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ter manifold theory, the former one occurs on a three-
dimensional variety of the state-space, while the latter
one occurs on a four-dimensional variety. It is conjec-
tured that a transition should exist between the two
regimes, when the damping coefficient is quasistati-
cally varied, which is worth studying here. In general,
the study of abrupt or smooth transition phenomena
in dynamics is a very challenging issue (see [14–16]).
Often, a suitable way to study transitions is starting
from the most complex system, then descending to the
easier one by smooth modification of a significant pa-
rameter. This is the strategy adopted herein.

As it has been widely discussed in previous works,
the multiple scale method (MSM) [17–19] appears
to be one of the most efficient tool to tackle bifur-
cation problems. As a matter of fact, it reduces the
system to its essential dimension, as the center man-
ifold method does, by accounting both for active and
passive variables, and simultaneously it selects the
essentially nonlinear terms, as the normal form the-
ory does. In addition, the MSM furnishes amplitude-
equations for the slow-flow, in which the fast dynamics
have been filtered. In spite of this, neither the MSM
nor other perturbation methods seem to be available
to tackle a “difficult” bifurcation, in which a defec-
tive (not semisimple) double-zero eigenvalue interacts
with a non-defective pair of Hopf eigenvalues. Hence,
a specific algorithm must be tailored on the problem.

Here, a nonstandard version of the multiple scales
method is implemented to get the bifurcation equa-
tions for a system experiencing double-zero/Hopf bi-
furcation. This technique has been already used in
[20], where a nonautonomous system has been con-
sidered, in a specific resonance condition and under
ad hoc assumptions. Herein, however, the method is
proposed for an autonomous system, in a systematic
version, in principle able to be carried out at any per-
turbation order.

The algorithm is illustrated referring to a 2 d.o.f.
“paradigmatic system”, which is representative of a
large class of mechanical systems, exhibiting such
a kind of bifurcation. It consists of two oscillators,
weakly coupled by nonlinear viscous-elastic devices.
One of them undergoes Hopf bifurcation caused, for
example, by aerodynamic forces vanishing its struc-
tural damping; the other one suffers a double-zero
bifurcation due, for example, to a gravitational load
which zeroes its linear stiffness, and to an evanescently
small structural damping.

Attention is focused on the transition from the
codimension-3 DZH-bifurcation to codimension-2
ZH-bifurcation, allowing the damping to become large
in modulus. Actually, this is only one of the possible
transitions from a DZH-bifurcation, leaving to future
works the analysis of other paths as well as the com-
plete unfolding of the neighborhood of the bifurcation
point. Preliminary results have been presented in [21].
The paper is organized as follows. In Sect. 2, a two-
d.o.f. mechanical model is considered, in Sect. 3, the
MSM is implemented, in Sect. 4, the transition from
DZH- to ZH-bifurcations is qualitatively described, in
Sect. 5 numerical results are shown, and in Sect. 6
some conclusions are drawn.

2 The model

A paradigmatic autonomous system is considered (see
Fig. 1), made of two oscillators of mass m1 and m2,
respectively, linked each other and to the ground by
cubic elastic springs and Van Der Pol dampers. It rep-
resents a class of coupled Duffing–Van Der Pol os-
cillators (see [22–28]). The linear coefficients of the
springs and of the dashpots are denoted by ki1 and ci1,
respectively, and their cubic coefficients by ki3 and ci3

(i = 0,1,2). Displacements of the masses from their
rest positions are denoted by x(t) and y(t), respec-
tively, t being the time.

Physical systems falling in this class are structures
under wind flow, causing Hopf bifurcation, and dead
loads, causing elastic buckling. Accordingly, the coef-
ficients of the linear terms, c11 (accounting for struc-
tural and aerodynamic damping) and k21 (accounting
for elastic and geometric stiffness) are allowed to van-
ish and to become negative, when the relevant destabi-
lizing effects prevail on the stabilizing ones. Similarly,
the damping coefficient c21 is assumed to be positive,
ranging from small to very small values, in order to
span the transition region.

The natural frequencies of the oscillators, when
damping and coupling are removed, are ω1 =

Fig. 1 Scheme of the two oscillators
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√
k11/m1 and ω2 = √

k21/m2, respectively. Nondi-
mensional quantities are introduced:

t∗ = ω1t, x∗ = x

�
, y∗ = y

�
, (1)

where � is a characteristic length, and
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,

ξ01 = c01

m1ω1
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m2
,
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2

m2ω
2
1

, ξ23 = c23�
2

m2ω1
.

(2)

Dropping the asterisks, the equations of motions

ẍ − μẋ + x + κ13x
3 + ξ13ẋx2 − κ01(y − x)

− κ03(y − x)3 − ξ01(ẏ − ẋ) (3a)

− ξ03(ẏ − ẋ)(y − x)2 = 0,

ÿ − ξ ẏ − νy + κ23y
3 + ξ23ẏy2 + ακ01(y − x)

+ ακ03(y − x)3 + αξ01(ẏ − ẋ) (3b)

+ αξ03(ẏ − ẋ)(y − x)2 = 0

where the dot indicates differentiation with respect to
the nondimensional time.

The parameters μ,ν, ξ in Eqs. (3a) and (3b), as
well as the linear coupling terms κ01, ξ01 are assumed
to be small. This means that the real system is close
to an ideal uncoupled system simultaneously experi-
encing: (a) a Hopf bifurcation (H ) triggering the x-
oscillator (since its linear damping is vanishing), and
(b) a double-zero bifurcation (DZ) triggering the y-
oscillator (since its linear damping and stiffness are
both vanishing). Definitions in Eq. (2) for the param-
eters μ,ν entail that, when they are negative, the triv-
ial equilibrium is stable, while zero-values denotes in-
cipient bifurcations. For example, when ν < 0, the y-
oscillator has positive linear stiffness (see Eq. (3b));
on the other hand, when ν > 0, the y-oscillator has a
negative stiffness and, consequently, no real frequency.

Analogous considerations can be made for μ. Accord-
ingly, μ,ν, ξ are assumed as bifurcation parameters,
so that the origin of the (μ, ν, ξ)-parameter space is a
DZH codimension-3 bifurcation point. The small elas-
tic and viscous coupling of course slightly modifies the
position of the bifurcation in the parameter space, but
they are considered as fixed, auxiliary parameters.

It is important to observe that the two masses m1

and m2 are considered here to be of the same order
(differently, e.g., from similar systems studied in the
context of nonlinear energy sinks; see [29]); conse-
quently, the mass ratio α is of order 1.

3 Multiple Scale analysis

3.1 Bifurcation equations

Equations (3a) and (3b) are analyzed by the multi-
ple scale method. A dimensionless small parameter
ε is introduced to rescale the equations. The depen-
dent variables (x, y) and the coefficients are ordered
as follows: (x, y) = ε1/2(x̂, ŷ); (μ, ν, ξ, κ01, ξ01) =
ε(μ̂, ν̂, ξ̂ , κ̂01, ξ̂01), so that Eqs. (3) become (omitting
the hats)

ẍ + x + ε
[−μẋ + κ13x

3 + ξ13ẋx2

− κ01(y − x) − κ03(y − x)3

− ξ01(ẏ − ẋ) − ξ03(ẏ − ẋ)(y − x)2
] = 0,

ÿ + ε
[−ξ ẏ − νy + κ23y

3 + ξ23ẏy2

+ ακ01(y − x) + ακ03(y − x)3

+ αξ01(ẏ − ẋ) + αξ03(ẏ − ẋ)(y − x)2
] = 0.

(4)

The bifurcation under analysis is triggered by the
occurrence of a double-zero eigenvalue, associated
with a Jordan block of the (nilpotent) Jacobian matrix.
Such a kind of eigenvalue is said “defective,” since an
incomplete set of (proper) eigenvectors is associated
with it, so that generalized eigenvectors must be eval-
uated to complete the basis. As it has been shown in
literature, by dealing with linear algebraic problems
[30, 31] and nonlinear dynamical systems [18, 32,
33], standard perturbation methods, based on integer
power series expansions of the perturbation parameter,
fail, essentially due to the fact that the proper eigen-
vectors belong to the range of the operator, so that
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resonant terms, which are external to the range, can-
not be removed. Hence, fractional power series expan-
sions must be used, permitting the appearance of gen-
eralized eigenvectors at the intermediate steps; among
them, the eigenvector of highest index has nonzero
projection out of the range of the operator and, there-
fore, it is able to remove the resonant term.

However, the problem here dealt with, possesses
a specific aspect from an algorithmic point of view,
which to the authors’ knowledge, has not been ana-
lyzed yet, namely that a subset of the eigenvalues (the
double zero) is defective, and the remaining subset in
nondefective (the simple ±i eigenvalues). Therefore,
while the first eigenvalues call for a fractional series
expansion, the other two would require integer powers.
Here, we will show that fractional powers also work
but, as expected, trivial information are got at some
perturbation orders, as a consequence of the mixed na-
ture of the critical eigenvalues.

Accordingly, the dependent variables in Eq. (4) are
expanded as

{
x

y

}
=

{
x0

y0

}
+ ε1/2

{
x1

y1

}
+ ε

{
x2

y2

}
+ · · · (5)

and independent time scales t0 := t , t1 := ε1/2t , t2 :=
εt, . . ., are introduced. Therefore, the derivatives with
respect to the time assume the expressions

d

dt
= d0 + ε1/2d1 + εd2 + · · · ,

d2

dt2
= d2

0 + 2ε1/2d0d1 + ε
(
d2

1 + 2d0d2
) + · · · , (6)

di := ∂

∂ti
.

The perturbation equations therefore read:

O
(
ε0):

d2
0x0 + x0 = 0, (7)

d2
0y0 = 0,

O
(
ε1/2):

d2
0x1 + x1 = −2d0d1x0, (8)

d2
0y1 = −2d0d1y0,

O
(
ε1):

d2
0x2 + x2 = F2(x0, y0, x1), (9)

d2
0y2 = G2(x0, y0, y1),

O
(
ε3/2):

d2
0x3 + x3 = F3(x0, y0, x1, y1, x2), (10)

d2
0y3 = G3(x0, y0, x1, y1, y2)

where Fi , Gi , (i = 2,3) are given in Appendix B.
Equations of order O(ε2), although used, are not
shown here for sake of brevity.

The generating equation (7) admits the following
not-diverging solution:

{
x0

y0

}
=

{
A0(t1, . . .) exp(it0) + cc

B0(t1, . . .)

}

(11)

where cc denotes the complex conjugate, A0 is a com-
plex amplitude, and B0 a real amplitude; both un-
known quantities, slowly depending on time.

As usual, the algorithm calls for recursively solv-
ing the perturbation equations and removing resonant
terms in their right-hand members, namely frequency-
1 harmonics in the upper equations, and frequency-0
harmonics in the lower equations. After removing res-
onant terms, the solution to the εk/2-order reads as

{
xk

yk

}
=

{
x∗
k (t0, t1, . . .) + Ak(t1, . . .) exp(it0) + cc

y∗
k (t0, t1, . . .) + Bk(t1, . . .)

}

,

k = 1,2, . . . (12)

where x∗
k (t0, t1, . . .), y

∗
k (t0, t1, . . .) are particular solu-

tions, and Ak(t1, . . .),Bk(t1, . . .) are arbitrary ampli-
tudes appearing in the complementary part of the solu-
tion. These latter quantities are usually omitted in liter-
ature, or merely used for normalization purposes [34],
since they repeat the generating solution, and they can
be reabsorbed in “total amplitudes A and B” at the end
of the procedure [17]. However, as it will be shown
ahead, the standard approach fails in the case under
study, since some inconsistencies appear in the proce-
dure, and reconstitution cannot be performed. To over-
come the drawback, the arbitrary amplitudes Ak , Bk

were systematically introduced at each orders, leading
to correctly reconstituted bifurcation equations. Un-
fortunately, all the intermediate steps required cum-
bersome algebra, suggesting the tentative omission of
part of the amplitudes. It was found that the amplitude
A1, appearing at the ε1/2-order, is the only one which
needs to be introduced, since it leads to results which
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are identical to those of the complete procedure. An
explanation of this circumstance will be given below.

After substitution of Eq. (11) in the perturbation
equation of order ε1/2 (Eqs. (8)), a resonant term (of
frequency 1) appears in the first equation, while no
resonant terms (of frequency 0) appear in the second
equation. The vanishing of the resonant term furnishes

d1A0 = 0. (13)

Since x∗
0 = 0, y∗

0 = 0, and according to the previous
discussion, solution to Eqs. (8) is taken as

{
x1

y1

}
=

{
A1(t1, . . .) exp(it0) + cc

0

}
. (14)

Then removal of resonant terms from Eqs. (9) leads
to

d2A0 + d1A1 = α1A0 + α2A0B
2
0 + α3A

2
0Ā0, (15a)

d2
1B0 = β1B0 + β2B

3
0 + β3A0Ā0B0 (15b)

where the overbar denotes complex conjugate and the
coefficients αi and βi are reported in Appendix B. Go-
ing on to the higher orders and systematically taking

{
xk

yk

}
=

{
x∗
k (t0, t1, . . .) + cc

y∗
k (t0, t1, . . .) + cc

}

, k = 2,3, . . . (16)

with x∗
k , y∗

k here omitted for brevity, the following
solvability condition is found at the ε3/2-order:

d3A0 + d2A1

= α1A1 + α2A1B
2
0 + α3

(
2A0Ā0A1 + A2

0Ā1
)

+ α4A0B0d1B0 + α5d
2
1A1, (17a)

2d1d2B0 = β3(A1Ā0 + A0Ā1)B0

+ (
β4 + β5B

2
0 + β6A0Ā0

)
d1B0 (17b)

and the following one at the ε2-order

d4A0 + d3A1

= α1A2 + α3
(
A2

1Ā0 + 2A0A1Ā1
)

+ α4(A1B0d1B0 + A0B0d2B0)

+ α5
(
d2

2A0 + 2d1d2A1
)

+ α6(d1A1 + d2A0)

+ α7
(
A2

0(d1Ā1 + d2Ā0)

+ A0Ā0(d1A1 + d2A0)
)

+ α8B
2
0 (d1A1 + d2A0) + α9A0

+ α10A0B
2
0 + α11A

2
0Ā0, (18)

d2
2B0 + 2d1d3B0

= β3(A2Ā0B0 + A1Ā1B0 + A0Ā2B0)

+ β4d2B0 + β5B
2
0d2B0

+ β6(A0Ā0d2B0 + A1Ā0d1B0

+ A0Ā1d1B0) + β7
(
A0B0(d1Ā1 + d2Ā0)

+ Ā0B0(d1A1 + d2A0)
) + β8B0 + β9B

3
0

+ β10A0Ā0B0.

The need for introducing the arbitrary amplitude A1

is now discussed. Because of Eq. (13), the right-hand
side of Eq. (15a) contains terms generally depending
on the time-scale t1 (through B0) and terms indepen-
dent of this scale (pure terms in A0). If Eq. (15a) is
differentiated with respect to t1, and use is made of
Eq. (13), it follows:

d2
1A1 = 2α2A0B0d1B0. (19)

If A1 were not introduced (A1 ≡ 0 in Eq. (19)), it
would turn out d1B0 ≡ 0, inconsistently with Eq. (15b)
which states that, in general, d2

1B0 �= 0. Such an in-
consistency, however, does not occur at higher orders
and, therefore, additional arbitrary amplitudes are not
strictly necessary.

The reconstitution procedure must now be applied
to get the Amplitude Modulation Equations (AME).
Accordingly, the total amplitudes A = A0 + ε1/2A1

and B = B0 and their time derivatives are introduced,
written as:

Ȧ = ε(d2A0 + d1A1) + ε3/2(d3A0 + d2A1)

+ ε2(d4A0 + d3A1), (20a)

B̈ = εd2
1B0 + 2ε3/2d1d2B0

+ ε2(d2
2B0 + 2d1d3B0

)
. (20b)

Moreover the inverse rescaling ε(μ, ν, ξ, κ01, ξ01) →
(μ, ν, ξ, κ01, ξ01), ε3/2(A,B) → (A,B) must be used
to come back to the original variables.

It appears from Eqs. (20a) and (20b) that the time-
derivative operator d/dt is of order ε when it acts on
A, while it is of order ε1/2 when it acts on B , as a
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consequence of d1A1 = 0 (Eq. (13)). It entails that B

is more rapidly varying than A. These results will be
used ahead.

As usual in the standard MSM, the right-hand side
of Eqs. (20a) and (20b) must be transformed by prop-
erly making use of the solvability conditions at dif-
ferent orders. The aim is to obtain derivatives of the
amplitudes reconstituted on the true time scale t , con-
sistently with the maximum order retained in the anal-
ysis. Here, however, due to the fact that arbitrary
amplitudes were introduced at each steps, the recon-
stitution procedure is not straightforward and it re-
quires some strategies to be pursued. Indeed, substi-
tution of Eqs. (13), (15a), (15b), (17a), (17b), (18)
in the right-hand side of Eq. (20a) leads the occur-
rence, at different orders, of several terms generally
classifiable in three different categories: (a) terms of
type d2A0 + d1A1, that can be directly tackled by us-
ing the solvability condition (15a); (b) terms of type
d2

1A1, that, as in the standard version of the MSM,
can be tackled by t1-differentiating the solvability con-
dition (15a) (getting to Eq. (19)); (c) terms of type
d2

2A0 + 2d1d2A1, which call for a special treatment
(discussed in Appendix A), as a consequence of the
fact that they involve the addition of second deriva-
tives of amplitudes of different order.

The procedure leads to the following reconstituted
equations in the true (nondimensional) time:

Ȧ = [
γ1 + μγ2 + μ2γ3

]
A + [γ4 + μγ5]A2Ā

+ γ6AḂ2 + γ7ABḂ

+ [γ8 + νγ9 + μγ10]AB2, (21a)

B̈ + (
ξ + η11 + η12AĀ + η13B

2)Ḃ

+ [
ν + η14 + (η15 + μη16)AĀ

]
B

+ η17B
3 = 0 (21b)

where γi = ηi + iζi (i = 1, . . . ,10), ηi ∈ R (i =
11, . . . ,17) are reported in Appendix B. It is worth
noticing that if the arbitrary amplitude A1 were not
introduced, the term γ7ABḂ in Eq. (21a) would not
have appeared.

The polar form of Eqs. (21a) and (21b), obtained

posing A := 1

2
aeiϑ (and referred as polar amplitude

modulation equations), is:

ȧ = (
η1 + μη2 + μ2η3

)
a + 1

4
(η4 + μη5)a

3

+ η6aB2 + η7aBḂ

+ (η8 + νη9 + μη10)aḂ2, (22a)

B̈ +
(

ξ + η11 + η12

4
a2 + η13B

2
)

Ḃ

+
[
ν + η14 + 1

4
(η15 + μη16)a

2
]
B

+ η17B
3 = 0, (22b)

aϑ̇ = (
ζ1 + μζ2 + μ2ζ3

)
a + 1

4
(ζ4 + μζ5)a

3

+ ζ6aB2 + ζ7aBḂ

+ (ζ8 + νζ9 + μζ10)aḂ2. (22c)

Equations (22a), (22b) and (22c) are the normal form
of the bifurcation equations for the DZH bifurcation;
they are believed to be new.

In Eqs. (22a), (22b) and (22c) the variable ϑ is
a slave of a,B; therefore, Eq. (22c) can be solved,
in principle, once a,B have been obtained from
Eqs. (22a) and (22b).

3.2 Fixed points analysis

The fixed points of Eqs. (22a), (22b) and (22c) are
obtained by letting a = ae = const, B = Be = const.
Since ξ appears only as a coefficient of Ḃ , it means
that the fixed points are independent of ξ , which is in-
volved only in the stability analysis.

The trivial solution ae = Be = 0, indicated as 0,
exists for any values of the parameters. Two different
monomodal solutions are also found: the first one, in-
dicated as I, is:

ae = 2

√
2μ

3μ(κ03 + κ13) + 2(ξ03 + ξ13)
,

Be = 0.

(23)

In terms of the original variables, it describes a peri-
odic motion in x(t), while y(t) is of higher order. The
second one, indicated as II, is:

ae = 0,

Be =
√

ν

ακ03 + κ23

(24)

which describes a static deflection (buckling) in the
y-coordinate, while x is of higher order. A bimodal
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solution is also found, indicated as III, of kind

ae = a(μ, ν),

Be = B(μ,ν)
(25)

representing periodic oscillations of the variable x(t),
when y(t) is statically deflected. The full analytical
expression of the solution III is not reported since it is
very cumbersome. The stability of all the solutions is
ruled by the real part of the eigenvalues of the Jacobian
matrix of Eqs. (22a) and (22b).

In addition to equilibria and periodic motions,
quasi-periodic motions (QP) do exist, in which A(t +
T ) = A(t),B(t + T ) = B(t) are periodic of period T ;
this entailing that x(t) is biperiodic of periods 2π and
T , while y(t) is periodic of period T . Such solutions
have been numerically found by direct integrations of
Eqs. (22a), (22b) and (22c) and a continuation method
[35].

4 Transition from DZH- to ZH-bifurcation

An exhaustive analysis of the bifurcation equations
in the three-dimensional parameter space is a diffi-
cult task, which is left for future investigations. Here,
a simpler analysis is carried out, aimed to highlight
the mechanism of transition from codimension-3 to
codimension-2 bifurcations (Fig. 2). To this end, a pla-
nar analysis is performed, in which one of the three pa-
rameters is kept constant, and the analysis is repeated
for increasing (in modulus) values of the parameter,
from small to O(1) values (although this entails an or-
dering violation in the bifurcation equations). As an
expected result, the bifurcation equations should de-
scribe the lowering of the codimension of the bifurca-
tion.

For example, if planes ξ = const < 0 are consid-
ered, with |ξ | = O(1), the typical scenario of the
ZH-bifurcation occurs (Fig. 2). Indeed, on this plane,
one of the four critical eigenvalues involved in DZH-
bifurcation is far enough from the imaginary axis, so
that it passively contributes to the motion on the center
manifold. Similarly, planes μ = const < 0, |μ| = O(1)

and ν = const < 0, |ν| = O(1) represent the scenarios
of DZ- and DH -bifurcations, respectively. Here, at-
tention is limited to the transition from DZH- to ZH-
bifurcations.

The bifurcation equations (21a) and (21b) are con-
sidered again, and the order of magnitude of all their

Fig. 2 Scheme of transitions

terms is evaluated. Since the bifurcation parameters
are all O(ε), the amplitudes A and B are O(ε1/2)

and their time derivatives (as previously observed) are
(d/dt)A = O(ε × ε1/2), (d/dt)B = O(ε1/2 × ε1/2);
Eqs. (21a) and (21b) have the following structure:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ȧ︸︷︷︸
ε3/2

= L1(μA,A2Ā,AB2
︸ ︷︷ ︸

ε3/2

;ABḂ︸ ︷︷ ︸
ε2

;AḂ2
︸︷︷︸
ε5/2

),

B̈︸︷︷︸
ε3/2

= L2(νB,B3,AĀB︸ ︷︷ ︸
ε3/2

; ξḂ︸︷︷︸
ε2

;B2Ḃ,AĀḂ︸ ︷︷ ︸
ε5/2

)
(26)

where L are linear operators, and the order of magni-
tude of all the terms is reported below them.

When ξ → O(1), the bifurcation turns out to be
non-defective, and fractional time scales are not in-
volved. Therefore, it is still (d/dt)A = O(ε × ε1/2),
but (d/dt)B = O(ε × ε1/2), entailing that B̈ switches
to a higher order. This means that as |ξ | is increased,
the dynamics of the variable B becomes slower. Con-
sequently, at the leading order, Eqs. (21a) and (21b)
tend to:
⎧
⎪⎨

⎪⎩

Ȧ = μ

2
A + κ1A

2Ā + κ2AB2,

Ḃ = −ν

ξ
B − κ3

ξ
AĀB + κ4

ξ
B3

(27)

which are, indeed, the equations governing ZH-
bifurcation [2]. It is worth noticing that, since A ∈ C

and B ∈ R, Eqs. (26) are a four-dimensional dynam-
ical system, while Eqs. (27) are a three-dimensional
system. This occurrence is consistent with the fact that
one of the four central eigenvalues becomes stable in
the limit process. Moreover, since the phase of A is
a slave variable for both Eqs. (26) and Eqs. (27), the
essential dynamics are captured by a system whose
dimension, 3 or 2, equates the codimension of the bi-
furcation.
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As a conclusion of the limit analysis, the bifurca-
tion equations (21a) and (21b) for DZH correctly tend
to that for ZH; therefore, they can be used for small
to large values (in modulus) of the damping parame-
ter ξ . In contrast, of course, Eqs. (27) do not tend to
Eqs. (26), when ξ → 0.

5 Numerical results

The following numerical values are used for the aux-
iliary parameters: α = 2.2, κ01 = 0, ξ01 = 0, κ03 =
1.8, ξ03 = −1.0, κ13 = 10.0, ξ13 = 8.0, κ23 = −1.0,
ξ23 = 1.0. Since both κ01 and ξ01 are assumed as
zero in the numerical evaluations, no actual shift of
the DZH bifurcation point occurs from the origin of
the (μ,ν, ξ )-space. The transition phenomenon is de-
scribed in the next Figs. 3, 4, 9, where the bifurcation
loci of the nontrivial solutions of Eqs. (22a), (22b) and
(22c) are shown in the (μ, ν)-plane. Different values
of ξ are considered, starting from values close to the
DZH-bifurcation (small |ξ |) and then moving away
toward a ZH-bifurcation (large |ξ |). Bifurcation dia-
grams showing the amplitudes a and B vs. the bifurca-
tion parameter μ are also plotted; they can be viewed
as planar sections of three-dimensional bifurcation di-
agrams in the (μ, ν, a)- and (μ, ν,B)-spaces.

A small value of damping ξ = −0.05 is consid-
ered first (Fig. 3). In Fig. 3a the shadow indicates the
stable region of the trivial solution 0 (both μ and ν

negative); the blue line indicates the loci of bifurca-
tion where a supercritical branch I emanates from (see
Fig. 3b and 3c); the green line indicates the loci of
bifurcation where a supercritical branch II emanates
from (see Fig. 3c); the red lines are the boundaries of
the region where the solution III exists (see Fig. 3b
and 3c). Moreover, lines related to successive bifurca-
tions (i.e., not from the trivial solution), causing stable
(black, QP1) and unstable (magenta, QP2 and QP3)
quasiperiodic oscillations, are reported.

Figures 3b and 3c show the amplitudes a,B vs. μ

when ξ = −0.05, ν = 0.1. It appears that the purely
buckled solution in y (solution II, green) exists for
negative μ, when x is of higher order (a = 0,B �=
0). Increasing the values of μ, a periodic motion
in x arises when the system is buckled in the y-
coordinate (solution III, red). This motion becomes
unstable and a quasiperiodic one starts (QP1, black),
where both a and B are periodic. Further increasing μ,

Fig. 3 Bifurcation diagrams when ξ = −0.05; (a) bifurcation
loci on the (μ, ν)-plane; (b, c): amplitudes a and B vs. μ when
ξ = −0.05 and ν = 0.1. Continuous line: stable; dashed line:
unstable; boxes: direct integrations

the quasiperiodic motion QP1 dies, and after a while,
a periodic motion in x becomes stable when y is of
higher order (solution I, blue). An unstable quasiperi-
odic motion (QP3, magenta) coexists with the other
solutions in the interval μ ∈ [−0.075,0.1]. Superim-
posed with the results from the MSM, results from nu-
merical integrations are also shown in Figs. 3b and 3c
(colored boxes, just for stable branches) in good agree-
ment.
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Fig. 4 Bifurcation diagrams when ξ = −0.1; (a) bifurcation
loci on the (μ, ν)-plane; (b, c): amplitudes a and B vs. μ when
ξ = −0.1 and ν = 0.2. Continuous line: stable; dashed line: un-
stable; boxes: direct integrations

A larger damping, ξ = −0.1, is considered now,
and relevant results displayed in Fig. 4. When the
boundaries in Fig. 4a are compared with those in
Fig. 3a, it results that the limits of existence of the so-
lutions I, II, and III are unchanged, while the quasi-
periodic solutions QP1 and QP2 are triggered for
higher values of ν, and QP3 disappears. The plots of
a and B vs. μ when ν = 0.2 and ξ = −0.1 are shown
in Fig. 4b and 4c. It appears that the quasi-periodic
solution QP1 significantly interacts with the periodic
and equilibrium solutions only at ν = 0.2. A periodic
orbit in the phase space (a,B, Ḃ), corresponding to

Fig. 5 Periodic orbit in (a,B, Ḃ) corresponding to the
quasi-periodic motion QP1 in (x, y), when ξ = −0.1, μ = 0.05,
ν = 0.2

the quasi-periodic motion (in x, y) QP1, is shown in
Fig. 5.

Time-series of a,B and the relevant reconstituted
time evolutions of x, y are shown in Figs. 6 and 7, re-
spectively, for μ = 0.04, ν = 0.2, ξ = −0.1, where a
solution of QP1 kind is picked up. The latter plots are
in good agreement with the corresponding time-series
of x, y, as obtained from numerical integrations of the
starting Eqs. (3), shown in Fig. 8.

The previous results show that the larger is |ξ |,
the weaker is the interaction among periodic and
quasiperiodic solutions. Indeed, when |ξ | increases,
the region of existence of QP1 moves to larger val-
ues of ν. When the system is far enough from the
DZH-bifurcation, e.g., when ξ = −0.8 (Fig. 9), the
quasiperiodic solutions are far from the origin of the
(μ, ν)-plane (Fig. 9a), this entailing the almost total
lack of interaction of quasiperiodic motions with pe-
riodic motions or equilibria. Consistently, bifurcation
diagrams in Figs. 9b and 9c, relevant to ν = 0.1 and
ξ = −0.8, include just equilibria (II) and periodic so-
lutions (I, III).

It is worth noticing that when the transition has
been exhausted, Eqs. (27) provide results qualitatively
consistent with those furnished by Eqs. (21a) and
(21b). A comparison between boundaries obtained by
Eqs. (27) (continuous lines) and Eqs. (21a) and (21b)
(dashed lines) can be detected in Fig. 9a.

6 Concluding remarks

In this paper, the bifurcation equations for a two
degrees-of-freedom mechanical system, exhibiting
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Fig. 6 Time evolution of a and B , corresponding to the
quasiperiodic motion QP1 in (x, y), when ξ = −0.1, μ = 0.04,
ν = 0.2

double-zero/Hopf bifurcation (DZH), have been ob-
tained by an enhanced version of the Multiple Scale
Method (MSM). The equations are believed to be new
in literature.

The implemented perturbation algorithm exhibits
remarkable differences with respect to standard appli-
cations of the MSM, namely:

1. Fractional power expansions, both for the state
variables and time scales, are adopted, due to the
presence of a not-semisimple double zero eigen-
value (nil-potent Jordan block), although the purely
imaginary eigenvalues are nondefective.

2. Arbitrary amplitudes appearing in the complemen-
tary part of the solution of the perturbation equa-
tions (and usually neglected in standard applica-
tions, or used for mere normalization purposes),
cannot all be omitted here, since this would lead to
inconsistent results, and loss of some terms in the
bifurcation equations. Among all the amplitudes, it
has been checked that just one (namely A1) is es-
sential; it describes a smaller but faster correction
of the oscillation triggered by the Hopf bifurcation.

3. The reconstitution procedure, aimed to bring back
the solvability conditions in a unique set of differ-

Fig. 7 Time evolution of x and y, reconstituted from MSM,
describing the quasiperiodic motion QP1, when ξ = −0.1,
μ = 0.04, ν = 0.2

ential equations in the true time t , is not straightfor-
ward, as in standard cases. It could require the use
of the Schwarz conditions, or, alternatively, ad hoc
combinations of the solvability conditions, in order
to achieve the goal.

4. A system of a first-order complex equation (as in
the Hopf bifurcation) and a second-order real equa-
tion (as in the double-zero bifurcation), is found,
however, coupled by mixed terms. As a result, a 4-
dimensional dynamical system, governing the slow
flow on the center manifold, is obtained. Finally, it
is reduced to a 3-dimensional system (ϑ is a slave
variable), coherently with the codimension of the
problem.

Attentions has been focused on the transition be-
tween the codimension-3 DZH-bifurcation and the
codimension-2 Zero/Hopf (ZH) bifurcation, when a
bifurcation parameter (namely the damping of the sub-
system undergoing the double zero eigenvalue), is in-
creased in modulus. It has been shown that, in this
limit process, the dynamics of the real amplitude be-
come slower, thus justifying the lowering of the or-
der of the differential equations, which tend to the 3-
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Fig. 8 Time evolution of x and y, obtained by numerical in-
tegrations of Eqs. (3a) and (3b), when ξ = −0.1, μ = 0.04,
ν = 0.2

dimensional equations governing the ZH-bifurcation.
Therefore, the DZH-bifurcation equations are able to
describe the transient regime. In contrast, bifurcation
equations for ZH lose validity when damping becomes
vanishingly small, since this appears as a small di-
visor in the equations. Numerical results highlighted
the role of quasi-periodic solutions: they strongly af-
fect the dynamics close to the codimension-3 bifurca-
tion, but move away when the system approaches the
codimension-2 bifurcation, thus explaining the transi-
tion mechanism.

Appendix A: Reconstitution procedure

The solvability conditions Eqs. (13), (15a), (15b),
(17a), (17b), (18) must be substituted in Eq. (20a),
(20b) to get the reconstituted equations (21a) and
(21b). During the reconstitution procedure, the key-
term α5(d

2
2A0 + 2d1d2A1), occurring in the equa-

tion related to the amplitude A, has to be written
as α5(d1(d2A1) + d2(d1A1 + d2A0)), requiring t1-
differentiation of Eq. (17a) and t2-differentiation of

Fig. 9 Bifurcation diagrams when ξ = −0.8; (a) bifurcation
loci on the (μ, ν)-plane, obtained by Eq. (27) (continuous lines)
or Eqs. (21a) and (21b) (dashed lines); (b, c): amplitudes a and
B vs. μ when ξ = −0.8 and ν = 0.1 (continuous line: stable;
dashed line: unstable; boxes: direct integrations)

Eq. (15a). As a consequence, second and third deriva-
tives of the amplitudes occur, which can be easily
evaluated by differentiating Eq. (15a). In this case, no
problems in the reconstitution procedure would occur.

If, in contrast, other procedures were followed
(e.g., d2

2A0 evaluated by t2-differentiation of Eq. (15a)
and 2d1d2A1 by t1-differentiation of Eq. (17a) or by
t2-differentiation of Eq. (15a)), some inconsistency
would appear that could be overcome only by using
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the Schwarz condition

d1(d2A1) = d2(d1A1). (28)

An alternative way to handle the reconstitution pro-
cedure is to separately zeroing terms depending on t1
and terms not depending on it, thus causing a split-
ting of the solvability conditions. In particular, from
Eq. (15a) it follows:

d2A0 = α1A0 + α3A
2
0Ā0, (29a)

d1A1 = α2A0B
2
0 (29b)

and from Eq. (17a)

d3A0 = 0, (30a)

d2A1 = α1A1 + α2A1B
2
0 + α3

(
2A0Ā0A1 + A2

0Ā1
)

+ α4A0B0d1B0 + α5d
2
1A1. (30b)

Now, in the key-term α5(d
2
2A0 + 2d1d2A1), d2

2A0

can be evaluated by differentiation of Eq. (29a) and
the remaining 2d1d2A1 either by t2-differentiation of
(29b) or by t1-differentiation of (30b). Of course,
the two choices would entail inconsistencies in the
reconstitution, if the Schwarz condition d1(d2A1) =
d2(d1A1) were not explicitly enforced. Again, the lat-
ter solves the problem.

Appendix B: Coefficients of the equations

The coefficients of Eq. (9) are

F2(x0, y0, x1)

= −2d0d1x1 − 2d0d2x0 − d2
1x0 + μd0x0

+ ξ01(d0y0 − d0x0) + κ01(y0 − x0)

+ ξ03(d0y0 − d0x0)(y0 − x0)
2

+ κ03(y0 − x0)
3 − ξ13d0x0x

2
0

− κ13x
3
0 , (31)

G2(x0, y0, y1)

= −2d0d1y1 − 2d0d2y0 − d2
1y0 + ξd0y0

+ νy0 − αξ01(d0y0 − d0x0)

− ακ01(y0 − x0) − ακ03(y0 − x0)
3

− αξ03(d0y0 − d0x0)(y0 − x0)
2

− ξ23d0y0y
2
0 − κ23y

3
0 .

The coefficients of Eq. (10) are

F3(x0, y0, x1, y1, x2)

= −2d0d1x2 − 2d0d2x1 − 2d1d2x0

− 2d0d3x0 − d2
1x1 + μ(d0x1 + d1x0)

+ κ01(y1 − x1) − 3κ13x1x
2
0

+ ξ01(d1y0 − d1x0 + d0y1 − d0x1)

+ ξ03(d1y0 − d1x0 + d0y1 − d0x1)(y0 − x0)
2

+ 2ξ03(d0y0 − d0x0)(y0 − x0)(y1 − x1)

+ 3κ03(y1 − x1)(y0 − x0)
2

− ξ13(d0x1 + d1x0)x
2
0 − 2ξ13d0x0x1x0,

G3(x0, y0, x1, y1, y2) (32)

= −2d0d1y2 − 2d0d2y1 − 2d1d2y0

− 2d0d3y0 − d2
1y1 + ξ(d0y1 + d1y0)

+ νy1 − ακ01(y1 − x1) − 3κ23y1y
2
0

− αξ01(d1y0 − d1x0 + d0y1 − d0x1)

− αξ03(d1y0 − d1x0 + d0y1 − d0x1)(y0 − x0)
2

− 2αξ03(d0y0 − d0x0)(y0 − x0)(y1 − x1)

− 3ακ03(y1 − x1)(y0 − x0)
2

− ξ23(d0y1 + d1y0)y
2
0 − 2ξ23d0y0y1y0.

The coefficients of Eqs. (15a), (15b), (17a), (17b)
and (18) are

α1 = (μ + iκ01 − ξ01)
1

2
,

α2 = (3iκ03 − ξ03)
1

2
,

α3 = (3iκ03 + 3iκ13 − ξ03 − ξ13)
1

2
,

α4 = iξ03,

α5 = i

2
,

α6 = (ξ01 − μ)
i

2
,

α7 = (ξ03 + ξ13)
i

2
,

α8 = iξ03

2
,
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α9 = −ακ01ξ01 + α
(
κ2

01 − ξ2
01

) i

2
,

α10 = (1 − α)(κ01ξ03 − 3iκ01κ03) − 3ακ03ξ01

− iαξ01ξ03,

α11 = −3ακ03ξ01 − 2ακ01ξ03 (33)

+ i(6ακ01κ03 − αξ01ξ03),

β1 = ν − ακ01,

β2 = −(ακ03 + κ23),

β3 = −6ακ03,

β4 = ξ − αξ01,

β5 = −(αξ03 + ξ23),

β6 = −2αξ03,

β7 = −2αξ03,

β8 = ακ2
01,

β9 = 4ακ01κ03,

β10 = 12ακ01κ03(1 − α)

and the coefficients of Eqs. (21a), (21b) and (22a),
(22b) are

η1 = −ξ01

2
− ακ01ξ01,

η2 = 1

2
,

η3 = 0,

η4 = 1

4
(3κ03 + κ01)ξ03 − 3ακ03ξ01 − ξ03

2

+ 3κ13ξ01

4
− 2ακ01ξ03,

η5 = −3

4
(κ03 + κ13),

η6 = −ξ03

4
,

η7 = −3κ03

2
,

η8 = −ξ03

2
− 3ακ03ξ01 +

(
1 − 7

8
α

)
κ01ξ03,

η9 = −ξ03

8
, (34)

η10 = 0,

η11 = −αξ01,

η12 = −2αξ03,

η13 = −(αξ03 + ξ23),

η14 = −ακ01(1 − κ01),

η15 = −6ακ03 + 12ακ01κ03(1 − α) + 2αξ01ξ03,

η16 = −2αξ03,

η17 = −ακ03 − κ23 + 4ακ01κ03

and

ζ1 = 1

2

[
κ01 + α

(
κ2

01 − ξ2
01

) − 1

2

(
κ2

01 + ξ2
01

)]
,

ζ2 = ξ01

4
,

ζ3 = −1

8
,

ζ4 = 3

2
(κ03 + κ13) + κ01κ03

(
6α − 3

4

)
− 3

4
κ01κ13

− ξ01

4
(ξ03 + ξ13) − αξ01ξ03,

ζ5 = 1

4
(ξ03 + ξ13), (35)

ζ6 = −3

4
κ03,

ζ7 = ξ03

2
,

ζ8 = 3

2
κ03 + κ01κ03

(
27

8
α − 15

4

)
−

(
α + 1

4

)
ξ01ξ03,

ζ9 = −3

8
κ03,

ζ10 = ξ03

4
.
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