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A paradigmatic system to study the transition from zero/Hopf to double-zero/Hopf bifurcation

ter manifold theory, the former one occurs on a threedimensional variety of the state-space, while the latter one occurs on a four-dimensional variety. It is conjectured that a transition should exist between the two regimes, when the damping coefficient is quasistatically varied, which is worth studying here. In general, the study of abrupt or smooth transition phenomena in dynamics is a very challenging issue (see [START_REF] Peterka | Bifurcations and transition phenomena in an impact oscillator[END_REF][START_REF] Wieczorek | Bifurcation transitions in an optically injected diode laser: theory and experiment[END_REF][START_REF] Kuehn | A mathematical framework for critical transitions: Bifurcations, fast-slow systems and stochastic dynamics[END_REF]). Often, a suitable way to study transitions is starting from the most complex system, then descending to the easier one by smooth modification of a significant parameter. This is the strategy adopted herein.

As it has been widely discussed in previous works, the multiple scale method (MSM) [START_REF] Nayfeh | Nonlinear Oscillations[END_REF][START_REF] Luongo | Multiple-timescale analysis for bifurcation from a multiple-zero eigenvalue[END_REF][START_REF] Luongo | Multiple scale bifurcation analysis for finite-dimensional autonomous systems[END_REF] appears to be one of the most efficient tool to tackle bifurcation problems. As a matter of fact, it reduces the system to its essential dimension, as the center manifold method does, by accounting both for active and passive variables, and simultaneously it selects the essentially nonlinear terms, as the normal form theory does. In addition, the MSM furnishes amplitudeequations for the slow-flow, in which the fast dynamics have been filtered. In spite of this, neither the MSM nor other perturbation methods seem to be available to tackle a "difficult" bifurcation, in which a defective (not semisimple) double-zero eigenvalue interacts with a non-defective pair of Hopf eigenvalues. Hence, a specific algorithm must be tailored on the problem.

Here, a nonstandard version of the multiple scales method is implemented to get the bifurcation equations for a system experiencing double-zero/Hopf bifurcation. This technique has been already used in [START_REF] Arkhipova | Vibrational stabilization of the upright statically unstable position of a double pendulum[END_REF], where a nonautonomous system has been considered, in a specific resonance condition and under ad hoc assumptions. Herein, however, the method is proposed for an autonomous system, in a systematic version, in principle able to be carried out at any perturbation order.

The algorithm is illustrated referring to a 2 d.o.f. "paradigmatic system", which is representative of a large class of mechanical systems, exhibiting such a kind of bifurcation. It consists of two oscillators, weakly coupled by nonlinear viscous-elastic devices. One of them undergoes Hopf bifurcation caused, for example, by aerodynamic forces vanishing its structural damping; the other one suffers a double-zero bifurcation due, for example, to a gravitational load which zeroes its linear stiffness, and to an evanescently small structural damping.

Attention is focused on the transition from the codimension-3 DZH-bifurcation to codimension-2 ZH-bifurcation, allowing the damping to become large in modulus. Actually, this is only one of the possible transitions from a DZH-bifurcation, leaving to future works the analysis of other paths as well as the complete unfolding of the neighborhood of the bifurcation point. Preliminary results have been presented in [START_REF] Luongo | The multiple scales method for the analysis of a double-zero/single-Hopf bifurcation[END_REF]. The paper is organized as follows. In Sect. 2, a twod.o.f. mechanical model is considered, in Sect. 3, the MSM is implemented, in Sect. 4, the transition from DZH-to ZH-bifurcations is qualitatively described, in Sect. 5 numerical results are shown, and in Sect. 6 some conclusions are drawn.

The model

A paradigmatic autonomous system is considered (see Fig. 1), made of two oscillators of mass m 1 and m 2 , respectively, linked each other and to the ground by cubic elastic springs and Van Der Pol dampers. It represents a class of coupled Duffing-Van Der Pol oscillators (see [START_REF] Rand | Bifurcation of periodic motions in two weakly coupled Van der Pol oscillators[END_REF][START_REF] Storti | Dynamics of two strongly coupled Van der Pol oscillators[END_REF][START_REF] Chakraborty | The transition from phase locking to drift in a system of two weakly coupled Van der Pol oscillators[END_REF][START_REF] Rajasekar | Resonance behaviour and jump phenomenon in a two coupled Duffing-Van der Pol oscillators[END_REF][START_REF] Bi | Dynamical analysis of two coupled parametrically excited Van der Pol oscillators[END_REF][START_REF] Kuznetsov | Properties of synchronization in the systems of non-identical coupled Van der Pol and Van der Pol-Duffing oscillators. Broadband synchronization[END_REF][START_REF] Kuznetsov | Coupled Van der Pol-Duffing oscillators: phase dynamics and structure of synchronization tongues[END_REF]). The linear coefficients of the springs and of the dashpots are denoted by k i1 and c i1 , respectively, and their cubic coefficients by k i3 and c i3 (i = 0, 1, 2). Displacements of the masses from their rest positions are denoted by x(t) and y(t), respectively, t being the time.

Physical systems falling in this class are structures under wind flow, causing Hopf bifurcation, and dead loads, causing elastic buckling. Accordingly, the coefficients of the linear terms, c 11 (accounting for structural and aerodynamic damping) and k 21 (accounting for elastic and geometric stiffness) are allowed to vanish and to become negative, when the relevant destabilizing effects prevail on the stabilizing ones. Similarly, the damping coefficient c 21 is assumed to be positive, ranging from small to very small values, in order to span the transition region.

The natural frequencies of the oscillators, when damping and coupling are removed, are ω 1 = Fig. 1 Scheme of the two oscillators √ k 11 /m 1 and ω 2 = √ k 21 /m 2 , respectively. Nondimensional quantities are introduced:

t * = ω 1 t, x * = x , y * = y , (1) 
where is a characteristic length, and

μ = - c 11 m 1 ω 2 ẍ -μ ẋ + x + κ 13 x 3 + ξ 13 ẋx 2 -κ 01 (y -x) -κ 03 (y -x) 3 -ξ 01 ( ẏ -ẋ) (3a) 
ξ 03 ( ẏ -ẋ)(yx) 2 = 0, ÿξ ẏνy + κ 23 y 3 + ξ 23 ẏy 2 + ακ 01 (yx)

+ ακ 03 (yx) 3 + αξ 01 ( ẏ -ẋ) (3b)

+ αξ 03 ( ẏ -ẋ)(y -x) 2 = 0
where the dot indicates differentiation with respect to the nondimensional time.

The parameters μ, ν, ξ in Eqs. (3a) and (3b), as well as the linear coupling terms κ 01 , ξ 01 are assumed to be small. This means that the real system is close to an ideal uncoupled system simultaneously experiencing: (a) a Hopf bifurcation (H ) triggering the xoscillator (since its linear damping is vanishing), and (b) a double-zero bifurcation (DZ) triggering the yoscillator (since its linear damping and stiffness are both vanishing). Definitions in Eq. ( 2) for the parameters μ, ν entail that, when they are negative, the trivial equilibrium is stable, while zero-values denotes incipient bifurcations. For example, when ν < 0, the yoscillator has positive linear stiffness (see Eq. (3b)); on the other hand, when ν > 0, the y-oscillator has a negative stiffness and, consequently, no real frequency.

Analogous considerations can be made for μ. Accordingly, μ, ν, ξ are assumed as bifurcation parameters, so that the origin of the (μ, ν, ξ)-parameter space is a DZH codimension-3 bifurcation point. The small elastic and viscous coupling of course slightly modifies the position of the bifurcation in the parameter space, but they are considered as fixed, auxiliary parameters.

It is important to observe that the two masses m 1 and m 2 are considered here to be of the same order (differently, e.g., from similar systems studied in the context of nonlinear energy sinks; see [START_REF] Vakakis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF]); consequently, the mass ratio α is of order 1.

Multiple Scale analysis

Bifurcation equations

Equations (3a) and (3b) are analyzed by the multiple scale method. A dimensionless small parameter ε is introduced to rescale the equations. The dependent variables (x, y) and the coefficients are ordered as follows: (x, y) = ε 1/2 ( x, ŷ); (μ, ν, ξ, κ 01 , ξ 01 ) = ε( μ, ν, ξ, κ01 , ξ01 ), so that Eqs. (3) become (omitting the hats)

ẍ + x + ε -μ ẋ + κ 13 x 3 + ξ 13 ẋx 2 -κ 01 (y -x) -κ 03 (y -x) 3 -ξ 01 ( ẏ -ẋ) -ξ 03 ( ẏ -ẋ)(y -x) 2 = 0, ÿ + ε -ξ ẏ -νy + κ 23 y 3 + ξ 23 ẏy 2 + ακ 01 (y -x) + ακ 03 (y -x) 3 + αξ 01 ( ẏ -ẋ) + αξ 03 ( ẏ -ẋ)(y -x) 2 = 0. (4)
The bifurcation under analysis is triggered by the occurrence of a double-zero eigenvalue, associated with a Jordan block of the (nilpotent) Jacobian matrix. Such a kind of eigenvalue is said "defective," since an incomplete set of (proper) eigenvectors is associated with it, so that generalized eigenvectors must be evaluated to complete the basis. As it has been shown in literature, by dealing with linear algebraic problems [START_REF] Seyranian | Multiparameter Stability Theory with Mechanical Applications[END_REF][START_REF] Luongo | Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues[END_REF] and nonlinear dynamical systems [START_REF] Luongo | Multiple-timescale analysis for bifurcation from a multiple-zero eigenvalue[END_REF][START_REF] Luongo | Divergence, Hopf and doublezero bifurcations of a nonlinear planar beam[END_REF][START_REF] Luongo | Multiscale analysis of defective multiple-Hopf bifurcations[END_REF], standard perturbation methods, based on integer power series expansions of the perturbation parameter, fail, essentially due to the fact that the proper eigenvectors belong to the range of the operator, so that resonant terms, which are external to the range, cannot be removed. Hence, fractional power series expansions must be used, permitting the appearance of generalized eigenvectors at the intermediate steps; among them, the eigenvector of highest index has nonzero projection out of the range of the operator and, therefore, it is able to remove the resonant term.

However, the problem here dealt with, possesses a specific aspect from an algorithmic point of view, which to the authors' knowledge, has not been analyzed yet, namely that a subset of the eigenvalues (the double zero) is defective, and the remaining subset in nondefective (the simple ±i eigenvalues). Therefore, while the first eigenvalues call for a fractional series expansion, the other two would require integer powers.

Here, we will show that fractional powers also work but, as expected, trivial information are got at some perturbation orders, as a consequence of the mixed nature of the critical eigenvalues.

Accordingly, the dependent variables in Eq. ( 4) are expanded as

x y = x 0 y 0 + ε 1/2 x 1 y 1 + ε x 2 y 2 + • • • (5) 
and independent time scales t 0 := t, t 1 := ε 1/2 t, t 2 := εt, . . ., are introduced. Therefore, the derivatives with respect to the time assume the expressions

d dt = d 0 + ε 1/2 d 1 + εd 2 + • • • , d 2 dt 2 = d 2 0 + 2ε 1/2 d 0 d 1 + ε d 2 1 + 2d 0 d 2 + • • • , ( 6 
)
d i := ∂ ∂t i .
The perturbation equations therefore read:

O ε 0 :

d 2 0 x 0 + x 0 = 0, ( 7 
)
d 2 0 y 0 = 0, O ε 1/2 : d 2 0 x 1 + x 1 = -2d 0 d 1 x 0 , ( 8 
)
d 2 0 y 1 = -2d 0 d 1 y 0 , O ε 1 :
d 2 0 x 2 + x 2 = F 2 (x 0 , y 0 , x 1 ), ( 9 
)
d 2 0 y 2 = G 2 (x 0 , y 0 , y 1 ), O ε 3/2 : d 2 0 x 3 + x 3 = F 3 (x 0 , y 0 , x 1 , y 1 , x 2 ), ( 10 
)
d 2 0 y 3 = G 3 (x 0 , y 0 , x 1 , y 1 , y 2 )
where F i , G i , (i = 2, 3) are given in Appendix B. Equations of order O(ε 2 ), although used, are not shown here for sake of brevity.

The generating equation ( 7) admits the following not-diverging solution:

x 0 y 0 = A 0 (t 1 , . . .) exp(it 0 ) + cc B 0 (t 1 , . . .) ( 11 
)
where cc denotes the complex conjugate, A 0 is a complex amplitude, and B 0 a real amplitude; both unknown quantities, slowly depending on time.

As usual, the algorithm calls for recursively solving the perturbation equations and removing resonant terms in their right-hand members, namely frequency-1 harmonics in the upper equations, and frequency-0 harmonics in the lower equations. After removing resonant terms, the solution to the ε k/2 -order reads as

x k y k = x * k (t 0 , t 1 , . . .) + A k (t 1 , . . .) exp(it 0 ) + cc y * k (t 0 , t 1 , . . .) + B k (t 1 , . . .) , k = 1, 2, . . . ( 12 
)
where x * k (t 0 , t 1 , . . .), y * k (t 0 , t 1 , . . .) are particular solutions, and A k (t 1 , . . .), B k (t 1 , . . .) are arbitrary amplitudes appearing in the complementary part of the solution. These latter quantities are usually omitted in literature, or merely used for normalization purposes [START_REF] Dankowicz | On various representations of higher order approximations of the free oscillatory response of nonlinear dynamical systems[END_REF], since they repeat the generating solution, and they can be reabsorbed in "total amplitudes A and B" at the end of the procedure [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. However, as it will be shown ahead, the standard approach fails in the case under study, since some inconsistencies appear in the procedure, and reconstitution cannot be performed. To overcome the drawback, the arbitrary amplitudes A k , B k were systematically introduced at each orders, leading to correctly reconstituted bifurcation equations. Unfortunately, all the intermediate steps required cumbersome algebra, suggesting the tentative omission of part of the amplitudes. It was found that the amplitude A 1 , appearing at the ε 1/2 -order, is the only one which needs to be introduced, since it leads to results which are identical to those of the complete procedure. An explanation of this circumstance will be given below.

After substitution of Eq. ( 11) in the perturbation equation of order ε 1/2 (Eqs. ( 8)), a resonant term (of frequency 1) appears in the first equation, while no resonant terms (of frequency 0) appear in the second equation. The vanishing of the resonant term furnishes

d 1 A 0 = 0. ( 13 
)
Since x * 0 = 0, y * 0 = 0, and according to the previous discussion, solution to Eqs. ( 8) is taken as

x 1 y 1 = A 1 (t 1 , . . .) exp(it 0 ) + cc 0 . ( 14 
)
Then removal of resonant terms from Eqs. ( 9) leads to

d 2 A 0 + d 1 A 1 = α 1 A 0 + α 2 A 0 B 2 0 + α 3 A 2 0 Ā0 , (15a) d 2 1 B 0 = β 1 B 0 + β 2 B 3 0 + β 3 A 0 Ā0 B 0 (15b)
where the overbar denotes complex conjugate and the coefficients α i and β i are reported in Appendix B. Going on to the higher orders and systematically taking

x k y k = x * k (t 0 , t 1 , . . .) + cc y * k (t 0 , t 1 , . . .) + cc , k = 2, 3, . . . ( 16 
)
with x * k , y * k here omitted for brevity, the following solvability condition is found at the ε 3/2 -order:

d 3 A 0 + d 2 A 1 = α 1 A 1 + α 2 A 1 B 2 0 + α 3 2A 0 Ā0 A 1 + A 2 0 Ā1 + α 4 A 0 B 0 d 1 B 0 + α 5 d 2 1 A 1 , (17a) 2d 1 d 2 B 0 = β 3 (A 1 Ā0 + A 0 Ā1 )B 0 + β 4 + β 5 B 2 0 + β 6 A 0 Ā0 d 1 B 0 (17b)
and the following one at the ε 2 -order

d 4 A 0 + d 3 A 1 = α 1 A 2 + α 3 A 2 1 Ā0 + 2A 0 A 1 Ā1 + α 4 (A 1 B 0 d 1 B 0 + A 0 B 0 d 2 B 0 ) + α 5 d 2 2 A 0 + 2d 1 d 2 A 1 + α 6 (d 1 A 1 + d 2 A 0 ) + α 7 A 2 0 (d 1 Ā1 + d 2 Ā0 ) + A 0 Ā0 (d 1 A 1 + d 2 A 0 ) + α 8 B 2 0 (d 1 A 1 + d 2 A 0 ) + α 9 A 0 + α 10 A 0 B 2 0 + α 11 A 2 0 Ā0 , ( 18 
)
d 2 2 B 0 + 2d 1 d 3 B 0 = β 3 (A 2 Ā0 B 0 + A 1 Ā1 B 0 + A 0 Ā2 B 0 ) + β 4 d 2 B 0 + β 5 B 2 0 d 2 B 0 + β 6 (A 0 Ā0 d 2 B 0 + A 1 Ā0 d 1 B 0 + A 0 Ā1 d 1 B 0 ) + β 7 A 0 B 0 (d 1 Ā1 + d 2 Ā0 ) + Ā0 B 0 (d 1 A 1 + d 2 A 0 ) + β 8 B 0 + β 9 B 3 0 + β 10 A 0 Ā0 B 0 .
The need for introducing the arbitrary amplitude A 1 is now discussed. Because of Eq. ( 13), the right-hand side of Eq. (15a) contains terms generally depending on the time-scale t 1 (through B 0 ) and terms independent of this scale (pure terms in A 0 ). If Eq. ( 15a) is differentiated with respect to t 1 , and use is made of Eq. ( 13), it follows:

d 2 1 A 1 = 2α 2 A 0 B 0 d 1 B 0 . ( 19 
)
If A 1 were not introduced (A 1 ≡ 0 in Eq. ( 19)), it would turn out d 1 B 0 ≡ 0, inconsistently with Eq. (15b) which states that, in general, d 2 1 B 0 = 0. Such an inconsistency, however, does not occur at higher orders and, therefore, additional arbitrary amplitudes are not strictly necessary.

The reconstitution procedure must now be applied to get the Amplitude Modulation Equations (AME). Accordingly, the total amplitudes A = A 0 + ε 1/2 A 1 and B = B 0 and their time derivatives are introduced, written as:

Ȧ = ε(d 2 A 0 + d 1 A 1 ) + ε 3/2 (d 3 A 0 + d 2 A 1 ) + ε 2 (d 4 A 0 + d 3 A 1 ), ( 20a 
) B = εd 2 1 B 0 + 2ε 3/2 d 1 d 2 B 0 + ε 2 d 2 2 B 0 + 2d 1 d 3 B 0 . ( 20b 
)
Moreover the inverse rescaling ε(μ, ν, ξ, κ 01 , ξ 01 ) → (μ, ν, ξ, κ 01 , ξ 01 ), ε 3/2 (A, B) → (A, B) must be used to come back to the original variables.

It appears from Eqs. (20a) and (20b) that the timederivative operator d/dt is of order ε when it acts on A, while it is of order ε 1/2 when it acts on B, as a consequence of d 1 A 1 = 0 (Eq. ( 13)). It entails that B is more rapidly varying than A. These results will be used ahead.

As usual in the standard MSM, the right-hand side of Eqs. (20a) and (20b) must be transformed by properly making use of the solvability conditions at different orders. The aim is to obtain derivatives of the amplitudes reconstituted on the true time scale t, consistently with the maximum order retained in the analysis. Here, however, due to the fact that arbitrary amplitudes were introduced at each steps, the reconstitution procedure is not straightforward and it requires some strategies to be pursued. Indeed, substitution of Eqs. ( 13), (15a), (15b), (17a), (17b), [START_REF] Luongo | Multiple-timescale analysis for bifurcation from a multiple-zero eigenvalue[END_REF] in the right-hand side of Eq. (20a) leads the occurrence, at different orders, of several terms generally classifiable in three different categories: (a) terms of type d 2 A 0 + d 1 A 1 , that can be directly tackled by using the solvability condition (15a); (b) terms of type d 2 1 A 1 , that, as in the standard version of the MSM, can be tackled by t 1 -differentiating the solvability condition (15a) (getting to Eq. ( 19)); (c) terms of type d 2 2 A 0 + 2d 1 d 2 A 1 , which call for a special treatment (discussed in Appendix A), as a consequence of the fact that they involve the addition of second derivatives of amplitudes of different order.

The procedure leads to the following reconstituted equations in the true (nondimensional) time:

Ȧ = γ 1 + μγ 2 + μ 2 γ 3 A + [γ 4 + μγ 5 ]A 2 Ā + γ 6 A Ḃ2 + γ 7 AB Ḃ + [γ 8 + νγ 9 + μγ 10 ]AB 2 , ( 21a 
) B + ξ + η 11 + η 12 A Ā + η 13 B 2 Ḃ + ν + η 14 + (η 15 + μη 16 )A Ā B + η 17 B 3 = 0 ( 21b 
)
where 

γ i = η i + iζ i (i = 1, . . . , 10), η i ∈ R (i = 11 

Fixed points analysis

The fixed points of Eqs. (22a), (22b) and (22c) are obtained by letting a = a e = const, B = B e = const. Since ξ appears only as a coefficient of Ḃ, it means that the fixed points are independent of ξ , which is involved only in the stability analysis.

The trivial solution a e = B e = 0, indicated as 0, exists for any values of the parameters. Two different monomodal solutions are also found: the first one, indicated as I, is:

a e = 2 2μ 3μ(κ 03 + κ 13 ) + 2(ξ 03 + ξ 13 ) , B e = 0. (23) 
In terms of the original variables, it describes a periodic motion in x(t), while y(t) is of higher order. The second one, indicated as II, is:

a e = 0,
B e = ν ακ 03 + κ 23 [START_REF] Chakraborty | The transition from phase locking to drift in a system of two weakly coupled Van der Pol oscillators[END_REF] which describes a static deflection (buckling) in the y-coordinate, while x is of higher order. A bimodal solution is also found, indicated as III, of kind a e = a(μ, ν), B e = B(μ, ν) [START_REF] Rajasekar | Resonance behaviour and jump phenomenon in a two coupled Duffing-Van der Pol oscillators[END_REF] representing periodic oscillations of the variable x(t), when y(t) is statically deflected. The full analytical expression of the solution III is not reported since it is very cumbersome. The stability of all the solutions is ruled by the real part of the eigenvalues of the Jacobian matrix of Eqs. (22a) and (22b).

In addition to equilibria and periodic motions, quasi-periodic motions (QP) do exist, in which A(t + T ) = A(t), B(t + T ) = B(t) are periodic of period T ; this entailing that x(t) is biperiodic of periods 2π and T , while y(t) is periodic of period T . Such solutions have been numerically found by direct integrations of Eqs. (22a), (22b) and (22c) and a continuation method [START_REF] Doedel | AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equation[END_REF].

Transition from DZH-to ZH-bifurcation

An exhaustive analysis of the bifurcation equations in the three-dimensional parameter space is a difficult task, which is left for future investigations. Here, a simpler analysis is carried out, aimed to highlight the mechanism of transition from codimension-3 to codimension-2 bifurcations (Fig. 2). To this end, a planar analysis is performed, in which one of the three parameters is kept constant, and the analysis is repeated for increasing (in modulus) values of the parameter, from small to O(1) values (although this entails an ordering violation in the bifurcation equations). As an expected result, the bifurcation equations should describe the lowering of the codimension of the bifurcation.

For example, if planes ξ = const < 0 are considered, with |ξ | = O(1), the typical scenario of the ZH-bifurcation occurs (Fig. 2). Indeed, on this plane, one of the four critical eigenvalues involved in DZHbifurcation is far enough from the imaginary axis, so that it passively contributes to the motion on the center manifold. Similarly, planes μ = const < 0, |μ| = O(1) and ν = const < 0, |ν| = O(1) represent the scenarios of DZ-and DH -bifurcations, respectively. Here, attention is limited to the transition from DZH-to ZHbifurcations.

The bifurcation equations (21a) and (21b) are considered again, and the order of magnitude of all their 21a) and (21b) have the following structure:

(d/dt)A = O(ε × ε 1/2 ), (d/dt)B = O(ε 1/2 × ε 1/2 ); Eqs. (
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Ȧ ε 3/2 = L 1 (μA, A 2 Ā, AB 2 ε 3/2 ; AB Ḃ ε 2 ; A Ḃ2 ε 5/2 ), B ε 3/2 = L 2 (νB, B 3 , A ĀB ε 3/2 ; ξ Ḃ ε 2 ; B 2 Ḃ, A Ā Ḃ ε 5/2 ) ( 26 
)
where L are linear operators, and the order of magnitude of all the terms is reported below them. When ξ → O(1), the bifurcation turns out to be non-defective, and fractional time scales are not involved. Therefore, it is still

(d/dt)A = O(ε × ε 1/2 ), but (d/dt)B = O(ε × ε 1/2
), entailing that B switches to a higher order. This means that as |ξ | is increased, the dynamics of the variable B becomes slower. Consequently, at the leading order, Eqs. (21a) and (21b) tend to:

⎧ ⎪ ⎨ ⎪ ⎩ Ȧ = μ 2 A + κ 1 A 2 Ā + κ 2 AB 2 , Ḃ = - ν ξ B - κ 3 ξ A ĀB + κ 4 ξ B 3 ( 27 
)
which are, indeed, the equations governing ZHbifurcation [START_REF] Luongo | Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems[END_REF]. It is worth noticing that, since A ∈ C and B ∈ R, Eqs. ( 26) are a four-dimensional dynamical system, while Eqs. ( 27) are a three-dimensional system. This occurrence is consistent with the fact that one of the four central eigenvalues becomes stable in the limit process. Moreover, since the phase of A is a slave variable for both Eqs. [START_REF] Bi | Dynamical analysis of two coupled parametrically excited Van der Pol oscillators[END_REF] and Eqs. [START_REF] Kuznetsov | Properties of synchronization in the systems of non-identical coupled Van der Pol and Van der Pol-Duffing oscillators. Broadband synchronization[END_REF], the essential dynamics are captured by a system whose dimension, 3 or 2, equates the codimension of the bifurcation.

As a conclusion of the limit analysis, the bifurcation equations (21a) and (21b) for DZH correctly tend to that for ZH; therefore, they can be used for small to large values (in modulus) of the damping parameter ξ . In contrast, of course, Eqs. [START_REF] Kuznetsov | Properties of synchronization in the systems of non-identical coupled Van der Pol and Van der Pol-Duffing oscillators. Broadband synchronization[END_REF] do not tend to Eqs. [START_REF] Bi | Dynamical analysis of two coupled parametrically excited Van der Pol oscillators[END_REF], when ξ → 0.

Numerical results

The following numerical values are used for the auxiliary parameters: α = 2. A small value of damping ξ = -0.05 is considered first (Fig. 3). In Fig. 3a the shadow indicates the stable region of the trivial solution 0 (both μ and ν negative); the blue line indicates the loci of bifurcation where a supercritical branch I emanates from (see Fig. 3b and3c); the green line indicates the loci of bifurcation where a supercritical branch II emanates from (see Fig. 3c); the red lines are the boundaries of the region where the solution III exists (see Fig. 3b and3c). Moreover, lines related to successive bifurcations (i.e., not from the trivial solution), causing stable (black, QP1) and unstable (magenta, QP2 and QP3) quasiperiodic oscillations, are reported.

Figures 3b and3c show the amplitudes a, B vs. μ when ξ = -0.05, ν = 0.1. It appears that the purely buckled solution in y (solution II, green) exists for negative μ, when x is of higher order (a = 0, B = 0). Increasing the values of μ, a periodic motion in x arises when the system is buckled in the ycoordinate (solution III, red). This motion becomes unstable and a quasiperiodic one starts (QP1, black), where both a and B are periodic. Further increasing μ, (μ,(b,c): amplitudes a and B vs. μ when ξ = -0.05 and ν = 0.1. Continuous line: stable; dashed line: unstable; boxes: direct integrations the quasiperiodic motion QP1 dies, and after a while, a periodic motion in x becomes stable when y is of higher order (solution I, blue). An unstable quasiperiodic motion (QP3, magenta) coexists with the other solutions in the interval μ ∈ [-0.075, 0.1]. Superimposed with the results from the MSM, results from numerical integrations are also shown in Figs. 3b and3c (colored boxes, just for stable branches) in good agreement. A larger damping, ξ = -0.1, is considered now, and relevant results displayed in Fig. 4. When the boundaries in Fig. 4a are compared with those in Fig. 3a, it results that the limits of existence of the solutions I, II, and III are unchanged, while the quasiperiodic solutions QP1 and QP2 are triggered for higher values of ν, and QP3 disappears. The plots of a and B vs. μ when ν = 0.2 and ξ = -0.1 are shown in Fig. 4b and4c. It appears that the quasi-periodic solution QP1 significantly interacts with the periodic and equilibrium solutions only at ν = 0.2. A periodic orbit in the phase space (a, B, Ḃ), corresponding to the quasi-periodic motion (in x, y) QP1, is shown in Fig. 5.

Time-series of a, B and the relevant reconstituted time evolutions of x, y are shown in Figs. 6 and7, respectively, for μ = 0.04, ν = 0.2, ξ = -0.1, where a solution of QP1 kind is picked up. The latter plots are in good agreement with the corresponding time-series of x, y, as obtained from numerical integrations of the starting Eqs. (3), shown in Fig. 8.

The previous results show that the larger is |ξ |, the weaker is the interaction among periodic and quasiperiodic solutions. Indeed, when |ξ | increases, the region of existence of QP1 moves to larger values of ν. When the system is far enough from the DZH-bifurcation, e.g., when ξ = -0.8 (Fig. 9), the quasiperiodic solutions are far from the origin of the (μ, ν)-plane (Fig. 9a), this entailing the almost total lack of interaction of quasiperiodic motions with periodic motions or equilibria. Consistently, bifurcation diagrams in Figs. 9b and9c, relevant to ν = 0.1 and ξ = -0.8, include just equilibria (II) and periodic solutions (I, III).

It is worth noticing that when the transition has been exhausted, Eqs. [START_REF] Kuznetsov | Properties of synchronization in the systems of non-identical coupled Van der Pol and Van der Pol-Duffing oscillators. Broadband synchronization[END_REF] provide results qualitatively consistent with those furnished by Eqs. (21a) and (21b). A comparison between boundaries obtained by Eqs. [START_REF] Kuznetsov | Properties of synchronization in the systems of non-identical coupled Van der Pol and Van der Pol-Duffing oscillators. Broadband synchronization[END_REF] (continuous lines) and Eqs. (21a) and (21b) (dashed lines) can be detected in Fig. 9a.

Concluding remarks

In this paper, the bifurcation equations for a two degrees-of-freedom mechanical system, exhibiting The implemented perturbation algorithm exhibits remarkable differences with respect to standard applications of the MSM, namely:

1. Fractional power expansions, both for the state variables and time scales, are adopted, due to the presence of a not-semisimple double zero eigenvalue (nil-potent Jordan block), although the purely imaginary eigenvalues are nondefective. 2. Arbitrary amplitudes appearing in the complementary part of the solution of the perturbation equations (and usually neglected in standard applications, or used for mere normalization purposes), cannot all be omitted here, since this would lead to inconsistent results, and loss of some terms in the bifurcation equations. Among all the amplitudes, it has been checked that just one (namely A 1 ) is essential; it describes a smaller but faster correction of the oscillation triggered by the Hopf bifurcation. 3. The reconstitution procedure, aimed to bring back the solvability conditions in a unique set of differ- ential equations in the true time t, is not straightforward, as in standard cases. It could require the use of the Schwarz conditions, or, alternatively, ad hoc combinations of the solvability conditions, in order to achieve the goal. 4. A system of a first-order complex equation (as in the Hopf bifurcation) and a second-order real equation (as in the double-zero bifurcation), is found, however, coupled by mixed terms. As a result, a 4dimensional dynamical system, governing the slow flow on the center manifold, is obtained. Finally, it is reduced to a 3-dimensional system (ϑ is a slave variable), coherently with the codimension of the problem.

Attentions has been focused on the transition between the codimension-3 DZH-bifurcation and the codimension-2 Zero/Hopf (ZH) bifurcation, when a bifurcation parameter (namely the damping of the subsystem undergoing the double zero eigenvalue), is increased in modulus. It has been shown that, in this limit process, the dynamics of the real amplitude become slower, thus justifying the lowering of the order of the differential equations, which tend to the 3- Therefore, the DZH-bifurcation equations are able to describe the transient regime. In contrast, bifurcation equations for ZH lose validity when damping becomes vanishingly small, since this appears as a small divisor in the equations. Numerical results highlighted the role of quasi-periodic solutions: they strongly affect the dynamics close to the codimension-3 bifurcation, but move away when the system approaches the codimension-2 bifurcation, thus explaining the transition mechanism. 
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 2 Fig. 2 Scheme of transitions terms is evaluated. Since the bifurcation parameters are all O(ε), the amplitudes A and B are O(ε 1/2 ) and their time derivatives (as previously observed) are(d/dt)A = O(ε × ε 1/2 ), (d/dt)B = O(ε 1/2 × ε 1/2 );Eqs. (21a) and (21b) have the following structure: ⎧ ⎪ ⎪ ⎪ ⎨

  2, κ 01 = 0, ξ 01 = 0, κ 03 = 1.8, ξ 03 = -1.0, κ 13 = 10.0, ξ 13 = 8.0, κ 23 = -1.0, ξ 23 = 1.0. Since both κ 01 and ξ 01 are assumed as zero in the numerical evaluations, no actual shift of the DZH bifurcation point occurs from the origin of the (μ, ν, ξ )-space. The transition phenomenon is described in the next Figs. 3, 4, 9, where the bifurcation loci of the nontrivial solutions of Eqs. (22a), (22b) and (22c) are shown in the (μ, ν)-plane. Different values of ξ are considered, starting from values close to the DZH-bifurcation (small |ξ |) and then moving away toward a ZH-bifurcation (large |ξ |). Bifurcation diagrams showing the amplitudes a and B vs. the bifurcation parameter μ are also plotted; they can be viewed as planar sections of three-dimensional bifurcation diagrams in the (μ, ν, a)-and (μ, ν, B)-spaces.

Fig. 3

 3 Fig. 3 Bifurcation diagrams when ξ = -0.05; (a) bifurcation loci on the (μ, ν)-plane; (b, c): amplitudes a and B vs. μ when ξ = -0.05 and ν = 0.1. Continuous line: stable; dashed line: unstable; boxes: direct integrations

Fig. 4

 4 Fig. 4 Bifurcation diagrams when ξ = -0.1; (a) bifurcation loci on the (μ, ν)-plane; (b, c): amplitudes a and B vs. μ when ξ = -0.1 and ν = 0.2. Continuous line: stable; dashed line: unstable; boxes: direct integrations

Fig. 5

 5 Fig. 5 Periodic orbit in (a, B, Ḃ) corresponding to the quasi-periodic motion QP1 in (x, y), when ξ = -0.1, μ = 0.05, ν = 0.2

Fig. 6

 6 Fig. 6 Time evolution of a and B, corresponding to the quasiperiodic motion QP1 in (x, y), when ξ = -0.1, μ = 0.04, ν = 0.2

Fig.

  Fig. Time evolution of x and y, reconstituted from MSM, describing the quasiperiodic motion QP1, when ξ = -0.1, μ = 0.04, ν = 0.2

Fig. 8

 8 Fig. 8 Time evolution of x and y, obtained by numerical integrations of Eqs. (3a) and (3b), when ξ = -0.1, μ = 0.04, ν = 0.2
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Appendix A: Reconstitution procedure

The solvability conditions Eqs. [START_REF] Tomski | The regions of flutter and divergence instability of a column subjected to beck's generalized load, taking into account the torsional flexibility of the loaded end of the column[END_REF], (15a), (15b), (17a), (17b), [START_REF] Luongo | Multiple-timescale analysis for bifurcation from a multiple-zero eigenvalue[END_REF] must be substituted in Eq. (20a), (20b) to get the reconstituted equations (21a) and (21b). During the reconstitution procedure, the keyterm α 5 (d 2 2 A 0 + 2d 1 d 2 A 1 ), occurring in the equation related to the amplitude A, has to be written as Eq. (15a). As a consequence, second and third derivatives of the amplitudes occur, which can be easily evaluated by differentiating Eq. (15a). In this case, no problems in the reconstitution procedure would occur.

If, in contrast, other procedures were followed (e.g., d 2 2 A 0 evaluated by t 2 -differentiation of Eq. (15a) and 2d 1 d 2 A 1 by t 1 -differentiation of Eq. (17a) or by t 2 -differentiation of Eq. (15a)), some inconsistency would appear that could be overcome only by using the Schwarz condition

An alternative way to handle the reconstitution procedure is to separately zeroing terms depending on t 1 and terms not depending on it, thus causing a splitting of the solvability conditions. In particular, from Eq. (15a) it follows:

and from Eq. (17a)

Now, in the key-term α 5 (d

A 0 can be evaluated by differentiation of Eq. (29a) and the remaining 2d 1 d 2 A 1 either by t 2 -differentiation of (29b) or by t 1 -differentiation of (30b). Of course, the two choices would entail inconsistencies in the reconstitution, if the Schwarz condition

were not explicitly enforced. Again, the latter solves the problem.

Appendix B: Coefficients of the equations

The coefficients of Eq. ( 9) are

ξ 23 d 0 y 0 y 2 0κ 23 y 3 0 .

The coefficients of Eq. ( 10) are