such that n ≥ m ≥ 2 and that (3)

K ∩H p m-1 / K ∩H p is unramified at v and such that K ∩H p m / K ∩H p is ramified at v. Then the local conductor c m,v is greater than (m -1)e v , yet m ≥ 2 so c m,v > (m -1)e v e v ev p-1 . As the conductor of the extension K ∩ H p m /K divides the conductor of K ∩ H p n /K, we have c n,v c m,v > ev p-1 . Proof of the Proposition 3.1. We consider the diagram K ∩ H p n ( K ∩ H p n )H p H p n K ∩ H p n-1 ( K ∩ H p n-1 )H p H p n-
We have Gal(

K/K) = Z r p . It is clear that Y n ։ Gal( K ∩ H p n+1 / K ∩ H p n ). Yet Gal( K/ K ∩ H p n ) is a Z p -submodule of Gal( K/K) = Z r
p of finite index, so it is isomorphic to Z r p . Hence there exist r extensions, say

M 1 , M 2 , • • • , M r of K ∩H p n , contained in K such that Gal(M i / K∩H p n ) ≃ Z/pZ and Gal(M 1 • • • M r / K ∩ H p n ) ≃ (Z/pZ) r . Yet the conductor of the extension K ∩H p n /K divides p n = v|p p nev v .
Moreover the hypothesis on K ∩H p n / K∩H p ensures that we can use Lemma 2.3 and consequently the conductor of the extension

M i /K divides v|p p nev +ev v = p n+1 , i.e., M i ⊂ H p n+1 for all i ∈ {1, • • • , r}.
Hence the map is surjective.

We deduce immediately the corollary.

Corollary 3.3. Let n be a positive integer such that the extension K ∩H p n / K ∩ H p is ramified at all places above p, and that the cardinality of Y n is exactly p r2+1 . Then Y n ≃ (Z/pZ) r2+1 and K satisfies the Leopoldt's conjecture at p.

From now on, as we can numerically check that K satisfies the Leopoldt's conjecture at p, we assume it does so, in order to compute T p . Note that if Leopoldt's conjecture is false, then r > r 2 + 1 and our algorithm never stops.

Corollary 3.4. We assume that, for some integer n such that the extension K ∩ H p n / K ∩ H p is ramified at all places above of p, the cardinal of Y n is

exactly p r2+1 . Then Y n ≃ Gal( K ∩ H p n+1 / K ∩ H p n ).
It remains to check that if Y n0 ≃ (Z/pZ) r2+1 for some n 0 , then Y n ≃ (Z/pZ) r2+1 for all integers n ≥ n 0 . For this purpose, we consider the exact sequence defining the p-part of the ray class group:

1 / / U (p n ) K / / v|p U nev v / / X / / A p n (K) / / 1,
and we denote

Q n = v|p U nev v /U (p n ) K . We have Q n = Gal(M/H p n ) and consequently Q n /Q n+1 = Y n ≃ Gal(H p n+1 /H p n ).
Proposition 3.5. For n ≥ 2, raising to the p th power induces, via the Artin map, a surjection from

Y n to Y n+1 . Proof. Recall that Q n = v|p U nev v /U (p n ) K = ker(X → A p n (K)). We have that n > 1 p-1 . Raising to the p th power realizes an isomorphism of v|p U nev v onto v|p U nev +ev v . This isomorphism induces a surjection from Q n onto Q n+1 . We consider the diagram 1 / / Q n+1 (.) p / / Q n (.) p / / Q n /Q n+1 (.) p / / 1 1 / / Q n+2 / / Q n+1 / / Q n+1 /Q n+2 / / 1.
We deduce from the snake lemma that the vertical arrow on the right-hand side is a surjection from

Q n /Q n+1 onto Q n+1 /Q n+2 , i.e., from Y n onto Y n+1 .
Corollary 3.6. We denote q n = #(Y n ). For all n 2, q n q n+1 . Therefore the sequence (q n ) n≥1 is ultimately constant.

We recall that Y n is ker(A p n+1 (K) → A p n (K)).

Theorem 3.7. As we assume Leopoldt's conjecture, there exists an integer n 0 such that Y n0 ≃ (Z/pZ) r2+1 . Moreover for all integers n ≥ n 0 , the modules

Q n = Gal(M/H p n ) are Z p -free of rank r 2 + 1 and Y n ≃ (Z/pZ) r2+1 .
Proof. The Z p -module X is isomorphic to the direct product of its torsion part and of Z r2+1

p . An isomorphism being chosen, we can identify Z r2+1 p with a subgroup of X and therefore define, via Galois theory, an extension M ′ of K such that Gal(M ′ /K) ≃ T p and KM ′ = M . This extension being unramified outside p, there exists an integer n 1 such that M ′ ⊂ H p n 1 and consequently

H p n 1 K = M . Moreover, for all integer n ≥ n 1 , Gal(M/H p n ) is a submodule of finite index of Gal(M/M ′ ) = Z r2+1 p , and consequently Q n = Gal(M/H p n ) ≃ Z r2+1 p . The Z p -module Q n is therefore free of rank r 2 + 1.
About the other kernel Y n we saw that there exists an integer n 2 such that Y n maps surjectively onto (Z/pZ) r2+1 for all integer n ≥ n 2 (we can choose n 2 to be the minimum of all integers n such that for all p-places v the conductors of ( K ∩ H p n ) w /K v are at least e p-1 ). Then we note that mapping x ∈ U nev v to x ∈ U nev +ev v realizes an isomorphism between U nev v and U nev +ev v , so that the quotient Q n /Q n+1 , which is isomorphic to Y n , is killed by p. Define n 0 = Max(n 1 , n 2 ) and let n n 0 be an integer. The kernel Y n is therefore a quotient of Z r2+1 p , which maps surjectively onto (Z/pZ) r2+1 and is killed by p. Hence we get Y n ≃ (Z/pZ) r2+1 .

Computing the invariants of T p

We start by recalling the definition of the invariant factors of an abelian group G.

Definition 3.8. Let G be a finite abelian group, there exists a unique sequence

a 1 , • • • , a t such that a i |a i+1 for i ∈ {1, • • • , t -1} and G ≃ t i=1 Z/a i Z.
These a i are the invariant factors of the group G.

In what follows we will denote these invariants by

F I(G) = [a 1 , • • • , a t ].
If G is a p-group, these invariant factors are all powers of p. In practice, we are able to determine the invariant factors of A p n (K). We will see in this section that the knowledge of invariant factors of A p n (K), for n large enough, combined with the stabilizing properties of A p n (K), does determine explicitly the invariants factors of T p , and thus T p itself. We recall that for n large enough, A p n (K) is isomorphic to the direct product of Gal( K ∩ H p n /K) and of Gal(H p n / K ∩ H p n ) = T p . So we will first explore the structure of Gal( K ∩ H p n /K). Proposition 3.9. Let n 0 be such that K ∩H p n 0 / K ∩H p is ramified at all places above of p and

Y n0 ≃ (Z/pZ) r2+1 .
Then for all integer n ≥ n 0 , we have

Gal( K/ K ∩ H p n+1 ) = p Gal( K/ K ∩ H p n ).
Proof. By Theorem 3.7, on the one hand, Q n is Z p -free of rank r 2 + 1 and on the other hand

Y n = Q n /Q n+1 ≃ (Z/pZ) r2+1
. This gives Q n+1 = pQ n . As K ∩ H p n 0 / K ∩ H p is ramified at all places above p and Y n0 ≃ (Z/pZ) r2+1 , we have T p ⊂ A p n 0 (K), so KH p n 0 = M . Then, considering the diagram

K M K ∩ H p n+1 H p n+1 Qn+1 K ∩ H p n H p n Qn K
we get the required isomorphism.

Corollary 3.10. Let n 0 be an integer such that K ∩ H p n 0 / K ∩ H p is ramified at all places above p and such that Y n0 ≃ (Z/pZ) r2+1 . Then for all integers n ≥ n 0 the invariant factors of Gal( K ∩ H p n+1 /K) are obtained by multiplying by p each invariant factor of Gal( K ∩ H p n /K).

From the fact that X ≃ Z r2+1 p × T p , the ray class group, Gal(H p n /K), is isomorphic to the direct product of Gal( K ∩ H p n /K) and Gal(H

p n / K ∩ H p n ).
The invariant factors of Gal(H p n /K) are then simply obtained by concatenating the two groups forming the direct product. We now state the result that explicitly determines T p .

Theorem 3.11. Let n such that Y n = (Z/pZ) r2+1 and K ∩ H p n / K ∩ H p is ramified at all places above p. We assume that

F I(A p n (K)) = [b 1 , • • • , b t , a 1 , • • • , a r2+1 ] with (v p (a 1 )) > (v p (b t )) + 1, and that F I(A p n+1 (K)) = [b 1 , • • • , b t , pa 1 , • • • , pa r2+1 ].
Then we have

F I(T p ) = [b 1 , • • • , b t ].
Proof. Indeed, as Y n ≃ (Z/pZ) r2+1 , we have

A p i (K) ≃ T p × Gal( K ∩ H p i /K) for i ∈ {n, n + 1}. We saw that the invariant factors of Gal( K ∩ H p n+1 /K) are exactly equal to p times those of Gal( K ∩ H p n /K). Consequently, if a is an invariant factor of Gal( K ∩ H p n+1 /K), we have necessarily that a = pa i or a = pb i . But as Min(v p (a i )) > Max(v p (b i )) + 1, none of the invariants factors of Gal( K ∩H p n+1 /K) is of the form pb i . The invariant factors of Gal( K ∩H p n+1 /K) are therefore exactly pa 1 , • • • , pa r2+1 .
The result follows from the fact that A p n+1 (K) is isomorphic to the direct product of T p and Gal( K ∩ H p n+1 /K).

Explicit computation of bounds

More generally, if we denote by e = max v|p {e v } the ramification index of K/Q and by s the p-adic valuation of e, then we can start to check whether A p n (K) stabilizes from rank n = 2 + s. 

H p s+1 z z z z z z z z K ∩ H p H p K
where K j is the j th field of the Z p -extension of K.

We prove below that the places above p are totally ramified in K s+1 /K s . Therefore K ∩ H p s / K ∩ H p is ramified at all places above p and we start the group, T p itself is a finite O l -module, where O l is the ring of integers of Q(ζ l ). This module T p is known in Iwasawa theory as the proper p-adic analogue of the class group. Hence it is a natural question to compute it, to examine the distribution of fields with non-trivial T p , and to compare this distribution with the Cohen-Lenstra heuristics about the distribution of groups with non-trivial p-part inside all finite abelian groups.

In what follows, O F will be the ring of integers of a number field and G will be a finite O F -module. In general, we know that all O F -modules G can be written in a non-canonical way as ⊕ q i=1 O F /a i , where the a i are ideals of O F . Yet the Fitting ideal a = q i=1 a i depends only on the isomorphism class of G, considered as a O F -module. This invariant, denoted by a(G), can be considered as a generalization of the order of G. We also have N (a(G)) = #G.

We consider a function g, defined on the set of the isomorphism classes of O F -modules (typically g is a characteristic function). We follow [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF] for the next definition, using same notations.

Definition 5.1. The average of g, if it exists, is the limit when N → ∞ of the quotient

G,N (a(G))≤N g(G) # Aut OF (G) G,N (a(G))≤N 1 # Aut OF (G) . where G,N (a(G))≤N is the sum is over all isomorphism classes of O F -modules G.
This average is denoted by M l,0 (g).

We denote by w(a) = G,a(G)=a

1 # Aut OF (G)
, where a is an ideal of O F (using same notation as [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF]).

Proposition 5.2 (Corollary 3.8 p.40 [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF]). Let n ∈ N. Then

w(a) = 1 N (a)   p α ||a α k=1 (1 - 1 N OK (p) k )   -1 .
The notation p α ||a means that p α |a and that p α+1 ∤ a. Consequently the function w, defined on the set of ideals of O F , is multiplicative.

Notation. We denote by Π p the characteristic function of the set of isomorphism classes of groups whose p-part is non-trivial.

Proposition 5.3 (Example 5.10 p.47 [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF]). We denote by p 1 , • • • , p g the p-places of O F , the average of Π p exists and we have

M l,0 (Π p ) = 1 - g i=1 k≥1 1 - 1 p kfi , ( 4 
)
where f i is the degree of the residual extensions O F /p i over F p .

p M 2,0 (Π p ) f exp δ 2 0,71118 0,93650 0,31683 3 0,43987 0,50120 0,13942 5 0,23967 0,23854 0,00470 7 0,16320 0,16280 0,00247 11 0,09916 0,09893 0,00243 13 0,08284 0,08266 0,00212 17 0,06228 0,06214 0,00233 19 0,05540 0,05526 0,00260 23 0,04537 0,04527 0,00207 29 0,03375 0,03560 0,00193 31 0,03330 0,03323 0,00219 37 0,02776 0,02770 0,00198 41 0,02499 0,02493 0,00207 43 0,02380 0,02376 0,00152 47 0,02173 0,02168 0,00207

We consider now the quadratic field Q( √ d) with -10 9 d 0. One uses the 1-average denoted by M 2,1 (Π p ).

p M 2,1 (Π p )
f exp δ 2 0,42235 0,93650 1.12734 3 0,15981 0,25718 0,60926 5 0,04958 0,04909 0,00989 7 0,02374 0,02365 0,00374 11 0,00908 0,00905 0,00416 13 0,00641 0,00638 0,00360 17 0,00368 0,00365 0,00445 19 0,00292 0,00291 0,00589 23 0,00198 0,00197 0,00510 29 0,00123 0,00122 0,00916 31 0,00108 0,00107 0,00929 37 0,00075 0,00074 0,00813 41 0,00061 0,00060 0,00982 43 0,00055 0,00055 0,00998 47 0,00046 0,00046 0,01626

We have also computed the proportions for cubic fields, with the program of K. Belabas [START_REF] Varescon | Belabas -A fast algorithm to compute cubic fields[END_REF], and for quintic fields using the tables which are available on the website dedicated to PARI/GPsystem [START_REF] Bordeaux | Pari/gp, version 2.6.0[END_REF]. Then we consider the distribution of torsion modules with respect to invariants factors that will not be presented here, for the sake of brevity. To compute # Aut OK (G) we use [START_REF]Hall -A partition formula connected with Abelian groups[END_REF].

Explanation of numerical results

In this section we explain our numerical results. Looking at the two tables in §5.2.1 we remark that the proportion f exp for real quadratic fields seems to be a 0-average, and a 1-average for the imaginary quadratic. We remark also that the default δ for p = 2, 3 increases with the number of fields computed. To explain these phenomena we recall a computation of Gras [START_REF]Gras -Groupe de galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres[END_REF] p. 94-97. Let k be a number field, we denote by K = k(ζ p ) and ω the idempotent associated with the action of Gal(K/k) on µ p .

Theorem 5.5 (Corollaire 1 p. 96 [START_REF]Gras -Groupe de galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres[END_REF]). Let p be a prime, p = 2. If µ p ⊂ k then the torsion of X is trivial if and only if any prime ideal of k dividing p is totally split in K/k and (Cl K ) ω is trivial, where Cl K is the p-part of the class group of K.

In the case of quadratic fields, if p > 3 then µ p ⊂ k and the ramification index of p in Q(ζ p )/Q is p -1; then all prime ideals of k dividing p ramify in K. Therefore they are not totally split, and so the torsion is trivial if and only if (Cl K ) ω is trivial. So when k is a real quadratic field the computation of T p reduces to the computation of a class group of imaginary quadratic field and we use the 0-average following Cohen-Lenstra Heuristics. In the case of imaginary quadratic the remark [START_REF]Gras -Groupe de galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres[END_REF] p.96-97 explains the 1-average. In the case p = 3, if d ≡ 6 mod 9 then the ideal of k above p is totally split in K, so the torsion is non-trivial. It explains why the frequency obtained is greater. If we consider the other average M ′ 2 (Π 3 ) = M 2,0 (Π 3 ) × 7 8 + 1 8 , then we obtain in the real case N M ′ 2 (Π 3 ) f exp δ 10 6 0,50989 0,48094 0,05678 10 7 0,50989 0,49054 0,03794 10 8 0,50989 0,49697 0,02533 10 9 0,50809 0,50120 0,01704

We now make the computation without the case d ≡ 6 mod 9.

N

M 2,0 (Π 3 ) f exp δ 10 6 0,43987 0,40679 0,07521 10 7 0,43987 0,41776 0,05027 10 8 0,43987 0,42511 0,03356 10 9 0,43987 0,42995 0,02257

It remains to study the 9-rank in the case where d ≡ 6 mod 9, and to try and find density formulas for the 9-rank. Finally, the discrepancy in the case p = 2 is explained by genus theory. Indeed, if the discriminant is divided by enough primes then the torsion is not trivial. This explains why the frequency tends to 1.

  2. (Theorem and Definition 4.1 + Lemma 4.2.1 [Gra03] p. 126-127) The conductor of an abelian extension L/K of a global field is the ideal m = v p cv v , where v runs through all finite places of K and where c v is the conductor of the local extension L v /K v .
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computation by checking whether A p n (K) stabilizes from n = s + 2, and until it stabilizes. We first prove that all places above p are totally ramified in K s+1 /K s . Considering the diagram

w w w w w w w w w K

The ramification index of p in Q s+1 /Q is p s+1 , while the one in K/Q is p s a with p ∤ a. Therefore the extension K s+1 /K is ramified and K s+1 /K s is totally ramified at all places above p.

Corollary 4.1. Let e be the ramification index of p in K/Q and s be the p-adic valuation of e. Let n ≥ 2 + s, we assume that

with Min(v p (a i )) > Max(v p (b i )) + 1, and moreover that

Then we have

All the computations have been done using the PARI/GPsystem [START_REF] Bordeaux | Pari/gp, version 2.6.0[END_REF].

Example 4.2. We consider the field K = Q( √ -129) and p = 3. We have:

We deduce that T p = (Z/3Z).

Numerical results

In the section, we present some of our numerical results and give an explanation of these computations.

Heuristic approach

We first recall some results on Cohen-Lenstra Heuristics. The main reference on the subject is the seminal paper of Cohen-Lenstra [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF]. See also [START_REF]Delaunay -Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics, Ranks of elliptic curves and random matrix theory[END_REF]. These heuristics leads us to compare the proportion of fields with non-trivial T p with the proportion of groups with non-trivial p-part inside all finite abelian groups. If we assume that the extension K/Q is Galois with ∆ = Gal(K/Q), then the module T p is a Z[∆]-module. In this section, we assume that ∆ is cyclic of cardinality l, for some prime number l. Then, as the p-part of the class Corollary 5.4. If the extension F is a Galois extension, all residual degrees are equals to f and in this case

Remark. The real number M l,0 (Π p ) is called the 0-average. This notion can be generalized to the u-average. The expression to compute the u-average is obtained by replacing k by k + u in the expression 4 of the 0-average.

Let K be a set of number fields, cyclic of degree l, let K run through K and let G be the p-part of the class group of F . We assume l = p. If we denote by A = Z[∆]/ g∈∆ g, where ∆ = Gal(K/Q), it is easy to see that G is a finite A-module. As ∆ is cyclic of order l, then G is an O l -module. Following the Cohen-Lenstra Heuristics we give the assumptions.

Assumptions 1 (Assumptions p.54 [START_REF] Cohen | Heuristics on class groups of number fields, Number theory[END_REF]). Recall that l = [K : Q], then we have:

1. (Complexe quadratic case) If r 1 = 0, r 2 = 1 then the proportion of G which are non-trivial is the 0-average of Π p , restricted to O l -modules of order prime to l.

(Totally real case)

If r 1 = n, r 2 = 0 then the proportion of G which are non-trivial is the 1-average of Π p , restricted to O l -modules of order prime to l.

Somes numerical results

Case of the quadratic fields

We observed that in the case of real quadratic fields the proportion of fields with non-trivial Z p -torsion of X was a 0-average, and a 1-average for the imaginary quatratic fields. We will explain why this phenomenon is consistent with Cohen-Lenstra Heuristics in Section 5.2.2. We consider all quadratic fields Q( √ d) with d square-free and 0 < d ≤ 10 9 . Then we compute the proportion of fields with non-trivial T p . We denote this proportion by f exp . The relative error |f exp -M 2,0 (Π p )|/M 2,0 (Π p ) is denoted by δ. We remark that δ tends to 0 if we increase the numbers of fields whose torsion we compute, except for the case p=2 and 3. We explain this discrepancy with 2 and 3 in Section 5.2.2.