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Computing the torsion of the p-ramified module

Frédéric PITOUN and Firmin VARESCON

Abstract. We fix a prime number p and K a number field, we denote by
M the maximal abelian p-extension of K unramified outside p. The aim of
this paper is to study the Zp-module X = Gal(M/K) and to give a method
to effectively compute its structure as a Zp-module. Then we give numerical
results, for real quadratic fields, cubic fields and quintic fields, together with
interpretations via Cohen-Lenstra’s heuristics.

1 Introduction

We fix a prime number p and a number field K. We denote by M the maximal
abelian p-extension of K unramified outside p. The aim of this paper is to
study the Zp-module X = Gal(M/K) and give an algorithm to compute its
Zp-structure. This module is described by the following exact sequence from
class field theory ([Gra1, p. 294])

UK
//
∏

v|p U
1
v

// X // Gal(H/K) // 1, (1)

where UK is the pro-p-completion of the group of units UK , U1
v is the group

of principal units at the place v above p of K, and H is the maximal p-sub-
extension of the Hilbert class field of K. Leopold’t conjecture for K and p is
equivalent to injectivity of UK →

∏

v|p U
1
v . Therefore, from this exact sequence,

we deduce that the Zp-rank r of X is greater or equal to r2 + 1 and is equal
r2+1 if and only if K and p satisfy Leopoldt’s conjecture. Hence X is the direct
product of a free part isomorphic to Zr

p and of a torsion part, that we denote
by Tp. Our algorithm checks if K satify Leopoldt’s conjecture at p and then
compute the torsion Tp.

We propose a method which is based on the fact that the Zp-module X is
the projective limit of the p-parts of the ray class groups modulo pn, Apn(K).
We then study the stabilization of these groups with respect to n and the be-
haviour of invariants of Apn(K), as n is increasing. This approach leads us to
our algorithm.

Before addressing the technical part of this article, we recall the definition
and some basic properties of the ray class groups modulo pn. Then, we use our
algorithm to compute some cases and propose an heuristic explanation of the
statistical data, using the Cohen-Lenstra philosophy ([C-L]).
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2 Background from class field theory ([Gra1],[Ser])

In this section, we recall the basic notions from class field theory that we will
need later. We fix v a place of K above p and πv a local uniformiser of Kv, the
completion of K at v.

Definition 2.1.

1. The conductor of an abelian extension of local fields Lv/Kv is the min-
imum of integers c such that U c

v ⊂ NLv/Kv
(L×

v ) (we recall that U c
v =

1 + (πc
v) and we use the convention U0

v = Uv).

2. The conductor of an abelian extension L/K of a global field is the ideal
m =

∏

v p
cv
v , where v runs through all finite places of K and where cv is

the conductor of the local extension Lv/Kv.([Gra1, p. 126-127] Theorem
and Definition 4.1 + Lemma 4.2.1).

We start with 2 lemmas.

Lemma 2.2. ([Ser] p. 219). Let Kv be the completion of K at the valuation v
normalized by v(p) = 1 and v(πv) =

1
ev
, where ev is the ramification index of the

extension Kv/Qp. If m > ev
p−1 , then the application x→ xp is an isomorphism

from Um
v to Um+ev

v .

Lemma 2.3. Let Kv ⊂ Lv ⊂ Mv be a tower of extensions of Qp, such that
the extension Mv/Kv is abelian and the extension Mv/Lv is of degree p. We
denote respectively by cM,v and cL,v the conductors of the extensions Mv/Kv

and Lv/Kv. If cL,v > ev
p−1 , then we have

cM,v ≤ cL,v + ev.

Proof. By definition cL,v is the smallest integer n such that Un
v ⊂ NLv/Kv

(L×
v ).

Local class field theory gives the following diagram

1 // NMv/Kv
(M×

v ) //
� _

��

K×
v

// Gal(Mv/Kv) //

��
��

1

1 // NLv/Kv
(L×

v ) // K×
v

// Gal(Lv/Kv) // 1

Applying snake lemma we get the exact sequence

1 // NMv/Kv
(M×

v ) // NLv/Kv
(L×

v ) // Gal(Mv/Lv) = Z/pZ // 1.

Consequently NMv/Kv
(M×

v ) is a subgroup of index p of NLv/Kv
(L×

v ). Let
n ∈ N, n ≥ cL,v + ev and x ∈ Un

v . We have to show that x ∈ NMv/Kv
(M×

v ). By

lemma 2.2, x
1
p is a well defined element of ∈ Un−ev

v . Yet n− ev ≥ cL,v therefore

x
1
p ∈ NLv/Kv

(L×
v ). Now, as NMv/Kv

(M×
v ) is of index p in NLv/Kv

(L×
v ), we

deduce that x ∈ NMv/Kv
(M×

v ). We have therefore Un
v ⊂ NMv/Kv

(M×
v ) for all

integers n such that n ≥ cL + ev. By definition of the conductor, this proves
cM,v ≤ cL,v + ev.
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Definition 2.4. Let n be a positive integer. We denote by

• H the maximal abelian unramified extension of K;

• Hpn the compositum of all abelian extensions of K whose conductors divide
pn;

• Hpn the compositum of all abelian p-extensions of K whose conductors
divide pn;

• M the maximal extension of K which is abelian and unramified outside p.

So the Galois groups Gal(H/K) and Gal(Hpn/K) are respectively isomorphic
to the p-parts of Gal(H/K) and Gal(Hpn/K).

Proposition 2.5. ([Gra1, p. 47] corollary 5.1.1) We have the following exact
sequences,

1 // K×
∏

v∤p Uv

∏

v|p U
nev
v

// IK // Gal(Hpn/K) // 1

1 // K×
∏

v Uv
// IK // Gal(H/K) // 1,

where IK is the group of idèles of K.

We denote the Galois group Gal(Hpn/K) by Apn(K). It is the p-part of the
Galois group Gal(Hpn/K) which, in turn, is isomorphic to the ray class group
modulo pn of K. By definition, we have a natural inclusion Hpn ⊂ Hpn+1 , the

union
⋃

n

Hpn is equal to M and the projective limit lim←−Apn(K) is canonically

isomorphic to X.

Proposition 2.6. For any integer n > 0, the Galois groups of the extensions
M and Hpn of K are related by the following exact sequence

1 // U
(pn)
K

//
∏

v|p U
nev
v

// Gal(M/K) // Gal(Hpn/K) // 1,

where U
(pn)
K = {u ∈ UK such that ∀v|p, u ∈ Unev

v } and

U
(pn)

K
//
∏

v|p U
nev
v

// X // Apn(K) // 1,

where U
(pn)

K is the pro-p-completion of U
(pn)
K , i.e lim←−

m

U
(pn)
K /pm. If Moreover K

and p satisfy Leopoldt’ conjecture, then U
(pn)

K →
∏

v|p U
nev
v is injective.

Proof. To obtain the second exact sequence, we apply pro-p-completion pro-

cess to the first. Note that injectivity of U
(pn)

K → ∏

v|p U
nev
v is equivalent to

Leopoldt’s conjecture. Now we prove exactness of the first sequence.
From the definition of the extensions M and Hpn , we deduce the diagram

1 // K×
∏

v∤p Uv

∏

v|p 1
//

� _

��

IK // Gal(M/K) //

��
��

1

1 // K×
∏

v∤p Uv

∏

v|p U
nev
v

// IK // Gal(Hpn/K) // 1
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It follows immediately from the snake lemma that

ker(Gal(M/K)→ Gal(Hpn/K)) = (K×
∏

v∤p

Uv

∏

v|p

Unev
v )/(K×

∏

v∤p

Uv

∏

v|p

1).

Now, we define the application

θ : (K×
∏

v∤p

Uv

∏

v|p

Unev
v )→ (

∏

v|p

Unev
v )/U

(pn)
K ,

by setting for k(uv)v ∈ K×
∏

v∤p Uv

∏

v|p U
nev
v , θ(k(uv)v) = (uv)v|p, where

(uv)v|p is the class of (uv)v|p in (
∏

v|p U
nev
v )/U

(pn)
K .

We first check that the application θ is well defined, i.e. that if k(uv)v =
k′(u′

v)v in K×
∏

v∤p Uv

∏

v|p U
nev
v , then θ(k(uv)v) = θ(k′(u′

v)v). By definition,

for all v, k(uv)v = k′(u′
v)v if and only if iv(k)uv = iv(k

′)u′
v, where iv is the

embedding of K in Kv. We deduce that for all v, iv(k
′k−1) ∈ Uv and that for

all v|p, iv(k′k−1) ∈ Unev
v . So we get k′k−1 ∈ U

(pn)
K and (uv)v|p = (u′

v)v|p.

It is clear that (K×
∏

v∤p Uv

∏

v|p 1) ⊂ ker(θ) and that the application θ is

surjective. We will show that (K×
∏

v∤p Uv

∏

v|p 1) = ker(θ). Let k(uv) ∈ ker(θ),

there exists x ∈ U
(pn)
K such that for all v|p, uv = iv(x). We consider the

element x(u′
v)v, where u′

v = 1 if v|p and u′
v = iv(x)

−1uv if v ∤ p. We have
(uv)v = x(u′

v)v ⇒ k(uv)v = kx(u′
v)v and as kx(u′

v)v ∈ (K×
∏

v∤p Uv

∏

v|p 1), we

have ker(θ) ⊂ (K×
∏

v∤p Uv

∏

v|p 1) and finally

(K×
∏

v∤p

Uv

∏

v|p

Unev
v )/(K×

∏

v∤p

Uv

∏

v|p

1) ≃ (
∏

v|p

Unev
v )/U

(pn)
K .

The result follows.

3 Explicit Computation of Tp
In this section, we present our method to check that K verify Leopoldt’s con-
jectue at p and then to compute Tp. The main point is that, for n large enough,
Apn(K) determines X.

3.1 Stabilization of Apn(K)

For simplicity we note Yn = ker(Apn+1(K) → Apn(K)). Let K̃ be the com-
positum of all the Zp-extensions of K. We denote by r the Zp-rank de X, so
r ≥ r2 + 1.

Proposition 3.1. There exists n0 such that K̃ ∩ Hpn0 /K̃ ∩ Hp is ramified at
all places above of p and for all n > n0, Yn surjects on (Z/pZ)r.

Before proving the proposition we need a lemma.
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Lemma 3.2. If the extension K̃ ∩ Hpn/K̃ ∩ Hp is ramified at a place v above

p, then cn,v > ev
p−1 , where cn,v is the conductor of the local extension (K̃ ∩

Hpn)w/Kv.

Proof of the Lemma 3.2. As M contains the cyclotomic Zp-extension, there ex-

ists a n0 such that K̃ ∩Hpn0/K̃ ∩Hp is ramified at all places v above of p. As

K̃∩Hpn0 /K̃∩Hp is ramified at v then, for n ≥ n0, K̃∩Hpn/K̃∩Hp is ramified at

v, so that there existsm such that n ≥ m ≥ 2 and that K̃∩Hpm−1/K̃∩Hp is un-

ramified at v and such that K̃∩Hpm/K̃∩Hp is ramified at v. Then, the local con-
ductor cm,v is greater than (m−1)ev, yetm ≥ 2 so cm,v > (m−1)ev > ev >

ev
p−1 .

As the conductor of the local extension K̃ ∩ Hpm/K divides the conductor of

K̃ ∩Hpn/K, we have cn,v > cm, v > ev
p−1 .

Proof of the Proposition 3.1. We consider the following diagram.

K̃ ∩Hpn (K̃ ∩Hpn)Hp Hpn

K̃ ∩Hpn−1 (K̃ ∩Hpn−1)Hp Hpn−1

yyyyyyyyy Yn−1

K̃ ∩Hp Hp

pppppppppppp

K

(2)

We have Gal(K̃/K) = Zr
p. It is clear that Yn ։ Gal(K̃ ∩ Hpn+1/K̃ ∩

Hpn). Yet Gal(K̃/K̃ ∩ Hpn) is a Zp-sub-module of Gal(K̃/K) = Zr
p of finite

index, therefore it is isomorphic to Zr
p. Hence there exists r extensions, say

M1,M2, · · · ,Mr of K̃ ∩ Hpn , contained in K̃ such that Gal(Mi/K̃ ∩ Hpn) ≃
Z/pZ and Gal(M1 · · ·Mr/K̃ ∩ Hpn) ≃ (Z/pZ)r. Yet the conductor of the

extension K̃ ∩ Hpn/K divides pn =
∏

v|p p
nev
v . Moreover the hypothesis on

K̃ ∩ Hpn/K̃ ∩ Hp ensures that we can use Lemma 2.3 and consequently the
conductor of the extension Mi/K divides

∏

v|p p
nev+ev
v = pn+1, i.e. Mi ⊂ Hpn+1

for all i ∈ {1, · · · , r}. Hence the map is surjective.

We deduce immediately the corollary.

Corollary 3.3. We assume that for a naturel number n the extension K̃ ∩
Hpn/K̃ ∩Hp is ramified at all places above of p, and that the cardinal of Yn is
exactly pr2+1. Then Yn ≃ (Z/pZ)r2+1 and K verify the Leopoldt’s conjecture at
p.

From now on, as we can numerically check that K sastify the Leopoldt’s
conjecture at p, we assume it, and we use it to compute Tp. Note that if the
Leopodt’s conjecture is false, then r > r2 + 1 and our algorithm never stops.

Corollary 3.4. We assume that, for some integer n such that the extension
K̃ ∩ Hpn/K̃ ∩ Hp is ramified at all places above of p, the cardinal of Yn is

exactly pr2+1. Then, Yn ≃ Gal(K̃ ∩Hpn+1/K̃ ∩Hpn).
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It remains to check that if Yn0
≃ (Z/pZ)r2+1 for some n0, then Yn ≃

(Z/pZ)r2+1 for all integer n ≥ n0. For this purpose, we consider the exact
sequence defining the p-part of the ray class group.

1 // U
(pn)

K
//
∏

v|p U
nev
v

// X // Apn(K) // 1,

and we note Qn =
∏

v|p U
nev
v /U

(pn)

K . We have Qn = Gal(M/Hpn) and conse-

quently Qn/Qn+1 = Yn ≃ Gal(Hpn+1/Hpn).

Proposition 3.5. For n ≥ 2, raising to the pth power induces, via the Artin
map, a surjection from Yn to Yn+1.

Proof. We recall that Qn =
∏

v|p U
nev
v /U

(pn)

K = ker(X → Apn(K)). We have

that n > 1
p−1 . Raising to the pth power realizes an isomorphism of

∏

v|p U
nev
v

onto
∏

v|p U
nev+ev
v . This isomorphism induces a surjection from Qn onto Qn+1.

We consider finally the diagram

1 // Qn+1

(.)p

��
��

// Qn

(.)p

��
��

// Qn/Qn+1

(.)p

��

// 1

1 // Qn+2
// Qn+1

// Qn+1/Qn+2
// 1

We deduce from the snake lemma that the vertical arrow on the right side is a
surjection from Qn/Qn+1 onto Qn+1/Qn+2, i.e. from Yn onto Yn+1.

Corollary 3.6. We denote qn = #(Yn). For all n > 2, qn > qn+1. Therefore
the sequence (qn)n≥1 is ultimately constant.

We recall that Yn is ker(Apn+1(K)→ Apn(K)).

Theorem 3.7. There exists an integer n0 such that Yn0
≃ (Z/pZ)r2+1. More-

over for all integers n ≥ n0, the modules Qn = Gal(M/Hpn) are Zp-free of rank
r2 + 1 and

Yn ≃ (Z/pZ)r2+1.

Proof. The Zp-module X is isomorphic to the direct product of its torsion part
and of Zr2+1

p . An isomorphism being chosen, we can identify Zr2+1
p with a

subgroup of X and therefore define, via Galois theory, an extension M ′ of K
such that Gal(M ′/K) ≃ Tp and K̃M ′ = M .

This extension being unramified outside p, there exists an integer n1 such
that M ′ ⊂ Hpn1 and consequently Hpn1 K̃ = M . Moreover for all integer
n ≥ n1, Gal(M/Hpn) is a sub-module of finite index of Gal(M/M ′) = Zr2+1

p ,
consequently Qn = Gal(M/Hpn) ≃ Zr2+1

p . The Zp-module Qn is therefore free
of rank r2 + 1.
About the other kernel Yn we saw that there exists an integer n2 such that Yn

maps surjectively onto (Z/pZ)r2+1 for all integer n ≥ n2 (we can choose n2 to
be the minimum of all integers n such that for all p-places v the conductors
of (K̃ ∩ Hpn)w/Kv are greater than or equal to e

p−1 ). Finally we note that

raising to the pth power realizes an isomorphism between Unev
v and Unev+ev

v ,
hence the quotient Qn/Qn+1, which is isomorphic to Yn, is killed by p. Define
n0 = Max(n1, n2) and fix an integer n ≥ n0. The kernel Yn is therefore a
quotient of Zr2+1

p , which maps surjectively onto (Z/pZ)r2+1 and is killed by p.
Hence we get Yn ≃ (Z/pZ)r2+1.
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3.2 Computing the invariants of Tp
We start by recalling the definition of invariant factors of an abelian group G.

Definition 3.8. Let G a finite abelian group, there exists a unique sequence
a1, · · · , at such that for all i, ai|ai+1 for i ∈ {1, · · · , t−1} and G ≃∏t

i=1 Z/aiZ.
These ai are the invariant factors of the group G.

In what follows we will note them FI(G) = [a1, · · · , at]. If G is a p-group,
these invariant factors are all powers of p. In practice, we are able to determine
the invariant factors ofApn(K). We will see in this section that the knowledge of
invariant factors of Apn(K), for n large enough, combined with the stabilizing
properties of Apn(K), does determine explicitly the invariant factors of, and
thus Tp. We recall that for n large enough, Apn(K) is isomorphic to the direct

product of Gal(K̃ ∩ Hpn/K) and of Gal(Hpn/K̃ ∩ Hpn) = Tp. So we will first

explore the structure of Gal(K̃ ∩Hpn/K).

Proposition 3.9. Let n0 be such that K̃∩Hpn0/K̃∩Hp is ramified at all places
above of p and

Yn0
≃ (Z/pZ)r2+1.

Then for all integer n ≥ n0, we have

Gal(K̃/K̃ ∩Hpn+1) = pGal(K̃/K̃ ∩Hpn).

Proof. By Theorem 3.7, on one hand, Qn is Zp-free of rank r2 + 1 and on
the other hand Yn = Qn/Qn+1 ≃ (Z/pZ)r2+1. This gives Qn+1 = pQn. As
K̃ ∩Hpn0 /K̃ ∩Hp is ramified at all places above of p and Yn0

≃ (Z/pZ)r2+1, we

have Tp ⊂ Apn0 (K), so K̃Hpn0 = M . Then, considering the following diagram,

K̃ M

K̃ ∩Hpn+1 Hpn+1

Qn+1

K̃ ∩Hpn Hpn

Qn

K

we get the required isomorphism.

Corollary 3.10. Let n0 be an integer such that K̃ ∩Hpn0 /K̃ ∩ Hp is ramified
at all places above of p and such that Yn0

≃ (Z/pZ)r2+1. Then for all integers
n ≥ n0, the invariant factors of Gal(K̃ ∩Hpn+1/K) are obtained by multiplying

by p each invariant factor of Gal(K̃ ∩Hpn/K).

From the fact that X ≃ Zr2+1
p × Tp, the ray class group, Gal(Hpn/K), is

isomorphic to the direct product of Gal(K̃∩Hpn/K) and of Gal(Hpn/K̃∩Hpn).
The invariant factors of Gal(Hpn/K) are then simply obtained by concatenating
those of the two groups forming the direct product. We now state the result
that explicitly determines Tp.
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Theorem 3.11. Let n such that Yn = (Z/pZ)r2+1 and K̃ ∩ Hpn/K̃ ∩ Hp is
ramified at all places above of p. We assume that

FI(Apn(K)) = [b1, · · · , bt, a1, · · · , ar2+1]

with (vp(a1)) > (vp(bt)) + 1, and that

FI(Apn+1(K)) = [b1, · · · , bt, pa1, · · · , par2+1].

Then, we have
FI(Tp) = [b1, · · · , bt].

Proof. Indeed, as
Yn ≃ (Z/pZ)r2+1,

we have Api(K) ≃ torZp
(X)×Gal(K̃ ∩Hpi/K) for i ∈ {n, n+ 1}. We saw that

the invariant factors of Gal(K̃∩Hpn+1/K) are exactly equals to p times those of

Gal(K̃∩Hpn/K). Consequently, if a is an invariant factor of Gal(K̃∩Hpn+1/K),
we have necessarily a = pai or a = pbi.
But as Min(vp(ai)) > Max(vp(bi))+1, none of the invariants factors of Gal(K̃∩
Hpn+1/K) is of the form pbi. The invariant factors of Gal(K̃ ∩ Hpn+1/K)
are therefore exactly pa1, · · · , par2+1. The result follows from the fact that
Apn+1(K) is isomorphic to the direct product of Tp and of Gal(K̃ ∩Hpn+1/K).

4 Explicit computation of bounds

More generally if we note e = maxv|p {ev} the ramification index of K/Q and
s the p-adic valuation of e, then we start to check whether Apn(K) stabilizes
from rank n = 2 + s. To show that n = 2 + s is the proper starting point we
consider the diagram,

K̃ ∩Hps+2 Hps+2

ww
ww
ww
ww
w

Ks+1

tttttttttt

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Hps+1

zz
zz
zz
zz

K̃ ∩Hp Hp

K

where Kj is the jth-step of the Zp-extension of K.

The places above of p are totally ramified in Ks+1/Ks therefore K̃∩Hps/K̃∩
Hp is ramified at all places above of p and we start the computation checking
whether Apn(K) stabilizes from n = s+ 2. We first prove that all places above
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p are totally ramified in Ks+1/Ks.
Considering the following diagram,

Ks+1

yy
yy
yy
yy

GG
GG

GG
GG

G

Ks Qs+1

ww
ww
ww
ww
w

K

}}}}}}}}

Qs

EEEEEEEE

Q

AAAAAAAA

yyyyyyyyy

the ramification index of p in Qs+1/Q is ps+1 while the one in K/Q is psa
with p ∤ a. Therefore the extension Ks+1/K is ramified and Ks+1/Ks is totally
ramified at all places above p.

Corollary 4.1. Let e be the ramification index of p in K/Q and s be the p-adic
valuation of e. Let n ≥ 2 + s, we assume that

FI(Apn(K)) = [b1, · · · , bt, a1, · · · , ar2+1],

with Min(vp(ai)) > Max(vp(bi)) + 1, and moreover that

FI(Apn+1(K)) = [b1, · · · , bt, pa1, · · · , par2+1].

Then, we have
FI(Tp) = [b1, · · · , bt].

All the computations are been done using the PARI/GPsystem [PARI-GP].

Example 4.2. We consider the field K = Q(
√
−129) and p = 3. We have:

FI(Ap2 (K)) = [3, 3, 9], FI(Ap3 (K)) = [3, 9, 27] and FI(Ap4(K)) = [3, 27, 81].
We deduce that Tp = (Z/3Z).

5 Numerical results

In the section, we give an explanation of some numerical results that we have
computed.

5.1 Heuristic approach

We first recall some results on Cohen-Lenstra Heuristics. The main reference
on the subject is the seminal paper of Cohen-Lenstra [C-L], see also [Del]. If we
assume that the extension K/Q is Galois with ∆ = Gal(K/Q), then the module
Tp is a Z[∆]-module. In this section, we assume that ∆ is cyclic of cardinality
l, for some prime number l. Then Tp is Ol-module, where Ol is the ring of
integers of Q(ζl). In general, we know that all Ol-module G can be written in a
non-canonical way as ⊕q

i=1Ol/ai, where the ai are ideals of Ol. Yet the Fitting
ideal a =

∏q
i=1 ai depends only of the isomorphism class of G, considered as a
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Ol-module. This invariant, denoted by a(G), can be considered as a generaliza-
tion of the order of G. We also have N(a(G)) = #G.

To simplify the notation we set.

• ∑

G,N =
∑

G,N(a(G))≤N , where the sum is over all isomorphism classes of
Ol-module G;

• ∑

a,N =
∑

a,N(a)≤N ;

• ∑

a′,N =
∑

a′,N(a′)≤N and a′∧p=1;

• ∑

p,N =
∑

p,N(p)≤N and p∈Sp
, where Sp designed the set of all p-places of

Ol.

We consider a function g, defined on the set of the isomorphism classes of
Ol-modules (typically g is a characteristic function). We then put

SN(g) =
∑

G,N
g(G)

#AutOl
(G) ;

SN =
∑

G,N
1

#AutOl
(G) .

Definition 5.1. The average of g, if it exists is, the limit when N →∞ of the
quotient

SN (g)

SN
.

This average is denoted by Ml,0(g).

As in [C-L], we denote by w(a) =
∑

G,a(G)=a

1
#AutOl

(G) , where a is an ideal

of Ol.

Proposition 5.2. ( [C-L] p.40 corollary 3.8) Let n ∈ N, then

w(a) =
1

NQ(ζl)(a)





∏

pα||a

α
∏

k=1

(1 − 1

NOl
(p)k

)





−1

.

The notation pα||a meaning pα|a and that pα+1 ∤ a. Consequently the function
w, defined on the set of ideals of Ol, is multiplicative.

Notation. We denote by Πp the characteristic function of the set of the
isomorphism classes of groups whose p-part is non trivial.

Proposition 5.3. ([C-L] p. 47 example 5.10) We note p1, · · · , pg the p-places
of Ol, the average of Πp exist and we have

Ml,0(Πp) = 1−
g
∏

i=1

∏

k≥1

(

1− 1

pkfi

)

,

where the fi designed the degree of the residual extensions Ol/pi over Fp.
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Corollary 5.4. If the extension K is a Galois extension, all residual degrees
are equals to f and in this case

Ml,0(Πp) = 1−





∏

k≥1

1− 1

pkf





g

.

Remark. The real Ml,0(Πp) is called the 0-average. This notion can be gen-
eralized to u-average. The expression to compute the u-average is obtained by
replacing k by k + u in the expression of the 0-average.

5.2 Somes numerical results

5.2.1 Case of the quadratic fields

We consider all quadratic fields of the type Q(
√
d) with d square-free and 0 <

d ≤ 109. Then, we compute the proportion of fields with non trivial Zp-torsion of
X. We note this proportion fexp. The relative error |fexp−M2,0(Πp)|/M2,0(Πp)
is denoted by δ.

p M2,0(Πp) fexp δ
2 0,71118 0,93650 0,31683
3 0,43987 0,50120 0,13942
5 0,23967 0,23854 0,00470
7 0,16320 0,16280 0,00247
11 0,09916 0,09893 0,00243
13 0,08284 0,08266 0,00212
17 0,06228 0,06214 0,00233
19 0,05540 0,05526 0,00260
23 0,04537 0,04527 0,00207
29 0,03375 0,03560 0,00193
31 0,03330 0,03323 0,00219
37 0,02776 0,02770 0,00198
41 0,02499 0,02493 0,00207
43 0,02380 0,02376 0,00152
47 0,02173 0,02168 0,00207
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We consider now the quadratic field of the type Q(
√
d) with −109 6 d 6 0.

One uses the 1-average that denoted by M2,1(Πp).

p M2,1(Πp) fexp δ
2 0,42235 0,93650 1.12734
3 0,15981 0,25718 0,60926
5 0,04958 0,04909 0,00989
7 0,02374 0,02365 0,00374
11 0,00908 0,00905 0,00416
13 0,00641 0,00638 0,00360
17 0,00368 0,00365 0,00445
19 0,00292 0,00291 0,00589
23 0,00198 0,00197 0,00510
29 0,00123 0,00122 0,00916
31 0,00108 0,00107 0,00929
37 0,00075 0,00074 0,00813
41 0,00061 0,00060 0,00982
43 0,00055 0,00055 0,00998
47 0,00046 0,00046 0,01626

We have also computed these proportions for other fields and we consider
the distribution of torsion modules with respect to invariants factors but they
will not be given here.

5.2.2 Explanation of numerical results

In this section we explain our numerical result. Looking at two tables in §5.2.1
we remark that the proportion fexp for real quadratic fields seems to be a 0-
average and a 1-average for the imaginary quadratic. We remark also that the
default δ for p = 2, 3 increases with the number of fields computed. To explain
these phenomena we recall a computation of Gras [Gra2] p. 94-97. Let k be a
number field, we denote by K = k(ζp) and ω the idempotent associated with
the action of Gal(K/k) on µp.

Theorem 5.5 (Corollaire 1 p. 96 [Gra2]). Let p be a prime, p 6= 2. If µp 6⊂ k
then the torsion of X is trivial if and only if any prime ideal of k dividing p is
totally split in K/k and (ClK)ω is trivial where ClK is the p-part of the class
group of K.

In case of quadratic fields, if p > 3 then µp 6⊂ k and the ramification index of
p in Q(ζp)/Q is p−1; then all prime ideal of k dividing p ramifies in K, therefore
they are not totally split, hence the torsion is trivial if and only if (ClK)ω is
trivial. So in case k is a real quadratic field the computation of Tp reduces to
the computation of a class group of imaginary quadratic field and we use the
0-average following Cohen-Lenstra Heuristics. In case of imaginary quadratic
the remark [Gra2] p.96-97 explains the 1-average. In case p = 3, if d ≡ 6 mod 9
then the ideal of k above p is totally split in K, so the torsion is non trivial. It
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explains why the frequency obtained is greater. If we consider the other average
M ′

2(Π3) = M2,0(Π3)× 7
8 + 1

8 ; then we obtain

N M ′
2(Π3) fexp δ

106 0,50989 0,48094 0,05678
107 0,50989 0,49054 0,03794
108 0,50989 0,49697 0,02533
109 0,50809 0,50120 0,01704

We now make the computation without the d ≡ 6 mod 9.

N M2,0(Π3) fexp δ
106 0,43987 0,40679 0,07521
107 0,43987 0,41776 0,05027
108 0,43987 0,42511 0,03356
109 0,43987 0,42995 0,02257

It remains to study the 9-rank in case where d ≡ 6 mod 9, and to try and
find density formulas for the 9-rank. Finally the discrepancy in the case p = 2
is explained by genus theory. Indeed if the discriminant is divided by enough
primes then the torsion is not trivial, this explains that the frequency tends to
1.
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de Nancago, No. VIII, Hermann, Paris, (1968).

[Was] L. Washington, Introduction to fields, second ed., Springer-Verlag. New-
York, (1997).

Fredéric PITOUN,
27 Avenue du 8 mai 1945,
11400 Castenaudary, FRANCE.
frederic.pitoun@free.fr

Firmin VARESCON,
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