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In this paper, a methodology is presented to perform the robust updating of complex uncertain dynamical

systems with respect to modal experimental data in the context of structural dynamics. Since both model

uncertainties and parameter uncertainties must be considered in the computational model, then the uncer-

tain computational model is constructed by using the nonparametric probabilistic approach. We present an

extension to the probabilistic case of the input error methodology for modal analysis adapted to the deter-

ministic updating problem. It is shown that such an extension to the robust updating context induces some

conceptual difficulties and is not straightforward. The robust updating formulation leads us to solve a mono-

objective optimization problem in presence of inequality probabilistic constraints. A numerical application

is presented in order to show the efficiency of the proposed method.
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Nomenclature

� = complex space

DΛ,δ = admissible set for(β, ǫ) for optimal updating dispersion parameter related to the probabilistic

eigenvalue constraint

DΦ,δ = admissible set for(β, ǫ) for optimal updating dispersion parameter related to the probabilistic

eigenvector constraint

DΦ−Λ,δ = admissible set for(β, ǫ) for optimal updating dispersion parameter related to both

probabilistic constraints

DΛ,s = admissible set for(β, ǫ) for optimal updating mean parameter related to the probabilistic

eigenvalue constraint

DΦ,s = admissible set for(β, ǫ) for optimal updating mean parameter related to the probabilistic

eigenvector constraint

DΦ−Λ,s = admissible set for(β, ǫ) for optimal updating mean parameter related to both probabilistic

constraints

E0 = Young modulus

E = mathematical expectation

FΛ,δ = admissible set for optimal updating dispersion parameter related to probabilistic

eigenvalue constraint

FΦ,δ = admissible set for optimal updating dispersion parameter related to the probabilistic

eigenvector constraint

FΦ−Λ,δ = admissible set for optimal updating dispersion parameter related to both probabilistic

constraints

FΛ,s = admissible set for optimal updating mean parameter related to the probabilistic

eigenvalue constraint

FΦ,s = admissible set for optimal updating mean parameter related to the probabilistic

eigenvector constraint

FΦ−Λ,s = admissible set for optimal updating mean parameter related to both probabilistic constraints

g = vector-valued function defining all the probabilistic constraints

gΛ = function defining the probabilistic constraint on the eigenvalues

gΦ̃ = function defining the probabilistic constraint on the eigenvectors

j = cost function for the deterministic updating

j = cost function for the robust updating

m = number of rigid body modes

N = number of generalized coordinates

n = number of DOF in the computational model

n2 = number of non measured DOF

nobs = number of measured DOF

� = dimension of the mean reduced computational model
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Proba = probability

Q = random vector of the generalized coordinates related to the uncertain computational model

q = vector of the generalized coordinates related to the mean computational model

Rα = random vector of the nonzero components of the residue vector related to the uncertain

computational model

� = real space

�
+ = real positive space

r = number of experimental eigenvalues and eigenmodes

�α = residue vector of the mean computational model related to experimental eigenvalue numberα

rα = vector of the nonzero components of the residue vector related to the mean computational model

S = admissible set for the updating mean parameters

s = updating mean parameter

sopt = updated mean parameter

S0 = section of the beam

β = given probability level

∆ = admissible set for the updating dispersion parameters

∆Λ = norm of the random error with respect to the experimental eigenvalues

∆Λα = random error with respect to the experimental eigenvalue numberα

∆Φ̃ = norm of the random error with respect to the experimental eigenvectors

∆Φ̃α = random error with respect to the experimental to eigenvector numberα

δM = mass updating dispersion parameter

δK = stiffness updating dispersion parameter

δαβ = Kronecker Symbol

� = updating dispersion parameter

�opt = updated dispersion parameter

ǫ = given error level

Λα = random eigenvalue numberα related to the uncertain computational model

λα = eigenvalue numberα of the mean computational model

λexp
α = experimental eigenvalue numberα

λ0
α = eigenvalue numberα of the mean computational model with fixed measured DOF

ρ0 = mass density of the non updated mean computational model

ν0 = Poisson ratio

να = eigenfrequency numberα of the mean computational model

νexp
α = experimental eigenfrequency numberα

ν0
α = eigenfrequency numberα of the mean computational model with fixed measured DOF

�̃α = random eigenvector numberα in the physical space restricted to the experimental DOF

�
α

= eigenvector numberα of the mean computational model

�exp
α

= experimental eigenvector numberα

�
2,α

= extrapolation of the experimental eigenvector numberα on the non measured DOF
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�α = random eigenvector numberα related to the uncertain computational model

�
α

= eigenvector numberα of the mean computational model with fixed measured DOF

[GM ] = random germ of the random mass matrix

[GK ] = random germ of the random stiffness matrix

[Hα] = projection basis matrix

[I] = identity matrix

[K] = finite element stiffness matrix of the mean computational model

[Kred,α] = mean reduced stiffness matrix

[K red,α] = random stiffness matrix

[LM,α] = factorization of the mean reduced mass matrix

[LK,α] = factorization of the mean reduced stiffness matrix

[M ] = finite element mass matrix of the mean computational model

[M red,α] = mean reduced mass matrix

[M red,α] = random mass matrix

[R] = modal residue matrix related to the mean computational model

[R] = modal residue matrix related to the uncertain computational model

[Sα] = modal liftings matrix

[Λexp] = real diagonal matrix of the experimental eigenvalues

[Φexp] = experimental modal matrix

[Ψ] = modal matrix of the mean computational model with measured DOF fixed

I. Introduction

The updating of computational models using experimental data is currently a challenge of interest in structural

dynamics. The updating formulation involves an optimization problem for which the cost function can be de-

fined from the operator of the computational model (input error formulation) or from the inverse of the operator

of the computational model (output error formulation). These last decades, such an updating has been carried

out using deterministic computational models (see for instance,? for the input error formulations and?,?,? for the

output error formulations). It is well known that deterministic computational models are not sufficient to accu-

rately predict the dynamical behavior of complex structures. The uncertainties have then to be taken into account

in the computational models by using probabilistic models as soon as the probability theory can be used. More

recently, the terminology of robust updating has been introduced. The robust updating is defined as the updat-

ing of the parameters of the computational model which contains uncertainties. The uncertainties are taken into

account in the computational model which is then called the uncertain computational model. Let us recall that

4 of 29

American Institute of Aeronautics and Astronautics



there exist two classes of uncertainties: (1) the system parameter uncertainties which are the uncertainties on the

parameters of the computational model (system parameters), (2) the model uncertainties which are induced by the

mathematical-mechanical process used for the construction of the computational model and which, by definition,

cannot be taken into account by variations of the system parameters. In general, system parameter uncertainties

can be taken into account by using the parametric probabilistic approach, see for instance?,?,? and? for rotating

structures. Both model uncertainties and system parameter uncertainties can be taken into account by using the

nonparametric probabilistic approach recently introduced.?,?,? We then can distinguish the robust updating of the

updating parameters in presence of system parameter uncertainties?,?,? (the uncertain computational model is then

constructed with the parametric probabilistic approaches) from the robust updating of the updating parameters in

presence of both model uncertainties and system parameter uncertainties?,? (the uncertain computational model is

then constructed with the nonparametric probabilistic approach). Until now, all these robust updating formulations

involve cost functions which are defined from the observations of the uncertain computational model (output error

formulations). The motivation of this paper is to propose a robust updating methodology of the updating parame-

ters in presence of both model uncertainties and system parameter uncertainties using modal experimental data and

defining a cost function relative to the operators of the uncertain computational model (input error formulation).

The deterministic underlying methodology is based on the modal updating formulation proposed.? In this paper,

we propose to extend such a deterministic updating formulation to the case of an uncertain computational model

for which uncertainties are modeled using the probability theory. Note that this extension is not trivial. The paper

is organized as follows. Section II is a brief summarizing of the deterministic updating methodology.? This deals

with the updating of a mean computational model for which the updating parameters are called the mean updating

parameters. The main idea is to modify the generalized eigenvalue problem of the mean computational model in

order to calculate a residue which characterizes the good matching between the mean computational model and

the available experimental data. The cost function is defined from this residue and is then optimized with respect

to the admissible set of the mean updating parameters. Section III deals with the robust updating formulation. In

this robust updating context, there are model uncertainties which are such that the available experimental data can

not exactly be reproduced by any computational model. This context does not allow the strategy of deterministic

updating to be effective. The main idea is thus to implement the nonparametric probabilistic approach in a mean

computational model in order to take into account both model uncertainties and parameter uncertainties. First of
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all, a modified Craig and Bampton dynamical substructuring method?,?,?,? is introduced in order to construct a

mean reduced matrix equation allowing the deterministic residue to be calculated. In a second step, the gener-

alized matrices of this mean reduced equation are replaced by random matrices for which the probability model

is explicitly constructed. With such an approach, the uncertainty level of each random matrix is controlled by a

dispersion parameter. We then obtain a random residue which is defined as a function of the updating parameters

which are the updating mean parameters related to the mean computational model and the dispersion parameters

which allow the uncertainty level in the computational model to be controlled. In a third step, the cost function

is defined as the second-order moment of the norm of the random residue. Difficulties arise from a conceptual

point of view. A straightforward generalization of the deterministic optimization problem which would consist

in optimizing the cost function with respect to the admissible set of the updating parameters would yield a deter-

ministic updated computational model which would not be compatible with the existence of model uncertainties

in the computational model. The formulation is then modified by adding probabilistic constraints related to the

nonreducible gap between the uncertain computational model and the experiments due to the presence of model

uncertainties. In Section IV, a numerical example is presented in order to validate the methodology proposed.

II. Summarizing the input error methodology for the deterministic updating of a

computational dynamical model using experimental modal data analysis

The assumptions concerning the available experimental data are given below. It is assumed that experimental

modal analysis is carried out on only one manufactured dynamical system with free free boundary conditions.

Consequently, there arem = 6 rigid-body modes associated with6 zero eigenvalues which are not taken into

account in the analysis. The experimental data consists inr experimental elastic eigenvalues denoted by0 <

λexp
1 < . . . < λexp

r and r corresponding experimental eigenmodes denoted as� exp
α which are measured at

nobs observation points. Moreover, it is assumed that the manufactured dynamical system can be modeled by a

deterministic computational model which is called the mean computational model. The usual methodology for

the updating of a deterministic computational model using modal analysis is the output error formulation (see for

instance?) which consists in solving a multi-objective optimization problem in order to simultaneously minimize

the distance between each experimental eigenvalue / eigenvector and between each eigenvalue / eigenvector of
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the deterministic computational model. The alternative formulation used in this Section belongs to the input error

formulation. This means that the cost function which quantifies the gap between the mean computational model

and the experimental data is directly defined from the operators of the mean computational model so that the

eigenfrequencies and the eigenmodes are simultaneously treated with a coherent way. This deterministic updating

yields to solve a mono-objective optimization problem with respect to the admissible set of the updating parameters

of the deterministic computational model. Since the robust updating proposed for modal analysis is based on the

method proposed in,? we briefly summarize it below in order to improve the readability of the manuscript.

The mean computational model of the dynamical system is constructed using the finite element method and has

n DOF (degrees of freedom). It is assumed that the finite element mesh is compatible with then obs experimental

measurement points. Lets be the�s-vector of the updating parameters of the mean computational model called

the updating mean parameters. Vectors belongs to an admissible setS corresponding to a given family of mean

computational models. Assuming the dynamical system to be linear, for fixeds in S, the generalized eigenvalue

problem related to the conservative dynamical system is written as: find(λα,�
α
) belonging to�+ × �

n such that

0 =
(
[K(s)] − λα [M(s)]

)
�

α
, α = 1, . . . , r , (1)

in which the matrices[M(s)] and[K(s)] are the finite element mass and stiffness matrices. Since the dynamical

system has free free boundary conditions, matrices[M(s)] and [K(s)] are positive-definite and semi-positive-

definite symmetric(n ×n) real matrices whose bloc decomposition with respect to then obs experimental measured

DOF and then2 = n − nobs unmeasured DOF is written as

[M(s)] =

⎡
⎢⎢⎣

[M11(s)] [M12(s)]

[M12(s)]
T [M22(s)]

⎤
⎥⎥⎦ , [K(s)] =

⎡
⎢⎢⎣

[K11(s)] [K12(s)]

[K12(s)]
T [K22(s)]

⎤
⎥⎥⎦ . (2)

The matrix formulation which allows the deterministic updating to be solved is written as follows :

�α(s) =

(
⎡
⎢⎢⎣

[K11(s)] [K12(s)]

[K12(s)]
T [K22(s)]

⎤
⎥⎥⎦ − λexp

α

⎡
⎢⎢⎣

[M11(s)] [M12(s)]

[M12(s)]
T [M22(s)]

⎤
⎥⎥⎦

)
⎡
⎢⎢⎣
�exp

α

�
2,α

(s)

⎤
⎥⎥⎦ (3)
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In Eq. (3), the unknown quantities are then vectors�α (s) and�
2,α

(s). For a given updating mean parameters

belonging toS, the componentrα,k(s) of the residue vector�α(s) quantifies the errors of the mean computational

model induced by the experimental eigenvalue numberα and its associated elastic eigenmode for the DOF number

k. It should be noted that vector�
2,α

(s) is not the restriction of eigenvector�
α
(s) to the unmeasured DOF. Note

that vector�
2,α

(s) is calculated from the mean computational model and from the experimental modal measure-

ments by solving Eq. (3). Following the reference? for the deterministic updating methodology, two assumptions

are introduced which ensure the existence and the uniqueness of a solution: (1) Since the information concerning

the experimental eigenmodes are only available for the measured DOF, then it is assumed that the residue is zero

for the unmeasured DOF, that is to say,

�α(s) =

⎡
⎢⎢⎣

rα(s)

0

⎤
⎥⎥⎦ . (4)

(2) For eachα in {1, . . . , r}, the matrix[Bα(s)] defined by

[Bα(s)] = [K22(s)] − λexp
α [M22(s)] , (5)

is assumed to be invertible. With such an assumption, the eigenvalues of the generalized eigenvalue problem related

to the mean computational model for which the measured DOF are fixed have to differ from the experimental

eigenvalues. In practice, such a condition is verified in the low-frequency domain for which we are only interested

in the first smallest eigenfrequencies and if the measured DOF are regularly distributed through the structure. Let

us introduce the first eigenfrequency of the structure for which all the measured DOF are fixed. Then, if this

eigenvalue is much larger than the experimental frequency band of analysis, then the assuption is satisfied. It is

assumed that the numberr of experimental pairs of eigenvalues and eigenmodes which are considered for the

deterministic updating is chosen in order to fulfill this condition. Finally, it should be noted that Eq.(3) is coherent

with Eq.(1) if the experimental data matches with the mean computational model.

The deterministic updating is solved by simultaneously minimizing the residue vectorsrα (s) for all α belonging

to {1, . . . , r}. The cost function is defined as a function of the updating mean parameterss by

j(s) = ||[R(s)]||2F , (6)
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in which the(r×r) real matrix[R(s)] is defined by[R(s)]αβ = �exp,T
α

rβ(s). In Eq. (6),||[X]||2F = tr([X ] [X ]T ).

Note that in the input error methodology, the sum of the Euclidean norms of the residue vectors are generally used.

Since a change of basis can always be performed to express the cost function relative to the residue vectors, we

have chosen to express the residue vectors in the modal basis. The solution of this deterministic updating problem

is then given by

sopt = arg min
s∈S

j(s) . (7)

Note that the components of vectors can represent any physical parameters of the mechanical system and that the

dimension of this vector iss. Eliminating�
2,α

(s) in Eq. (3) and considering ther experimental elastic modes, it

can be deduced that there arer × nobs independent nonlinear algebraic equations to identify the vector parameter

s. Consequently, the inverse problem isa priori well posed ifr × nobs > s that is assumed. Clearly, such

an assumption is not sufficient to guarantee the existence of a unique solution. Nevertheless, the problem is

not to construct the global optimum for this updating problem but to improve the computational model in the

neighborhood of the nominal design. In addition, in the methodology proposed, the cost function is evaluated

by solving direct eigenvalue problem and consequently, there are no potential difficulties related to the inverse

problem.

III. Robust input error methodology for experimental modal data analysis

In this Section, it is assumed that the computational model used for modeling the manufactured dynamical system

for which experimental modal data are available contains significant model uncertainties. Consequently, the de-

terministic updating formulation presented in Section III can be improved in taking in to account the presence of

model uncertainties. It should be noted that in general, the optimization of a deterministic computational model

can produce a non optimal result with respect to the robust optimization of an uncertain computational model as it

is shown for instance in? . We then propose to adapt the deterministic updating formulation presented in Section

III to the robust updating context as explained in Section I. The nonparametric probabilistic approach is then im-

plemented in the mean reduced matrix model. The formulation of the optimization problem is then discussed in

order to capture the largest possible class of uncertain computational models.
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A. Mean reduced computational model

The proposed dynamical substructuring method is based on the Craig and Bampton method.?,?,?,?Let us recall that

this method consists in decomposing the displacement vector of a substrucre as the direct sum of the displacement

vector of the substructure with fixed coupling interface and of the static lifting relative to the coupling interface.

In the present context, the coupling interface is defined by then obs measured DOF. The extension of the Craig

and Bampton method consists in replacing the static liftings by the ”modal liftings” related to each experimental

eigenvalue. Note that in this context, the projection basis depends onα. For a givenα belonging to{1, . . . , r}, the

projection basis is given by

⎡
⎢⎢⎣
�exp

α

�
2,α

(s)

⎤
⎥⎥⎦ = [Hα(s)]

⎡
⎢⎢⎣
�exp

α

q
α
(s)

⎤
⎥⎥⎦ , [Hα(s)] =

⎡
⎢⎢⎣

[I] [�]

[Sα(s)] [Ψ(s)]

⎤
⎥⎥⎦ . (8)

In Eq. (8),q
α
(s) is the�N -vector of the generalized coordinates. The matrix[Ψ(s)] is the(n 2 × N) real modal

matrix whose columns are the eigenvectors�
1
(s), . . . ,�

N
(s) corresponding to the lowest eigenvalues of the gen-

eralized eigenvalue problem related to the mean computational model with fixed coupling interface (n obs measured

DOF): find(λ0
β,�

β
) belonging to�+ × �

n2 such that

0 =
(
[K22(s)] − λ0

β(s) [M22(s)]
)
�

β
(s) (9)

.

In Eq. (8), the matrix[Sα(s)] is the(n2 × nobs) real matrix of the ”modal” boundary functions defined by

[Sα(s)] = −[Bα(s)]−1 ([K12(s)]
T − λexp

α [M12(s)]
T ) , α = 1, . . . , r , (10)

in which [Bα(s)] is defined by Eq. (5) It should be noted that the usual Craig and Bampton method corresponds to

Eq. (10) for which the mass dynamic term is not taken into account. Let� = N +n obs. The mean reduced matrix
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equation which allowsrα(s) andq
α
(s) to be calculated is then written as

⎡
⎢⎢⎣

rα(s)

0

⎤
⎥⎥⎦ =

(
[Kred,α(s)] − λexp

α [Mred,α(s)]
)

⎡
⎢⎢⎣
�exp

α

q
α
(s)

⎤
⎥⎥⎦ , (11)

in which the matrices[M red,α(s)] and[Kred,α(s)] are the(�×�) positive-definite and positive symmetric real mass

and stiffness matrices defined by[M red,α(s)] = [Hα(s)]T [M(s)] [Hα(s)] and[Kred,α(s)] = [Hα(s)]T [K(s)] [Hα(s)].

It should be noted that a convergence analysis with respect to the numerical parameterN is systematically carried

out for every application (see subsection D of Section V).

B. Stochastic computational model

The nonparametric probabilistic approach?,?,?recently introduced is used to model both data uncertainties and

model uncertainties in Eq. (11). Briefly, the method consists in replacing the deterministic matrices[M red,α(s)]

and [Kred,α(s)] by random matrices[M red,α(s, δM )] and [K red,α(s, δK)] for which the probability distribution

is constructed using the maximum entropy principle under the constraints defined by the available informa-

tion. The scalar parametersδM and δK are the dispersion parameters which allow the amount of uncertainty

of the random matrices to be quantified. The random matrices[M red,α(s, δM )] and[K red,α(s, δK)] are written as

[M red,α(s, δM )] = [LM,α(s)]T [GM (δM )] [LM,α(s)] and[K red,α(s, δK)] = [LK,α(s)]T [GK(δK)] [LK,α(s)] in

which the matrices[LM,α(s)] and[LK,α(s)] are
(
�×�

)
and

(
(�−m)×�

)
real matrices such that[M red,α(s)] =

[LM,α(s)]T [LM,α(s)] and[Kred,α(s)] = [LK,α(s)]T [LK,α(s)] and where the matrices[GM (δM )] and[GK(δK)]

are full
(
�×�

)
and

(
(�−m)× (�−m)

)
. Below, the algebraic representation of these random matrices adapted to

the Monte Carlo numerical simulation is briefly recalled. Let[G(δ)] denotes one of the random matrix[G M (δM )]

or [GK(δK)] for which the dimension is denoted byµ. From the probability distribution constructed with the

Maximum Entropy Principle, it can be deduced that[G] = [L G]T [LG] in which [LG] is a real upper triangular

random matrix such that

(1) random variables{[L G]jj′ , j ≤ j′} are independent;

(2) forj < j ′, real-valued random variable[L G]jj′ can be written as[L G]jj′ = σµUjj′ in whichσµ = δ (µ+1)−1/2

and whereUjj′ is a real-valued Gaussian random variable with zero mean and variance equal to1;
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(3) for j = j ′, positive-valued random variable[L G]jj can be written as[L G]jj = σµ

√
2Vj in whichσµ is defined

above and whereVj is a positive-valued gamma random variable whose probability density functionp Vj
(v) with

respect todv is written as

pVj
(v) = �R+(v)

1

Γ(µ+1
2δ2 + 1−j

2 )
v

µ+1

2δ2 −
1+j
2 e−v. (12)

All the details concerning the construction of the probability model of these random matrices can be found in?,?,? .

It should be noted that the random matrices[M red,α(s, δM )] and[K red,α(s, δK)] have the same algebraic properties

than the deterministic matrices[M red,α(s)] and [Kred,α(s)]. In particular random matrix[M red,α(s, δM )] (or

[K red,α(s, δK)]) is with values in the set of all the positive-definite (or semi-positive-definite) symmetric real

matrices. Let� = (δM , δK) be the vector of the dispersion parameters which has to be updated. It can be

shown from the construction of the probability model that dispersion parameter� must belong to the admissible

set∆ =
{
[0 ,

√
�+1
�+5 ] × [0 ,

√
�−m+1
�−m+5 ]

}
. It should also be noted that the same random matrices[GM (δM )]

and[GK(δK)] are used to construct the random matrices[M red,α(s, δM )] and[K red,α(s, δK)] for all α belonging

to {1, . . . , r}. The stochastic matrix equation whose unknowns are the random residue vectorR α(s, �) and the

random vectorQα(s) of the random generalized coordinates is written as

⎡
⎢⎢⎣

Rα(s, �)

0

⎤
⎥⎥⎦ =

(
[Kred,α(s, δK)] − λexp

α [Mred,α(s, δM )]
)

⎡
⎢⎢⎣

�exp
α

Qα(s, �)

⎤
⎥⎥⎦ , (13)

C. Estimation of Qα(s, �)

The matrices[K red,α(s, δK)] and[M red,α(s, δM )] are block decomposed with respect to the number of experimen-

tal measured DOF and with respect to the number of generalized coordinatesN such that

[K red,α(s, δK)] =

⎡
⎢⎢⎣

[K1,α(s, δK)] [K c,α(s, δK)]

[K c,α(s, δK)]T [K2,α(s, δK)]

⎤
⎥⎥⎦ , [Mred,α(s, δM )] =

⎡
⎢⎢⎣

[M1,α(s, δM )] [M c,α(s, δM )]

[Mc,α(s, δM )]T [M2,α(s, δM )]

⎤
⎥⎥⎦ .

(14)

The random residue vectorRα(s, �) and the random vectorQα(s) of the random generalized coordinates solution
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of the random matrix equation (13) are then given by

Rα(s, �) = [B1,α(s, �)]�exp
α

+ [Bc,α(s, �)] Qα(s, �) (15)

Qα(s, �) = −[B2,α(s, �)]−1 [Bc,α(s, �)]T �exp
α

, (16)

in which [B1,α(s, �)] = [K1,α(s, �)] − λexp
α [M1,α(s, �)], [Bc,α(s, �)] = [Kc,α(s, �)] − λexp

α [Mc,α(s, �)] and

[B2,α(s, �)] = [K2,α(s, �)] − λexp
α [M2,α(s, �)]. The calculation of random vectorQα requires the inversion of

the random matrix[B2,α(s, �)] for all α belonging to{1, . . . , r} . It is assumed that the numberr of experimental

eigenvalues is chosen under the assumption that random matrix[B 2,α(s, �)] is invertible almost surely.

D. Robust updating formulation

The robust updating formulation requires to define the cost function from the uncertain computational model as a

function of the updating mean parameters and of the dispersion parameter�. In coherence with Eq. (6), the cost

function denoted byj(s, �) is written as

j(s, �) = E{||[R(s, �)]||2F } , (17)

in which the(r × r) real matrix[R(s, �)] is defined by

[R(s, �)]αβ = �exp,T
α

Rβ(s, �) . (18)

Note that the cost functionj(s, �) tends to the cost functionj(s) asδM andδK go to zero, which means as the

structure tends to be deterministic. The straightforward generalization of Eq. (7) to the random case yields the

solution(sopt, �opt) = arg mins∈S j(s, �) . The following comment shows that this formulation is not adapted

to the robust updating context. If the deterministic updating context assumed that there were no model uncertain-

ties and no parameter uncertainties, then it would mean that the family of deterministic models would be able to

exactly reproduce the experimental data. In that case, the deterministic cost function would be zero for the updated

solution. In the present context of robust updating, there are model uncertainties which are then taken into account

by a class of computational model generated with the nonparametric probabilistic approach. The above formula-
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tion for robust updating tends to minimize the model uncertainties(� → 0) which means that this formulation

is equivalent to the deterministic updating formulation. However, since it is assumed that there are significant

model uncertainties, the class of deterministic computational models is not able to reproduce the experiments.

Consequently, the cost function is doubtlessly minimized but is nonzero and there still exists an irreducible dis-

tance between each eigenvalue /eigenvector of the updated computational model and each experimental eigenvalue

/ eigenvector. The above formulation for robust updating is then not correct. In order to generate a larger class

of uncertain computational models, additional probabilistic constraints involving these distances are added in the

formulation of the robust updating optimization problem. Let∆Λ and∆ Φ̃ be the positive-valued random variables

defined by

∆Λ(s, �) =

√√√√1

r

r∑

α =1

{∆Λα(s, �)}2 , ∆Λα(s, �) =
|Λα(s, �) − λexp

α |

λexp
α

, (19)

∆Φ̃(s, �) =

√√√√1

r

r∑

α =1

{∆Φ̃α(s, �)}2 , ∆Φ̃α(s, �) =
||�̃α(s, �) − �exp

α
||

||�exp
α

||
. (20)

In Eqs. (19) and (20), for eachα belonging to{1, . . . , r}, the positive-valued random eigenvalueΛ α(s, �) and

the�nobs-valued random eigenvector̃�α(s, �) restricted to the measurement DOF are defined by the generalized

eigenvalue problem related to the uncertain computational model which is written as: find(Λ α(s, �),�α(s, �))

0 =
(
[Kred,α(s, δK)] − Λα(s, �) [Mred,α(s, δM )]

)
�α(s, �) , α = 1, . . . , r , (21)

for which random eigenvector̃�α(s, �) is reconstructed by

�̃α(s, �) = [H1]�α(s, �) , (22)

where[H1] = [[I] [�]] is the first row bloc of matrix[Hα(s)]. We now introduce the probabilistic constraints.

Let gΛ(s, �; βΛ, εΛ) andgeΦ(s, �; βΦ, εΦ) be the functions defined by

gΛ(s, �; βΛ, εΛ) = βΛ − Proba
(
∆Λ(s, �) < εΛ

)
(23)

geΦ(s, �; βΦ, εΦ) = βΦ − Proba
(
∆Φ(s, �) < εΦ

)
, (24)
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in which Proba denotes the probability and whereεΛ, εΦ andβΛ, βΦ denote a given error level and a given

probability level respectively. The robust updating formulation consists in defining, for a given� = (β Λ, βΦ)

belonging to[0 , 1[×[0 , 1[ and for a given� = (ǫΛ, ǫΦ) belonging to]0, +∞[×]0, +∞[, the solution(sopt, �opt)

as

(sopt, �opt) = arg min

(s, �) ∈ {S × ∆}

g(s, �;�, �) < 0

j(s, �) , (25)

in which g(s, �;�, �) = (gΛ(s, �; βΛ, εΛ), geΦ(s, �; βΦ, εΦ)). The existence of a solution for this optimization

problem cannot be proven in the general case. A specific analysis must be carried out for every application (see

Section V).

IV. Numerical Validation

A. Description of the mean finite element model

The numerical validation is carried out using the truss system presented in.? This structure is located in the plane

(OX , OY ) of a Cartesian coordinate system. The truss is constituted of4 vertical bars,4 diagonal bars and2

horizontal beams. For the non updated truss, all the bars and beams are made up of a homogeneous isotropic

elastic material with mass densityρ0 = 2 800 kg × m−3, Poisson ratioν0 = 0.3 and Young modulusE0 =

0.75× 1011 N ×m−2. The vertical bars have a constant cross-section of0.6 × 10−2 m2 and a length of3 m. The

diagonal bars have a constant cross-section of0.3 × 10−2 m2 and a length of5.83 m. The horizontal beams have

a constant cross-section ofS0 = 0.4 × 10−2 m2, a constant beam inertia of0.756 × 10−1 m4 and a length of

15 m. The truss has free-free boundary conditions. The mean finite element model of this truss is constituted of41

bar elements (with two nodes) and42 beam elements (with two nodes) yieldingn = 166 DOF (see Fig. 1). There

is only one updating parameters = ρ S0 with ρ the mass density of the upper beam which has to be updated. It

should be noted that for this non updated truss,s0 = 11.2 kg/m. The admissible setS for the updating parameter

s of the mean computational model is taken asS = [10 , 40] kg/m.
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B. Description of the data basis

Since no experiment has been carried out on this truss, a numerical experiment is generated to represent the

experimental data basis. The experimental data are simulated as follows. We consider the stochastic computational

model corresponding to the mean computational model with uncertainties and defined by Eqs. (21) and (22). For

s = s0 andδK = δM = δ0 with δ0 = 0.3, one realizationΛα(s0, δ0; θ) of the random eigenvaluesΛα(s0, δ0),

and the corresponding realizatioñ�α(s0, δ0; θ) of the random eigenvectors̃�α(s0, δ0) are calculated using the

stochastic computational model. Then, an arbitrary finite perturbation is applied to every eigenvaluesΛ α(s0, δ0; θ)

without modifying the eigenmodes̃�α(s0, δ0; θ) and thus defining the experimental data. Consequently, this

experimental data cannot be obtained with a deterministic updating of the truss(δ M = δK = 0) for which the

mass densityρ of the upper beam is the updating parameter. The experimental data basis is thus constituted of

(1) r = 3 elastic experimental eigenfrequenciesν exp
1 = 93 Hz, νexp

2 = 110 Hz andνexp
3 = 170 Hz and

(2) the translational components corresponding ton obs = 28 translational measured DOF and representing the

corresponding experimental eigenmodes (see Fig. 1).

 

 

Figure 1. Finite element mesh of the truss. Symbol◦: nodes of the mesh, symbol� measured nodes, thick solid line: elements with
fixed properties, thin solid line: elements whose properties have to be updated.
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C. Deterministic updating

The results concerning the deterministic updating formulation (see Section 2) are presented in order to construct

a reference solution. The deterministic updating optimization problem yieldss opt,det = 31 kg/m for which cost

functionj(sopt,det) is normalized to1. Figure 2 and Table 1 quantify the differences with respect to each eigen-

frequency and with respect to each eigenmode for the non updated mean computational model and for the updated

mean computational model. For a givenα belonging to{1, . . . , r}, we introduce∆λ α(s)λexp
α = |λα(s) − λexp

α |

and∆φ̃
α
(s) ||�exp

α
|| = ||�̃

α
(s) − �exp

α
||. Let ∆λini

α = ∆λα(s0), ∆λopt,det
α = ∆λα(sopt,det), ∆φ̃

ini

α
=

∆φ̃
α
(s0), ∆φ̃

opt,det

α
= ∆φ̃

α
(sopt,det) the similar quantities to those defined in Eq. (13) but for the deterministic

case. Figure 2 shows the graphsα �→ ∆λini
α , α �→ ∆λopt,det

α , α �→ ∆φ̃
ini

α
andα �→ ∆φ̃

opt,det

α
. The results show

the efficiency of the deterministic updating formulation to reduce the gap between the experiments and between

the computational model. Nevertheless, the cost function is not zero which means that model uncertainties have to

be taken into account in the modeling of the computational model which has to be updated.
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Figure 2. Quantification of the errors between the non updated and the updated mean computational model with the experimental

data. Upper graph : graph of α �→ ∆λini
α (black line), α �→ ∆λopt,det

α (gray line). Lower graph : graph of α �→ ∆φ̃
ini

α
(black line),

α �→ ∆φ̃
opt,det

α
(gray line).

∆λ1 ∆λ2 ∆λ3 ∆φ̃
1

∆φ̃
2

∆φ̃
3

non updated 56.1% 113% 7.3% 23.6% 60.9% 59.4%

deterministic updating 3.6% 27.9% 12.7% 14.6% 24.9% 13%

Table 1. Quantification of the errors between the non updated and the updated mean computational model with the experimental data.
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D. Convergence analysis with respect to the numerical parameters

In the context of the robust updating, the stochastic equations of the uncertain computational model are solved by

using the Monte Carlo numerical simulation. In order to simplify the calculations, the same level of uncertainties

is considered for the mass and for the stiffness terms, that is to sayδ = δM = δK . A convergence analysis is

carried out in order to calculate the numberN of eigenmodes to be kept in the modal reduction and the number

ns of realizations. The mean square convergence is analyzed by studying the function(N, n s) �→ Conv(N, ns)

defined by

Conv2(N, ns) =
1

ns

ns∑

i =1

||[R(s, δ; θi)]||
2
F , (26)

in which [R(s, δ; θi)] is the realization numberi of random matrix[R(s, δ)] given by Eq. (18). The convergence

analysis is carried out withs = 11.2 kg/m and withδ = 0.3. Figure 3 shows the graphn s �→ Conv(N, ns)

for different values ofN . It can be seen that a reasonable convergence is reached forN = 110 ansn s = 600.

From now on, the numerical calculations are carried out with the numerical parametersN = 110 ansn s = 600.

It should be noted that a more precise convergence analysis could be performed in studying the convergence on

the robust updating solution. However, such an analysis would imply that the optimization problem should be

solved many times and this is time consuming. That is why the convergence analysis has been carried out on

the objective function for a given fixed set of updating parameters. In particular, the value0.3 of the updating

dispersion parameter has been set to a sufficiently high value in order to ensure that the values of the optimal

numerical parameters be also valid for smaller values of the updating dispersion parameter.

E. Robust updating formulation without inequality constraints

As we have explained in Section IV, the robust updating formulation without inequality constraints does not allow

the updating to be improved with respect to the presence of model uncertainties. In this subsection, we prove this

result by using the numerical example. First, the case for which the level of uncertainty in the structure is assumed

to be known is considered withδ = δfix = 0.3. The updated uncertain computational model is characterized

by updating parameters(sopt, δfix) = (26.2, 0.3) for which j(sopt, δfix) = 1.18. The generalized eigenvalue

problem related to the updated uncertain computational model is then solved by usingn s = 10 000 realizations in

order to characterize, for eachα belonging to{1, 2, 3} the probability density functions of the random variables
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Figure 3. Convergence analysis : graph of functionns �→ Conv(N, ns) for the truss structure with updating parameter s =
11.2 Kg/m and δ = 0.3.

∆Λopt
α = ∆Λ(sopt, δfix) and∆Φ̃opt

α = ∆Φ̃(sopt, δfix). For eachα belonging to{1, 2, 3}, Table 2 shows the

mean valuesµ∆λα
andµ∆Φ̃α

, and the standard deviationsσ∆λα
andσ∆Φ̃α

of the random variables∆Λopt
α and

∆Φ̃opt
α . Figures 4 and 5 show the probability density functions of the random variables∆Λ opt

α and∆Φ̃opt
α . It can

be seen that the mean error committed on each eigenvalue is lower than29% and the mean error committed on

each eigenvector is lower than19%. Figure 6 shows the family of graphs corresponding to the functionδ �→ j(s, δ)

for the admissible setS. Clearly, it can be seen that if the uncertainty level is unknown, then the robust updating

optimization problem goes to the deterministic solution presented in subsection C.
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Figure 4. Updated uncertain computational model corresponding to(sopt, δfix) = (26.2, 0.3). Graph of the probability density
functions ∆Λopt

α (black line), of its first order moment E{∆Λopt
α } (vertical gray line), of ∆λini

α (vertical black line) for α = 1 (upper
graph), α = 2 (middle graph), α = 3 (lower graph).
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Figure 5. Updated uncertain computational model corresponding to(sopt, δfix) = (26.2, 0.3). Graph of the probability density
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Figure 6. Family of graphsδ �→ j(s, δ) for s belonging toS.

F. Robust updating formulation with inequality constraints

We now present the results concerning the robust updating formulation in presence of inequality constraints ob-

tained with Eq. (25). The updated mean parameters opt and the updated parameterδopt are analyzed as a function

of the probability level and of the error level. Three cases are considered : (1) the case for which there is only one

probabilistic constraint for the eigenvalue corresponding toβΦ = 0 andεΦ = +∞. We then study the function

(βΛ, εΛ) �→ δopt defined from the domainDΛ,δ into the setFΛ,δ and the function(βΛ, εΛ) �→ sopt defined from the

domainDΛ,s into the setFΛ,s; (2) the case for which there is one probabilistic constraint for the eigenvector corre-
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sponding toβΛ = 0 andεΛ = +∞. We then study the function(βΦ, εΦ) �→ δopt defined from the domainDΦ,δ

into the setFΦ,δ and the function(βΦ, εΦ) �→ sopt defined from the domainDΦ,s into the setFΦ,s; and (3) the case

for which there are two probabilistic constraints withβ = βΛ = βΦ andε = εΛ = εΦ. We then study the func-

tion (β, ε) �→ δopt defined from the domainDΛ−Φ,δ into the setFΛ−Φ,δ and the function(β, ε) �→ sopt defined

from the domainDΛ−Φ,s into the setFΛ−Φ,s. Figures 7 and 8 show a bidimensional representation of the graph

of the functions(βΛ, εΛ) �→ δopt and(βΛ, εΛ) �→ sopt (case 1). Figures 9 and 10 show the graph of the functions

(βΦ, εΦ) �→ δopt and(βΦ, εΦ) �→ sopt (case 2). Figure 11 and 12 show the graph of the functions(β, ε) �→ δ opt

and(β, ε) �→ sopt (case 3). In these figures, the blank zone corresponds to the values of the probability level and

of the error level for which the optimization problem defined by Eq. (25) has no solution. By comparing figures 7

and 9 with figures 8 and 10, it can be seen thatDΛ,δ ⊂ DΦ,δ and thatDΛ,s ⊂ DΦ,s which means that the robust up-

dating methodology allows the random eigenvectors to be better updated than the random eigenvalues. In addition,

Figure 7 shows that significant model uncertainties (δ opt > 0.1) are obtained for small values of probability level

(β < 0.2). In opposite, Figure 9 shows that significant model uncertainties on the eigenvectors(δ opt > 0.1) are

obtained for large values of the probability level(β < 0.6). These results are coherent because we have introduced

in the experimental data model errors only on the eigenvalues. From figures 7 to 12 show thatF Λ,δ = [0 , 0.25],

FΦ,δ = [0 , 0.18], FΛ−Φ,δ = [0 , 0.34] andFΛ,s = [31 , 36.4], FΦ,s = [22.4 , 31.1], FΛ−Φ,s = [28 , 31.1].

Clearly, the setsFΛ,s andFΦ,s are almost disjoint which means that the optimal uncertain computational model

strongly depends on the nature of the constraints used in the robust updating formulation. It can also be seen that

the updated uncertain computational model related to the eigenvector probabilistic constraint is more sensitive to

the updated mean parametersopt than to the updated dispersion parameterδ opt whereas the contrary is observed

when using the robust updating formulation related to the eigenvalue probabilistic constraint. Moreover, it can be

seen thatFΛ−Φ,s ⊂ FΛ,s ∪ FΦ,s and thatFΦ,δ ⊂ FΛ,δ ⊂ FΛ−Φ,δ. This means that when both probabilistic con-

straints are used in the robust updating formulation, the updated uncertain computational model is mainly sensitive

to updated dispersion parameterδopt.
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Figure 7. Graph of δopt with respect toβΛ and εΛ for βΦ = 0, εΦ = +∞.
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Figure 8. Graph of sopt with respect toβΛ and εΛ for βΦ = 0, εΦ = +∞.
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Figure 9. Graph of δopt with respect toβΦ and εΦ for βΛ = 0, εΛ = +∞.
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Figure 10. Graph of sopt with respect toβΦ and εΦ for βΛ = 0, εΛ = +∞.
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Figure 11. Graph of δopt with respect toβ = βΦ = βΛ and ε = εΦ = εΛ
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In order to analyze more precisely the results presented in the Fig. 7 to 12, we reanalyze the three cases for an

error level equal to0.25 with a probability level equal to0.1. Forα belonging to{1, 2, 3}, let µ ∆Λα
, µ∆Φ̃α

and

σ∆Λα
, σ∆Φ̃α

be the mean value and the standard deviation of random variable∆Λ α and∆Φ̃α defined by Eqs. (19)

and (20). For each case, the main characteristics of the updated uncertain computational model are summarized

in Tables 2 and 3. In order to characterize the efficiency of the proposed robust updating methodology, Figs. 13

to 18 show the probability density functions of the random variables∆Λ opt
α and∆Φ̃opt

α for the three cases. These

figures show that the updating is improved in the probabilistic context because the value of the error is smaller than

for the non updated mean computational model. It can be seen that if only one constraint is considered, then the

other one is not verified which means that there can remain an important error (for instanceµ ∆Λα
= 0.33 for case

2 for which there is only one eigenvector probability constraint). Moreover, it can be seen that the robust updating

using both constraints guarantees that the mean error committed for each eigenvalue and eigenvector with respect

to the experimental data is lower than23.5%.

µ∆λ1
µ∆λ2

µ∆λ3
σ∆λ1

σ∆λ2
σ∆λ3

constraint on eigenvalue 7.7% 22.7% 15.2% 2.1% 2.8% 2%

constraint on eigenvector 1% 33% 11% 0.7% 1.2% 0.8%

both constraints 6.9% 23.5% 17.7% 3.5% 5% 3.3%

no constraint ,δfix = 0.3 4.7% 28.2% 18.2% 3.3% 6.1% 3.8%

µ∆Φ̃1
µ∆Φ̃2

µ∆Φ̃3
σ∆Φ̃1

σ∆Φ̃2
σ∆Φ̃3

constraint on eigenvalue 16% 27.5% 15.1% 1.7% 3% 2.6%

constraint on eigenvector 12.2% 19.9% 11.3% 0.7% 1.2% 1%

both constraints 13.9% 22.7% 15.2% 2.9% 5.1% 3.9%

no constraint ,δfix = 0.3 11.8% 18.4% 15.2% 3.2% 5.5% 4.2%

Table 2. Quantification of the errors induced by the updated computational model with respect to the experimental data.

sopt δopt j(sopt, δopt) −gΛ(sopt, δopt, 0.25, 0.1) −gΦ̃(sopt, δopt, 0.25, 0.1)

constraint on eigenvalue 32.2 0.15 1.06 0.014 < 0

constraint on eigenvector 28.6 0.06 1.03 < 0 0.024

both constraints 29.2 0.26 1.14 0.005 0.009

no constraint ,δfix = 0.3 26.2 0.3 1.18 < 0 0.27

Table 3. Characteristics of the updated computational model for each case.
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Figure 13. Updated uncertain computational model corresponding toβΦ = 0, ǫΦ = +∞, βΛ = 0.1, ǫΛ = 0.25 and yielding
(sopt, δopt) = (32.2, 0.15). Graph of the probability density functions ∆Λopt

α (black line), of its first order moment E{∆Λopt
α }

(vertical gray line), of ∆λini
α (vertical black line) for α = 1 (upper graph), α = 2 (middle graph), α = 3 (lower graph).
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Figure 14. Updated uncertain computational model corresponding toβΦ = 0, ǫΦ = +∞, βΛ = 0.1, ǫΛ = 0.25 and yielding
(sopt, δopt) = (32.2, 0.15). Graph of the probability density functions ∆eΦopt

α (black line), of its first order moment E{∆eΦopt
α }

(vertical gray line), of ∆φ̃
ini

α
(vertical black line) for α = 1 (upper graph), α = 2 (middle graph), α = 3 (lower graph).
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Figure 15. Updated uncertain computational model corresponding toβΛ = 0, ǫΛ = +∞, βΦ = 0.1, ǫΦ = 0.25 and yielding
(sopt, δopt) = (28.6, 0.06). Graph of the probability density functions ∆Λopt

α (black line), of its first order moment E{∆Λopt
α }

(vertical gray line), of ∆λini
α (vertical black line) for α = 1 (upper graph), α = 2 (middle graph), α = 3 (lower graph).
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Figure 16. Updated uncertain computational model corresponding toβΛ = 0, ǫΛ = +∞, βΦ = 0.1, ǫΦ = 0.25 and yielding
(sopt, δopt) = (28.6, 0.06). Graph of the probability density functions ∆eΦopt

α (black line), of its first order moment E{∆eΦopt
α }

(vertical gray line), of ∆φ̃
ini

α
(vertical black line) for α = 1 (upper graph), α = 2 (middle graph), α = 3 (lower graph).
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Figure 17. Updated uncertain computational model corresponding toβΦ = βΛ = β = 0.1, εΦ = εΛ = ε = 0.25 and yielding
(sopt, δopt) = (29.2, 0.26). Graph of the probability density functions ∆Λopt

α (black line), of its first order moment E{∆Λopt
α }

(vertical gray line), of ∆λini
α (vertical black line) for α = 1 (upper graph), α = 2 (middle graph), α = 3 (lower graph).
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Figure 18. Updated uncertain computational model corresponding toβΦ = βΛ = β = 0.1, εΦ = εΛ = ε = 0.25 and yielding
(sopt, δopt) = (29.2, 0.26). Graph of the probability density functions ∆eΦopt

α (black line), of its first order moment E{∆eΦopt
α }

(vertical gray line), of ∆φ̃
ini

α
(vertical black line) for α = 1 (upper graph), α = 2 (middle graph), α = 3 (lower graph).

V. Conclusions

A not straightforward methodology to perform the robust updating of complex uncertain dynamical systems with

respect to modal experimental data in the context of structural dynamics has been presented. The present formula-

tion based on an input error methodology adapted to the deterministic updating problem has been extended to the

robust updating context required in presence of model uncertainties in the computational model. The robust updat-

ing formulation leads a mono-objective optimization problem to be solved in presence of inequality probabilistic

constraints. An application is presented in order to validate the proposed approach.

Acknowledgements

The authors thank the French Research National Agency for supporting this research (ANR CORODYNA project

number NT05-2-41776).

29 of 29

American Institute of Aeronautics and Astronautics


