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In this paper, a methodology is presented to perform the robust updating of complex uncertain dynamical
systems with respect to modal experimental data in the context of structural dynamics. Since both model
uncertainties and parameter uncertainties must be considered in the computational model, then the uncer-
tain computational model is constructed by using the nonparametric probabilistic approach. We present an
extension to the probabilistic case of the input error methodology for modal analysis adapted to the deter-
ministic updating problem. It is shown that such an extension to the robust updating context induces some
conceptual difficulties and is not straightforward. The robust updating formulation leads us to solve a mono-
objective optimization problem in presence of inequality probabilistic constraints. A numerical application

is presented in order to show the efficiency of the proposed method.
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FAs
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Nomenclature

complex space

admissible set fofg3, ¢) for optimal updating dispersion parameter related to the probabilistic
eigenvalue constraint

admissible set fofg3, ¢) for optimal updating dispersion parameter related to the probabilistic
eigenvector constraint

admissible set fof(3, ¢) for optimal updating dispersion parameter related to both
probabilistic constraints

admissible set fofg3, ¢) for optimal updating mean parameter related to the probabilistic
eigenvalue constraint

admissible set fofg3, ¢) for optimal updating mean parameter related to the probabilistic
eigenvector constraint

admissible set fofg3, ¢) for optimal updating mean parameter related to both probabilistic
constraints

Young modulus

mathematical expectation

admissible set for optimal updating dispersion parameter related to probabilistic
eigenvalue constraint

admissible set for optimal updating dispersion parameter related to the probabilistic
eigenvector constraint

admissible set for optimal updating dispersion parameter related to both probabilistic
constraints

admissible set for optimal updating mean parameter related to the probabilistic
eigenvalue constraint

admissible set for optimal updating mean parameter related to the probabilistic
eigenvector constraint

admissible set for optimal updating mean parameter related to both probabilistic constraints
vector-valued function defining all the probabilistic constraints

function defining the probabilistic constraint on the eigenvalues

function defining the probabilistic constraint on the eigenvectors

cost function for the deterministic updating

cost function for the robust updating

number of rigid body modes

number of generalized coordinates

number of DOF in the computational model

number of non measured DOF

number of measured DOF

dimension of the mean reduced computational model
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AD,,

1) M

probability

random vector of the generalized coordinates related to the uncertain computational model
vector of the generalized coordinates related to the mean computational model

random vector of the nonzero components of the residue vector related to the uncertain
computational model

real space

real positive space

number of experimental eigenvalues and eigenmodes

residue vector of the mean computational model related to experimental eigenvalue number
vector of the nonzero components of the residue vector related to the mean computational model
admissible set for the updating mean parameters

updating mean parameter

updated mean parameter

section of the beam

given probability level

admissible set for the updating dispersion parameters

norm of the random error with respect to the experimental eigenvalues

random error with respect to the experimental eigenvalue number

norm of the random error with respect to the experimental eigenvectors

random error with respect to the experimental to eigenvector number

mass updating dispersion parameter

stiffness updating dispersion parameter

Kronecker Symbol

updating dispersion parameter

updated dispersion parameter

given error level

random eigenvalue numberrelated to the uncertain computational model

eigenvalue number of the mean computational model

experimental eigenvalue numhber

eigenvalue number of the mean computational model with fixed measured DOF

mass density of the non updated mean computational model

Poisson ratio

eigenfrequency numberof the mean computational model

experimental eigenfrequency number

eigenfrequency numberof the mean computational model with fixed measured DOF
random eigenvector numberin the physical space restricted to the experimental DOF
eigenvector numbetr of the mean computational model

experimental eigenvector numher

extrapolation of the experimental eigenvector numben the non measured DOF

30f29

American Institute of Aeronautics and Astronautics



v, = random eigenvector numberrelated to the uncertain computational model
v = eigenvector number of the mean computational model with fixed measured DOF
[G ] = random germ of the random mass matrix

[Gk] = random germ of the random stiffness matrix

H,] = projection basis matrix

1] = identity matrix

(K] = finite element stiffness matrix of the mean computational model

[K,caol = meanreduced stiffness matrix

[Kredo] = random stiffness matrix

(Lol = factorization of the mean reduced mass matrix

(Lol = factorization of the mean reduced stiffness matrix

[M] = finite element mass matrix of the mean computational model

M, .., = meanreduced mass matrix

[Myeao] = random mass matrix

[R] = modal residue matrix related to the mean computational model

[R] = modal residue matrix related to the uncertain computational model

[S,.] = modal liftings matrix

[AeP] = real diagonal matrix of the experimental eigenvalues

[D“P] = experimental modal matrix

[¥] = modal matrix of the mean computational model with measured DOF fixed

. Introduction

The updating of computational models using experimental data is currently a challenge of interest in structural
dynamics. The updating formulation involves an optimization problem for which the cost function can be de-
fined from the operator of the computational model (input error formulation) or from the inverse of the operator
of the computational model (output error formulation). These last decades, such an updating has been carried
out using deterministic computational models (see for instérfoe the input error formulations aiid>? for the

output error formulations). It is well known that deterministic computational models are not sufficient to accu-
rately predict the dynamical behavior of complex structures. The uncertainties have then to be taken into account
in the computational models by using probabilistic models as soon as the probability theory can be used. More
recently, the terminology of robust updating has been introduced. The robust updating is defined as the updat-
ing of the parameters of the computational model which contains uncertainties. The uncertainties are taken into

account in the computational model which is then called the uncertain computational model. Let us recall that

4 of 29

American Institute of Aeronautics and Astronautics



there exist two classes of uncertainties: (1) the system parameter uncertainties which are the uncertainties on the
parameters of the computational model (system parameters), (2) the model uncertainties which are induced by the
mathematical-mechanical process used for the construction of the computational model and which, by definition,
cannot be taken into account by variations of the system parameters. In general, system parameter uncertainties
can be taken into account by using the parametric probabilistic approach, see for iRStamcef for rotating
structures. Both model uncertainties and system parameter uncertainties can be taken into account by using the
nonparametric probabilistic approach recently introduééd.We then can distinguish the robust updating of the
updating parameters in presence of system parameter uncertainti¢he uncertain computational model is then
constructed with the parametric probabilistic approaches) from the robust updating of the updating parameters in
presence of both model uncertainties and system parameter uncerfairfties uncertain computational model is

then constructed with the nonparametric probabilistic approach). Until now, all these robust updating formulations
involve cost functions which are defined from the observations of the uncertain computational model (output error
formulations). The motivation of this paper is to propose a robust updating methodology of the updating parame-
ters in presence of both model uncertainties and system parameter uncertainties using modal experimental data and
defining a cost function relative to the operators of the uncertain computational model (input error formulation).
The deterministic underlying methodology is based on the modal updating formulation propasékis paper,

we propose to extend such a deterministic updating formulation to the case of an uncertain computational model
for which uncertainties are modeled using the probability theory. Note that this extension is not trivial. The paper

is organized as follows. Section Il is a brief summarizing of the deterministic updating methodolddy.deals

with the updating of a mean computational model for which the updating parameters are called the mean updating
parameters. The main idea is to modify the generalized eigenvalue problem of the mean computational model in
order to calculate a residue which characterizes the good matching between the mean computational model and
the available experimental data. The cost function is defined from this residue and is then optimized with respect
to the admissible set of the mean updating parameters. Section Il deals with the robust updating formulation. In
this robust updating context, there are model uncertainties which are such that the available experimental data can
not exactly be reproduced by any computational model. This context does not allow the strategy of deterministic
updating to be effective. The main idea is thus to implement the nonparametric probabilistic approach in a mean

computational model in order to take into account both model uncertainties and parameter uncertainties. First of
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all, a modified Craig and Bampton dynamical substructuring metRdd is introduced in order to construct a

mean reduced matrix equation allowing the deterministic residue to be calculated. In a second step, the gener-
alized matrices of this mean reduced equation are replaced by random matrices for which the probability model
is explicitly constructed. With such an approach, the uncertainty level of each random matrix is controlled by a
dispersion parameter. We then obtain a random residue which is defined as a function of the updating parameters
which are the updating mean parameters related to the mean computational model and the dispersion parameters
which allow the uncertainty level in the computational model to be controlled. In a third step, the cost function

is defined as the second-order moment of the norm of the random residue. Difficulties arise from a conceptual
point of view. A straightforward generalization of the deterministic optimization problem which would consist

in optimizing the cost function with respect to the admissible set of the updating parameters would yield a deter-
ministic updated computational model which would not be compatible with the existence of model uncertainties
in the computational model. The formulation is then modified by adding probabilistic constraints related to the
nonreducible gap between the uncertain computational model and the experiments due to the presence of model

uncertainties. In Section IV, a numerical example is presented in order to validate the methodology proposed.

II.  Summarizing the input error methodology for the deterministic updating of a

computational dynamical model using experimental modal data analysis

The assumptions concerning the available experimental data are given below. It is assumed that experimental
modal analysis is carried out on only one manufactured dynamical system with free free boundary conditions.
Consequently, there are = 6 rigid-body modes associated withzero eigenvalues which are not taken into
account in the analysis. The experimental data consistseixperimental elastic eigenvalues denoted)by

AP < .. < AP andr corresponding experimental eigenmodes denoted @8 which are measured at

neps Observation points. Moreover, it is assumed that the manufactured dynamical system can be modeled by a
deterministic computational model which is called the mean computational model. The usual methodology for
the updating of a deterministic computational model using modal analysis is the output error formulation (see for
instancé) which consists in solving a multi-objective optimization problem in order to simultaneously minimize

the distance between each experimental eigenvalue / eigenvector and between each eigenvalue / eigenvector of
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the deterministic computational model. The alternative formulation used in this Section belongs to the input error
formulation. This means that the cost function which quantifies the gap between the mean computational model
and the experimental data is directly defined from the operators of the mean computational model so that the
eigenfrequencies and the eigenmodes are simultaneously treated with a coherent way. This deterministic updating
yields to solve a mono-objective optimization problem with respect to the admissible set of the updating parameters
of the deterministic computational model. Since the robust updating proposed for modal analysis is based on the
method proposed ifiwe briefly summarize it below in order to improve the readability of the manuscript.

The mean computational model of the dynamical system is constructed using the finite element method and has
n DOF (degrees of freedom). It is assumed that the finite element mesh is compatible with flexperimental
measurement points. Letbe theR*-vector of the updating parameters of the mean computational model called
the updating mean parameters. Vedtelongs to an admissible s&tcorresponding to a given family of mean
computational models. Assuming the dynamical system to be linear, fordixed, the generalized eigenvalue

problem related to the conservative dynamical system is written asC)iigdﬁa) belonging toR™ x R™ such that
0= (K()] = A M), , a=1....,r , 1)

in which the matrice$)M (s)] and[K (s)] are the finite element mass and stiffness matrices. Since the dynamical
system has free free boundary conditions, matri@éss)] and [K(s)] are positive-definite and semi-positive-
definite symmetri¢n xn) real matrices whose bloc decomposition with respect ta.thg experimental measured

DOF and thewy = n — n,,s unmeasured DOF is written as

Mll MIQ K11 KIQ
g = | B Dreel) ] Kul| "

[M15(9)]"  [May(s)] [K15(9)]"  [Kas(9)]

The matrix formulation which allows the deterministic updating to be solved is written as follows :

[K11(9)]  [Kia(9)] o | M1 ()] [My5(9)] P
£a(9) = _ e 3)
(K 15(9)]"  [Kqp(9)] [M15(9)]"  [Moy(9)] fzva(s)
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In Eq. (3), the unknown quantities are then vectorss) andgzva(s). For a given updating mean parameger
belonging taS, the component,, , (s) of the residue vectar , (s) quantifies the errors of the mean computational
model induced by the experimental eigenvalue numband its associated elastic eigenmode for the DOF number

k. It should be noted that vectgr, (s) is not the restriction of eigenvectgr, (s) to the unmeasured DOF. Note

that vectorgz’a(s) is calculated from the mean computational model and from the experimental modal measure-
ments by solving Eq. (3). Following the refereider the deterministic updating methodology, two assumptions

are introduced which ensure the existence and the uniqueness of a solution: (1) Since the information concerning
the experimental eigenmodes are only available for the measured DOF, then it is assumed that the residue is zero

for the unmeasured DOF, that is to say,

ra(8) = | : )

(2) Foreachyin {1,...,r}, the matrix| B, (s)] defined by

[Bo(9)] = [Kx(8)] = A" [Mxm(s)] ®)

is assumed to be invertible. With such an assumption, the eigenvalues of the generalized eigenvalue problem related
to the mean computational model for which the measured DOF are fixed have to differ from the experimental
eigenvalues. In practice, such a condition is verified in the low-frequency domain for which we are only interested

in the first smallest eigenfrequencies and if the measured DOF are regularly distributed through the structure. Let
us introduce the first eigenfrequency of the structure for which all the measured DOF are fixed. Then, if this
eigenvalue is much larger than the experimental frequency band of analysis, then the assuption is satisfied. It is
assumed that the numberof experimental pairs of eigenvalues and eigenmodes which are considered for the
deterministic updating is chosen in order to fulfill this condition. Finally, it should be noted that Eq.(3) is coherent
with Eq.(1) if the experimental data matches with the mean computational model.

The deterministic updating is solved by simultaneously minimizing the residue vegt@ssfor all o belonging

to{1,...,r}. The cost function is defined as a function of the updating mean pararaéters
i = IIRGIIF (6)
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in which the(r xr) real matriR(s)] is defined by R (s)]as = @57 15(5). INEq. (6),/|[X]||% = tr([X] [X]T).

Note that in the input error methodology, the sum of the Euclidean norms of the residue vectors are generally used.

Since a change of basis can always be performed to express the cost function relative to the residue vectors, we
have chosen to express the residue vectors in the modal basis. The solution of this deterministic updating problem

is then given by

P = arg rsnelg IO )

Note that the components of vecttan represent any physical parameters of the mechanical system and that the
dimension of this vector is. EIiminatinguﬁz‘a (s) in EQ. (3) and considering theexperimental elastic modes, it

can be deduced that there are n,;,, independent nonlinear algebraic equations to identify the vector parameter

s. Consequently, the inverse problemaspriori well posed ifr x n.,s > s that is assumed. Clearly, such

an assumption is not sufficient to guarantee the existence of a unique solution. Nevertheless, the problem is
not to construct the global optimum for this updating problem but to improve the computational model in the
neighborhood of the nominal design. In addition, in the methodology proposed, the cost function is evaluated
by solving direct eigenvalue problem and consequently, there are no potential difficulties related to the inverse

problem.

Ill.  Robust input error methodology for experimental modal data analysis

In this Section, it is assumed that the computational model used for modeling the manufactured dynamical system
for which experimental modal data are available contains significant model uncertainties. Consequently, the de-
terministic updating formulation presented in Section Il can be improved in taking in to account the presence of
model uncertainties. It should be noted that in general, the optimization of a deterministic computational model
can produce a non optimal result with respect to the robust optimization of an uncertain computational model as it
is shown for instance . We then propose to adapt the deterministic updating formulation presented in Section
Il to the robust updating context as explained in Section |. The nonparametric probabilistic approach is then im-
plemented in the mean reduced matrix model. The formulation of the optimization problem is then discussed in

order to capture the largest possible class of uncertain computational models.
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A. Mean reduced computational model

The proposed dynamical substructuring method is based on the Craig and Bampton feththekt us recall that

this method consists in decomposing the displacement vector of a substrucre as the direct sum of the displacement

vector of the substructure with fixed coupling interface and of the static lifting relative to the coupling interface.

In the present context, the coupling interface is defined byathe measured DOF. The extension of the Craig

and Bampton method consists in replacing the static liftings by the "modal liftings” related to each experimental

eigenvalue. Note that in this context, the projection basis dependsfor a givenm belonging to{1, ..., r}, the

projection basis is given by

e o [1] (0]
= [H,(9)] . [Hy(9)] = : (8)
®, (9 a,( [S,(9)] [¥(s)]

In Eq. (8).9_(s) is theR" -vector of the generalized coordinates. The mdttixs)] is the(n, x N) real modal
matrix whose columns are the eigenvechd_arls{s), . ,1_]JN(5) corresponding to the lowest eigenvalues of the gen-
eralized eigenvalue problem related to the mean computational model with fixed coupling interfaceéasured

DOF): find (A%,m_pﬁ) belongingtoR™ x R™2 such that

0= ([Km(s)] - A/Og(s) [Mzz(s)]) 1_%(5) 9

In Eq. (8), the matri{S ()] is the(nz X neps) real matrix of the "modal” boundary functions defined by

[Sa(9] = ~[Ba(9) 7 ([K1a(9])" = AT [Mpp(9)") , a=1,...,1 (10)

in which[B_,(s)] is defined by Eq. (5) It should be noted that the usual Craig and Bampton method corresponds to

Eq. (10) for which the mass dynamic term is not taken into account et N + n ,5s. The mean reduced matrix
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equation which allows,, (s) andg_(s) to be calculated is then written as

L. ()
= (Kreaa(®] = A7 M o(9]) |7 | (12)
0 (9

in which the matricefM ..., ,(s)] and[&, ., . (S)] are thelm xn) positive-definite and positive symmetric real mass
and stiffness matrices defined Y.y .. ()] = [, (5)]" [M(5)] [E,(9)] and[E,q 0 (S)] = [H(5)]" [E(S)] [H,(9)]-
It should be noted that a convergence analysis with respect to the numerical pardnessistematically carried

out for every application (see subsection D of Section V).

B. Stochastic computational model

The nonparametric probabilistic approdch’recently introduced is used to model both data uncertainties and
model uncertainties in Eq. (11). Briefly, the method consists in replacing the deterministic mgtficgs,, (s)]

and (K., ()] by random matrice$M ,.cq, (S, dar)] and [K .4, (S, dx)] for which the probability distribution

is constructed using the maximum entropy principle under the constraints defined by the available informa-
tion. The scalar parametets,; anddx are the dispersion parameters which allow the amount of uncertainty
of the random matrices to be quantified. The random matfies, (S, 0ar)] and[K cq,« (S, dx )] are written as

M ed.a(8.630)] = [Las (8] [Gar (630)] [Ls.a(8)] ANA[K reaa(S,05)] = [Lic o (91" (G (85)] [Lig.o ()] in

which the matrice$L, , (s)] and[L ,(s)] are(n x n) and((n —m) x n) real matrices such that/,. ., ,(s)] =

Lt (8] [Lago(8)] @I, 0y o (9] = [Lico(9)]” [Li o(S)] and where the matricé u (611)] and[G (5 )]

are full (n x n) and((n —m) x (n—m)). Below, the algebraic representation of these random matrices adapted to
the Monte Carlo numerical simulation is briefly recalled. [@{4)] denotes one of the random matf 57 (dar)]

or [Gk (dx)] for which the dimension is denoted by From the probability distribution constructed with the
Maximum Entropy Principle, it can be deduced tf@ai = [L ¢]? [L¢] in which [L ] is a real upper triangular
random matrix such that

(1) random variable$§[L ¢];;, 7 < j'} are independent;

(2)forj < 5/, real-valued random variablle ¢;;» can be written ai ¢];;» = 0, U;; inwhicho,, = & (u+1)~1/2

and wherdJ;;, is a real-valued Gaussian random variable with zero mean and variance etjual to
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(3) for j = j', positive-valued random variable ;| ;; can be written afl_¢];; = 0,,1/2V; in whicho,, is defined
above and wher¥ is a positive-valued gamma random variable whose probability density funetig) with

respect talv is written as

pVJ (’U) = ]].RJr(U)W’UW_T’e_U. (12)

All the details concerning the construction of the probability model of these random matrices can be fotidd in

It should be noted that the random matri@ds..q.« (S, das)] and[K cq,« (S, dx )] have the same algebraic properties
than the deterministic matricdd/,.., ,(s)] and [K.,.., ,(s)]. In particular random matrifM ;4.4 (S, dar)] (Or
[Kred,a(S, 0k)]) is with values in the set of all the positive-definite (or semi-positive-definite) symmetric real
matrices. Letd = (0,0 ) be the vector of the dispersion parameters which has to be updated. It can be
shown from the construction of the probability model that dispersion paraheteist belong to the admissible
setA = {[0, \/;‘:ﬁ} x [0, \/;L:%]} It should also be noted that the same random matfiGeg(dx)]
and[Gk (dx)] are used to construct the random matri®ds.q o (S, dar)] and[K,.cq. (S, dx )] for all o belonging

to {1,...,r}. The stochastic matrix equation whose unknowns are the random residue Red®#6) and the

random vectoR , (s) of the random generalized coordinates is written as

Ra(s,9) TP

= (Kred.a(s.60)] = A" Mreaa(sonl) | =0 | (13)
0 Qa(s,8)

C. Estimation of Q,(s,9)

The matricesK ,cq.o (S, dx )] and[M ,.q.« (S, das )] are block decomposed with respect to the number of experimen-

tal measured DOF and with respect to the number of generalized coordviaigsh that

Koono(8.65)] = (K1a(s,0r)]  [Keals dr)] Mo a(s.8)] = [(Mia(s0m)]  [Meal(s o)

[Kea(s 0x)]" [K2,a(S 0x)] Mea(s 0a)]" [Maa(s 0nr)]
(14)

The random residue vect®, (s, §) and the random vect® , (s) of the random generalized coordinates solution
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of the random matrix equation (13) are then given by

Ra(s8) = [Bia(s8)]e™ +[Bca(s8)]Qu(s,8) (15)

QQ(S,S) - _[32701(558)]_1 [BC,OL(SvS)]szmp ) (16)

in which [B1,4(5,8)] = [I1,a(5.8)] — AL [M1,4(S,8)], [Be,a(S8)] = [Keal(s,8)] — Aa? [Mc.q(s,8)] and
[B2,a(s,8)] = [K2,a(s,8)] — ALP [Ma2 (s, 8)]. The calculation of random vect@, requires the inversion of
the random matrixi3; . (s, 8)] for all a belonging to{1, . .., r} . Itis assumed that the numbeof experimental

eigenvalues is chosen under the assumption that random fiarix(s, §)| is invertible almost surely.

D. Robust updating formulation

The robust updating formulation requires to define the cost function from the uncertain computational model as a
function of the updating mean parametemnd of the dispersion parameterin coherence with Eq. (6), the cost

function denoted by (s, §) is written as

i(s.8) = IR ONE 17

in which the(r x r) real matrix[R (s, 8)] is defined by

[R(5,8)]as = @7 T R3(s,8) . (18)

Note that the cost functiog(s, 8) tends to the cost functioj(s) asd ;s anddx go to zero, which means as the
structure tends to be deterministic. The straightforward generalization of Eq. (7) to the random case yields the
solution(s°?*, 8°"") = arg ming_g j(s,8) . The following comment shows that this formulation is not adapted

to the robust updating context. If the deterministic updating context assumed that there were no model uncertain-
ties and no parameter uncertainties, then it would mean that the family of deterministic models would be able to
exactly reproduce the experimental data. In that case, the deterministic cost function would be zero for the updated
solution. In the present context of robust updating, there are model uncertainties which are then taken into account

by a class of computational model generated with the nonparametric probabilistic approach. The above formula-
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tion for robust updating tends to minimize the model uncertairfes- 0) which means that this formulation

is equivalent to the deterministic updating formulation. However, since it is assumed that there are significant
model uncertainties, the class of deterministic computational models is not able to reproduce the experiments.
Consequently, the cost function is doubtlessly minimized but is nonzero and there still exists an irreducible dis-
tance between each eigenvalue /eigenvector of the updated computational model and each experimental eigenvalue
/ eigenvector. The above formulation for robust updating is then not correct. In order to generate a larger class
of uncertain computational models, additional probabilistic constraints involving these distances are added in the

formulation of the robust updating optimization problem. et andA @ be the positive-valued random variables

defined by
r __\exp
AMSE) = = D (A8 AAQ(S,S):% ! (19)
a=1 =
~ I s ~ 1®4(s,8) — 2|
AD(s,8) = - > {APL(s8)}2 , AD,(s8) = ngewpn_ (20)
a=1 Ly

In Egs. (19) and (20), for each belonging to{1,...,r}, the positive-valued random eigenvaldg, (s, §) and
the R"**s-valued random eigenvectéfra(s, §) restricted to the measurement DOF are defined by the generalized

eigenvalue problem related to the uncertain computational model which is written agA fitd §), ¥, (s, 9))
0 = (IKrea.a(80K)] = Aa(S8) Mreaa(S.00)]) Tals8) o= 1,7 (21)
for which random eigenvectab, (s, §) is reconstructed by

D.(s8) = [H,|¥alsd) (22)

where[H ;| = [[I] [0]] is the first row bloc of matriXH ,(s)]. We now introduce the probabilistic constraints.

Let ga(s,8; Ba,ea) andgz (s, 8; Bs, co) be the functions defined by

gA(S,8;8x,6n) = fa — Proba (AA(s,8) < ea) (23)
95(576;5¢)75(I>) = ﬁ‘I’ — Proba (A@(S,ﬁ) < 5‘1’) ) (24)
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in which Proba denotes the probability and wherg, c¢ and 3, 8¢ denote a given error level and a given
probability level respectively. The robust updating formulation consists in defining, for a given (5 4, S¢)
belonging td0, 1[x[0, 1] and for a givere = (e, €g) belonging tdo, +oc[x]0, +oc, the solutions°?, §°7)
as
(s°P,8°P) = arg min j(s,8) (25)
(s,8) € {Sx A}

g(s.8;:B8,¢) < 0

in which g(s,8;8,e) = (g9a(s,8;8x,¢€4),95(S,8; Ba,c4)). The existence of a solution for this optimization
problem cannot be proven in the general case. A specific analysis must be carried out for every application (see

Section V).

I\V. Numerical Validation

A. Description of the mean finite element model

The numerical validation is carried out using the truss system presentethis. structure is located in the plane
(OX, OY) of a Cartesian coordinate system. The truss is constitutddveftical bars4 diagonal bars and
horizontal beams. For the non updated truss, all the bars and beams are made up of a homogeneous isotropic
elastic material with mass density = 2800 kg x m~3, Poisson ratia,, = 0.3 and Young modulu€y, =

0.75 x 10" N x m~2. The vertical bars have a constant cross-sectidnf 10 ~2m? and a length o8 m. The
diagonal bars have a constant cross-sectidhdfx 10 =2 m? and a length 06.83 m. The horizontal beams have

a constant cross-section 8f = 0.4 x 1072m?, a constant beam inertia 6f756 x 10~'m* and a length of
15m. The truss has free-free boundary conditions. The mean finite element model of this truss is constituted of
bar elements (with two nodes) an?l beam elements (with two nodes) yielding= 166 DOF (see Fig. 1). There

is only one updating parameter= p S, with p the mass density of the upper beam which has to be updated. It
should be noted that for this non updated truss= 11.2 kg/m. The admissible se&f for the updating parameter

s of the mean computational model is takenSas- [10, 40] kg/m.

150f 29

American Institute of Aeronautics and Astronautics



B. Description of the data basis

Since no experiment has been carried out on this truss, a numerical experiment is generated to represent the
experimental data basis. The experimental data are simulated as follows. We consider the stochastic computational
model corresponding to the mean computational model with uncertainties and defined by Egs. (21) and (22). For
s = spanddx = dp = dp with §o = 0.3, one realization\ , (s, do; #) of the random eigenvalués, (s, do ),

and the corresponding realizati@]a(so, d00; 6) of the random eigenvecto@a(so, dp) are calculated using the
stochastic computational model. Then, an arbitrary finite perturbation is applied to every eigefvalugSo; 6)

without modifying the eigenmode@a(so,éo; 0) and thus defining the experimental data. Consequently, this
experimental data cannot be obtained with a deterministic updating of thgdéryss= dx = 0) for which the

mass density) of the upper beam is the updating parameter. The experimental data basis is thus constituted of
(1) r = 3 elastic experimental eigenfrequencies” = 93 Hz, v5"¥ = 110Hz andv5™ = 170 Hz and

(2) the translational components corresponding (g = 28 translational measured DOF and representing the

corresponding experimental eigenmodes (see Fig. 1).

Figure 1. Finite element mesh of the truss. Symbob: nodes of the mesh, symbol] measured nodes, thick solid line: elements with
fixed properties, thin solid line: elements whose properties have to be updated.
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C. Deterministic updating

The results concerning the deterministic updating formulation (see Section 2) are presented in order to construct
a reference solution. The deterministic updating optimization problem yiglds'® = 31 kg/m for which cost
functionl‘(sol’“det) is normalized tal. Figure 2 and Table 1 quantify the differences with respect to each eigen-

frequency and with respect to each eigenmode for the non updated mean computational model and for the updated

mean computational model. For a giveielonging to{1, ..., r}, we introduceA)  (s) AS™ = |\, (s) — ASP
andAg(s) [l = 1@, (5) — @] Let AN = AN, (sp), AAFHE = AN, (sordet), AG™" =
~opt,det

Aéa(so), Ad, = Aéa(sof’tvd“) the similar quantities to those defined in Eq. (13) but for the deterministic

. i ~ini ~opt,de
case. Figure 2 shows the graphs— AA™ | a — AAPH o o AG™ anda — AG™7™ . The results show
Q0 Qv e —Q
the efficiency of the deterministic updating formulation to reduce the gap between the experiments and between

the computational model. Nevertheless, the cost function is not zero which means that model uncertainties have to

be taken into account in the modeling of the computational model which has to be updated.
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Figure 2. Quantification of the errors between the non updated and the updated mean computational model with the experimental
data. Upper graph : graph of a — Aggm' (black line), a — Aggpt’dft (gray line). Lower graph : graph of o — Aé;m (black line),

a Aézpt’dd (gray line).

A [ AN | AN || Ag [ AG, | AG,
non updated 56.1% | 113% | 7.3% || 23.6% | 60.9% | 59.4%
deterministic updating| 3.6% | 27.9% | 12.7% || 14.6% | 24.9% | 13%

Table 1. Quantification of the errors between the non updated and the updated mean computational model with the experimental data.
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D. Convergence analysis with respect to the numerical parameters

In the context of the robust updating, the stochastic equations of the uncertain computational model are solved by
using the Monte Carlo numerical simulation. In order to simplify the calculations, the same level of uncertainties
is considered for the mass and for the stiffness terms, that is td sayd,; = dx. A convergence analysis is
carried out in order to calculate the numi@érof eigenmodes to be kept in the modal reduction and the number

n, of realizations. The mean square convergence is analyzed by studying the fyiction) — Conuv(N, ny)

defined by

Com?*(N,m.) = - S IR (s, 500113 (26)

=1
in which [R (s, §; 0;)] is the realization numberof random matri{R (s, )] given by Eq. (18). The convergence
analysis is carried out with = 11.2kg/m and withd = 0.3. Figure 3 shows the graph, — Conv(N,ny)
for different values ofV. It can be seen that a reasonable convergence is reach&d for110 ansn , = 600.
From now on, the numerical calculations are carried out with the numerical paraVeterd 10 ansn ; = 600.
It should be noted that a more precise convergence analysis could be performed in studying the convergence on
the robust updating solution. However, such an analysis would imply that the optimization problem should be
solved many times and this is time consuming. That is why the convergence analysis has been carried out on
the objective function for a given fixed set of updating parameters. In particular, the(z8loé the updating
dispersion parameter has been set to a sufficiently high value in order to ensure that the values of the optimal

numerical parameters be also valid for smaller values of the updating dispersion parameter.

E. Robust updating formulation without inequality constraints

As we have explained in Section IV, the robust updating formulation without inequality constraints does not allow
the updating to be improved with respect to the presence of model uncertainties. In this subsection, we prove this
result by using the numerical example. First, the case for which the level of uncertainty in the structure is assumed
to be known is considered with = 6/ = 0.3. The updated uncertain computational model is characterized

by updating paramete(s°Pt, §/%¢) = (26.2,0.3) for which j(s°Pt, §/%*) = 1.18. The generalized eigenvalue
problem related to the updated uncertain computational model is then solved by.usiad 0 000 realizations in

order to characterize, for eachbelonging to{1, 2, 3} the probability density functions of the random variables
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Figure 3. Convergence analysis : graph of functionns +— Conv(N,ns) for the truss structure with updating parameter s =
11.2 Kg/mand§ = 0.3.

ANt = AA(s°Pt, §Fi7) and ADPt = Ad(s°Pt, §77). For eachn belonging to{1,2, 3}, Table 2 shows the
mean valuegiay, andu, s , and the standard deviations,», ando,;  of the random variableAA 2" and
A®2rt, Figures 4 and 5 show the probability density functions of the random variAbleg® and A®°?". It can

be seen that the mean error committed on each eigenvalue is lowetd¥taand the mean error committed on
each eigenvector is lower thaA%. Figure 6 shows the family of graphs corresponding to the funétien; (s, §)

for the admissible sef. Clearly, it can be seen that if the uncertainty level is unknown, then the robust updating

optimization problem goes to the deterministic solution presented in subsection C.
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Figure 4. Updated uncertain computational model corresponding to(7t, §/#*) = (26.2,0.3). Graph of the probability density

functions AAZP* (black line), of its first order moment E{AAZ*} (vertical gray line), of AN (vertical black line) for o = 1 (upper
graph), @ = 2 (middle graph), « = 3 (lower graph).
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F. Robust updating formulation with inequality constraints

We now present the results concerning the robust updating formulation in presence of inequality constraints ob-
tained with Eq. (25). The updated mean parametér and the updated paramete?’ are analyzed as a function

of the probability level and of the error level. Three cases are considered : (1) the case for which there is only one
probabilistic constraint for the eigenvalue corresponding4o= 0 andey = +oo. We then study the function
(Ba,en) — 6°Pt defined from the domaiP s into the setF, s and the functiori8,, ex) — s°P* defined from the

domainD, . into the setF, ,; (2) the case for which there is one probabilistic constraint for the eigenvector corre-
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sponding tg3, = 0 andey, = +oo. We then study the functiofBs,cs) — §°P¢ defined from the domai® s s

into the setFs 5 and the functiori8s, £4) — s°P* defined from the domaiP ¢ , into the setFs ; and (3) the case

for which there are two probabilistic constraints with= 5, = (g ande = ey = 9. We then study the func-

tion (8,¢) — ¢°P* defined from the domai® 4 s into the setFa_q s and the functior(3,e) — s°P* defined

from the domairD,_q s into the setF,_s . Figures 7 and 8 show a bidimensional representation of the graph

of the functiong 3, ex) — d°Pt and(Ba, en) — s°Pt (case 1). Figures 9 and 10 show the graph of the functions
(Bs,e9) — 0°Pt and(Bs, ) — s°P! (case 2). Figure 11 and 12 show the graph of the functigns) — § Pt
and(3,¢e) — s°P (case 3). In these figures, the blank zone corresponds to the values of the probability level and
of the error level for which the optimization problem defined by Eq. (25) has no solution. By comparing figures 7
and 9 with figures 8 and 10, it can be seen fats C Ds s and thatD, , C Dg . Which means that the robust up-
dating methodology allows the random eigenvectors to be better updated than the random eigenvalues. In addition,
Figure 7 shows that significant model uncertainti&®¥{ > 0.1) are obtained for small values of probability level

(B8 < 0.2). In opposite, Figure 9 shows that significant model uncertainties on the eigenvgctdrs- 0.1) are
obtained for large values of the probability leygl < 0.6). These results are coherent because we have introduced

in the experimental data model errors only on the eigenvalues. From figures 7 to 12 shéw that [0, 0.25],

Fos = [0,0.18], Fa_as = [0, 0.34] andFa s = [31,36.4], Fo, = [22.4,31.1], Fo_as = [28, 31.1].

Clearly, the setsFy ; andFs s are almost disjoint which means that the optimal uncertain computational model
strongly depends on the nature of the constraints used in the robust updating formulation. It can also be seen that
the updated uncertain computational model related to the eigenvector probabilistic constraint is more sensitive to
the updated mean paramet&r? than to the updated dispersion paramétéf whereas the contrary is observed
when using the robust updating formulation related to the eigenvalue probabilistic constraint. Moreover, it can be
seen thatFy_s s C Fa,s UFe s andthatFs s C Fas C Fa—s,5. This means that when both probabilistic con-
straints are used in the robust updating formulation, the updated uncertain computational model is mainly sensitive

to updated dispersion parametér’.
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Figure 7. Graph of 6°P* with respect to 3y andep for B = 0,e9 = +oo.
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Figure 8. Graph of s°Pt with respect to 35 andep for By = 0,e9 = +oo.
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In order to analyze more precisely the results presented in the Fig. 7 to 12, we reanalyze the three cases for an
error level equal td@.25 with a probability level equal t0.1. For a belonging to{1,2, 3}, let i aa.,, K, and

OANG OpG, be the mean value and the standard deviation of random vaﬂdblgandA%a defined by Egs. (19)

and (20). For each case, the main characteristics of the updated uncertain computational model are summarized
in Tables 2 and 3. In order to characterize the efficiency of the proposed robust updating methodology, Figs. 13
to 18 show the probability density functions of the random variatlas?* and A®2r! for the three cases. These
figures show that the updating is improved in the probabilistic context because the value of the error is smaller than
for the non updated mean computational model. It can be seen that if only one constraint is considered, then the
other one is not verified which means that there can remain an important error (for instance= 0.33 for case

2 for which there is only one eigenvector probability constraint). Moreover, it can be seen that the robust updating
using both constraints guarantees that the mean error committed for each eigenvalue and eigenvector with respect

to the experimental data is lower thas5%.

H HAX ‘ AN ‘ AN H OAN ‘ TANs ‘ OAN;

constraint on eigenvalue|| 7.7% | 22.7% | 15.2% || 2.1% | 2.8% | 2%
constraint on eigenvector| 1% 33% 11% || 0.7% | 1.2% | 0.8%
both constraints 6.9% | 23.5% | 17.7% || 3.5% | 5% | 3.3%
no constraint §/* = 0.3 || 4.7% | 28.2% | 18.2% || 3.3% | 6.1% | 3.8%
Pad, | Fad, | Pad; || 9ad, | TAd, | TAd,
constraint on eigenvalue|| 16% | 27.5% | 15.1% || 1.7% | 3% | 2.6%
constraint on eigenvector| 12.2% | 19.9% | 11.3% || 0.7% | 1.2% | 1%
both constraints 13.9% | 22.7% | 15.2% || 2.9% | 5.1% | 3.9%
no constraint 9/ = 0.3 || 11.8% | 18.4% | 15.2% || 3.2% | 5.5% | 4.2%

Table 2. Quantification of the errors induced by the updated computational model with respect to the experimental data.

sOPL | goPt | j(sOPt 5OP) || —ga (sOP, 598 0.25,0.1) | —gg (5P, 5P, 0.25,0.1)
constraint on eigenvalue|| 32.2 | 0.15 1.06 0.014 <0
constraint on eigenvector| 28.6 | 0.06 1.03 <0 0.024
both constraints 29.2| 0.26 1.14 0.005 0.009
no constraint §/** = 0.3 || 26.2| 0.3 1.18 <0 0.27

Table 3. Characteristics of the updated computational model for each case.
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Figure 13. Updated uncertain computational model corresponding tg3; = 0, e = 400, 84 = 0.1, ep4 = 0.25 and yielding
(s°Pt,6°Pt) = (32.2,0.15). Graph of the probability density functions AASP (black line), of its first order moment E{AASP!}
(vertical gray line), of AN (vertical black line) for o« = 1 (upper graph), o = 2 (middle graph), o = 3 (lower graph).
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Figure 14. Updated uncertain computational model corresponding tgdy = 0, ¢ = +oo, B4 = 0.1, ¢4 = 0.25 and yielding
(s°Pt,§°Pt) = (32.2,0.15). Graph of the probability density functions A®2P* (black line), of its first order moment E{A®S""}
7ing
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Figure 15. Updated uncertain computational model corresponding tg3y = 0, ey = +oo, B = 0.1, e = 0.25 and yielding

(s°Pt,§°Pt) = (28.6,0.06). Graph of the probability density functions AP (black line), of its first order moment E{AA"}
(vertical gray line), of AN (vertical black line) for o« = 1 (upper graph), o = 2 (middle graph), o = 3 (lower graph).
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Figure 17. Updated uncertain computational model corresponding tgds = By = 8 = 0.1,e4 = epx = & = 0.25 and yielding
(s°Pt,6°Pt) = (29.2,0.26). Graph of the probability density functions AASP (black line), of its first order moment E{AASP!}
(vertical gray line), of AN (vertical black line) for o« = 1 (upper graph), « = 2 (middle graph), « = 3 (lower graph).
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Figure 18. Updated uncertain computational model corresponding tgdy = Sy = 8 = 0.1,e4 = ep = ¢ = 0.25 and yielding
(s°Pt,5°Pt) = (29.2,0.26). Graph of the probability density functions AD2P' (black line), of its first order moment E{A®SP*}
(vertical gray line), of Aé;m (vertical black line) for a = 1 (upper graph), « = 2 (middle graph), o = 3 (lower graph).

V. Conclusions

A not straightforward methodology to perform the robust updating of complex uncertain dynamical systems with
respect to modal experimental data in the context of structural dynamics has been presented. The present formula-
tion based on an input error methodology adapted to the deterministic updating problem has been extended to the
robust updating context required in presence of model uncertainties in the computational model. The robust updat-
ing formulation leads a mono-objective optimization problem to be solved in presence of inequality probabilistic

constraints. An application is presented in order to validate the proposed approach.
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