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ODD CYCLE TRANSVERSALS AND INDEPENDENT SETS IN

FULLERENE GRAPHS

LUERBIO FARIA, SULAMITA KLEIN, AND MATĚJ STEHLÍK

Abstract. A fullerene graph is a cubic bridgeless plane graph with all faces

of size 5 and 6. We show that every fullerene graph on n vertices can be made

bipartite by deleting at most
√

12n/5 edges, and has an independent set with

at least n/2 −
√

3n/5 vertices. Both bounds are sharp, and we characterise

the extremal graphs. This proves conjectures of Došlić and Vukičević, and of

Daugherty. We deduce two further conjectures on the independence number

of fullerene graphs, as well as a new upper bound on the smallest eigenvalue

of a fullerene graph.

1. Introduction

A set of edges of a graph is an odd cycle (edge) transversal if its removal results

in a bipartite graph; the smallest size of an odd cycle transversal of G is denoted

by τodd(G). Finding a minimum odd cycle transversal of a graph is equivalent to

partitioning the vertex set into two parts, such that the number of edges between

the two parts is maximum; this is known as the max-cut problem in the literature.

Erdős [8] observed that every graph has an odd cycle transversal containing at

most half of its edges, and conjectured that every triangle-free graph on n vertices

has an odd cycle transversal with at most 1
25n

2 edges. Hopkins and Staton [14]

proved that every triangle-free cubic graph on n vertices has an odd cycle transversal

with at most 3
10n edges. For triangle-free cubic planar graphs, the bound was

improved to 7
24n+ 7

6 by Thomassen [22], and subsequently to 9
32n+ 9

16 by Cui and

Wang [3].

A widely studied class of triangle-free cubic planar graphs is the class of fullerene

graphs: these are cubic bridgeless plane graphs with all faces of size 5 or 6. Došlić

and Vukičević [6, Conjecture 13] conjectured that every fullerene graph on n ver-

tices has an odd cycle transversal with at most
√

12
5 n edges, and showed that this

bound is attained by fullerene graphs on 60k2 vertices with the full icosahedral au-

tomorphism group, where k ∈ N. Dvořák, Lidický and Škrekovski [7] have recently

verified the conjecture asymptotically by proving that τodd(G) = O(
√
n). The main

result of this paper is a proof of the conjecture of Došlić and Vukičević.

Theorem 1.1. If G is a fullerene graph on n vertices, then τodd(G) ≤
√

12
5 n.

Equality holds if and only if n = 60k2, for some k ∈ N, and Aut(G) ∼= Ih.

Research supported by CAPES-COFECUB project MA 622/08.
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The rest of the paper is organised as follows. In Section 2, we cover the basic

notation and terminology. In Section 3, we recall the concepts of T -joins and T -cuts,

and establish a bound on the minimum size of a T -join in a plane triangulation in

terms of the maximum size of a packing of T -cuts in an auxiliary plane triangulation.

In Section 4, we introduce the notions of patches and moats, and prove bounds on

the number of edges in moats. In Section 5, we combine the bounds from the

preceding two sections to complete the proof of Theorem 1.1. In Section 6, we

deduce a number of conjectures about the independence number of fullerene graphs.

Finally, in Section 7, we compute a new upper bound on the smallest eigenvalue of

a fullerene graph.

2. Notation and terminology

Most terminology used in this paper is standard, and may be found in any

graph theory textbook. All graphs considered are simple, that is, have no loops

and multiple edges. The vertex and edge set of a graph G is denoted by V (G) and

E(G), respectively. If X ⊆ V (G) or X ⊆ E(G), we let G−X be the graph obtained

from G by removing the elements in X, and G[X] the subgraph of G induced by

X.

A graph is planar if it can be drawn in the plane R2 so that its vertices are

points in R2, and its edges are Jordan curves in R2 which intersect only at their

end-vertices. A planar graph with a fixed embedding is called a plane graph. If G

is a plane graph, the connected regions of R2 \ G are the faces of G. A face of a

plane graph G bounded by three edges is a triangle of G; if every face of G is a

triangle, then G is a plane triangulation. If G is a plane graph, the dual graph G∗

is the multigraph with precisely one vertex in each face of G, and if e is an edge of

G, then G∗ has an edge e∗ crossing e and joining the two vertices of G∗ in the two

faces of G incident to e.

The distance distG(u, v) between two vertices u and v in G is the length of

a shortest path in G connecting u and v. The open and closed k-neighbourhood

of a subset X ⊆ V (G) in G are the sets Nk
G(X) = {v ∈ V (G) | distG(v,X) =

k} and Nk
G[X] = {v ∈ V (G) | distG(v,X) ≤ k}, respectively. The usual open

and closed neighbourhood is defined as NG(X) = N1
G(X) and NG[X] = N1

G[X],

respectively. When X = {x}, we simply write Nk
G[x] and Nk

G(x). The size of the

open neighbourhood NG(x) is the degree dG(x). We let δG(X) be the set of edges

of G with exactly one end-vertex in X; if H = G[X] we may also write δG(H) for

δG(X). A set C of edges is a cut of G if C = δG(X), for some X ⊆ V (G). When

there is no risk of ambiguity, we may omit the subscripts in the above notation.

An automorphism of a graph G is a permutation of the vertices such that adja-

cency is preserved. The set of all automorphisms of G forms a group, known as the

automorphism group Aut(G). The full icosahedral group Ih ∼= A5×C2 is the group

of all symmetries (including reflections) of the regular icosahedron.
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3. T -joins and T -cuts

To prove Theorem 1.1, we will consider the dual of a fullerene graph, that is, a

plane triangulation G with all vertices of degree 5 and 6. We denote by T the set

of 5-vertices of G; it follows from Euler’s formula that |T | = 12. The problem is to

find a minimal set J of edges such that G − J has no odd-degree vertices. Such a

set of edges is known as a T -join.

More generally, let G be any graph with a distinguished set T of vertices such

that |T | is even. A T -join of G is a subset J ⊆ E(G) such that T is equal to the

set of odd-degree vertices in G[J ]. The minimum size of a T -join of G is denoted

by τ(G,T ).

A T -cut is an edge cut δ(X) such that |T ∩ X| is odd. A packing of T -cuts is

a disjoint collection δ(F) = {δ(X) | X ∈ F} of T -cuts of G; the maximum size of

a packing of T -cuts is denoted by ν(G,T ). For more information on T -joins and

T -cuts, the reader is referred to [2, 18, 20].

Since every T -join intersects every T -cut, ν(G,T ) ≤ τ(G,T ). If G is bipartite,

we in fact have equality.

Theorem 3.1 (Seymour [21]). For every bipartite graph G and every subset T ⊆
V (G) such that |T | is even, τ(G,T ) = ν(G,T ).

A family of sets F is said to be laminar if, for every pair X,Y ∈ F , either

X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅. A packing of T -cuts δ(F) is said to be laminar

if F is laminar. A T -cut δ(X) is inclusion-wise minimal if no T -cut is properly

contained in δ(X). The following proposition can be found in [9].

Proposition 3.2. For every bipartite graph G and every subset T ⊆ V (G) such

that |T | is even, there exists an optimal packing of T -cuts in G which is laminar

and consists only of inclusion-wise minimal T -cuts.

Let us remark that the problem of finding a minimum T -join is equivalent to

the minimum weighted matching problem, which can be solved efficiently using Ed-

monds’ weighted matching algorithm. The problem of finding a maximum packing

of T -cuts may be considered as the dual problem in the sense of linear program-

ming. Using Theorem 3.1 and Proposition 3.2, it can be shown (see e.g. [2]) that

there exists an optimal solution of the dual linear program which is half-integral

and laminar. Intuitively, this would correspond to a packing of T -cuts where the

T -cuts consist of ‘half-edges’. This idea was used, in conjunction with the Four

Colour Theorem, by Král’ and Voss [17] to show that if G is a planar graph and

T ⊆ V (G) is the set of odd-degree vertices of G, then τ(G,T ) ≤ 2ν(G,T ).

Our approach is similar, but rather than dealing with half-edges, we consider

a suitable transformation of the graph G. Namely, given a plane triangulation G,

construct the graph G′ by subdividing the edges of G, that is, replacing the edges

of G by internally disjoint paths of length 2; the graph G′ is clearly bipartite. Now

construct the graph GM from G′ by adding three new edges inside every face of G′,
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G G′ GM

Figure 3.1. A face of a triangulation G, its subdivision G′, and
its refinement GM.

incident to the three vertices of degree 2, as shown in Figure 3.1. We call GM a

refinement of G. Observe that all the vertices in V (GM) − V (G) have degree 6 in

GM, so if T is the set of odd-degree vertices of G, then T is also the set of odd-degree

vertices of GM.

Lemma 3.3. For every planar triangulation G and every subset T ⊆ V (G) such

that |T | is even, τ(G,T ) = 1
2ν(GM, T ). Moreover, there exists an optimal laminar

packing of inclusion-wise minimal T -cuts in GM.

Proof. Let G′ be the subgraph obtained from G by subdividing every edge of G.

For the first part, it suffices to prove the chain of inequalities

τ(G,T ) ≤ 1
2τ(G′, T ) ≤ 1

2ν(G′, T ) ≤ 1
2ν(GM, T ) ≤ τ(G,T ).

Clearly, any T -join J ′ of G′ corresponds to a T -join J of G such that |J | = 1
2 |J
′|,

so τ(G,T ) ≤ 1
2τ(G′, T ). The second inequality τ(G′, T ) ≤ ν(G′, T ) holds by The-

orem 3.1. To prove the final inequality 1
2ν(GM, T ) ≤ τ(G,T ), observe that any

T -join J of G corresponds to a T -join JM of GM such that |J | = 1
2 |J

M|. Hence,

τ(G,T ) ≥ 1
2τ(GM, T ) ≥ 1

2ν(GM, T ).

It remains to prove the third inequality, namely ν(G′, T ) ≤ ν(GM, T ). Let F
be a laminar family on V (G′) minimising

∑
X∈F |δG′(X)|, such that δG′(F) is an

optimal packing of inclusion-wise minimal T -cuts in G′; such a family exists by

Proposition 3.2. Suppose δGM(F) is not a packing of T -cuts in GM. Then there

exist X1, X2 ∈ F and an edge e ∈ E(GM) − E(G′) such that e ∈ δGM(X1) ∩
δGM(X2). Therefore e = x1x2, where x1 and x2 are vertices of V (G′) − V (G). By

the laminarity of F , X1∩X2 = ∅. Therefore, there exists i ∈ {1, 2} such that xi has

a neighbour in V (G′)−Xi. But then δG′(Xi−{xi}) is a T -cut in G′ which is disjoint

from all other T -cuts of δG′(F), and |δG′(Xi−{xi})| < |δG′(Xi)|, contradicting the

minimality of
∑

X∈F |δG′(X)|. Hence, δGM(F) is a laminar packing of T -cuts in

GM, so ν(G′, T ) ≤ ν(GM, T ).

For the ‘moreover’ part, simply note that the packing δGM(F) from the previous

paragraph is an optimal laminar packing of inclusion-wise minimal T -cuts in GM.

�
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Figure 4.1. A 3-patch (shaded in grey) surrounded by a 3-moat
of width 2 (shown by the thick edges).

4. Patches and moats

Throughout this section, G is a plane triangulation with all vertices of degree 5

and 6, and T is the set of 5-vertices of G. A 2-connected subgraph H ⊂ G such

that all faces of H, except the outer face, are triangles, is called a patch of G. If C

is the outer cycle of H, and the number of vertices in T ∩V (H −C) is p, then H is

a p-patch. We define the area A(H) as the number of triangles in H. An example

of a 3-patch is shown in Figure 4.1.

Every p-patch with 1 ≤ p ≤ 5 satisfies the following isoperimetric inequality,

which is an immediate corollary of a more general theorem of Justus [15, Theo-

rem 3.3.2].

Theorem 4.1 (Justus [15]). Let G be a plane triangulation with all vertices of

degree 5 and 6, and let T be the set of the 5-vertices of G. If H ⊆ G is a p-patch

with outer cycle C, and 1 ≤ p ≤ 5, then

|V (C)| ≥
√

(6− p)A(H).

If equality holds, then p = 1.

A moat of width k in G surrounding X ⊆ V (G) is a subset of E(G) defined as

δkG(X) =

k−1⋃
i=0

δG
(
N i[X]

)
.

In particular, δ1
G(X) = δG(X). If |T ∩ X| = p, then δkG(X) is a p-moat of width

k. See Figure 4.1 for an example of a 3-moat of width 2. If u ∈ T , the 1-moat

δkG({u}) is simply denoted by δkG(u), and is called a disk of radius k centred on u.

To every moat δkG(X) corresponds a set of |δkG(X)| faces, namely the faces incident

to at least one edge of δkG(X). We say that these faces are spanned by δkG(X).

The number of edges in a disk is easy to determine.

Lemma 4.2. Let G be a plane triangulation with all vertices of degree 5 and 6,

and T the set of 5-vertices of G. If u ∈ T , and no edge of δk−1(u) is incident to a

vertex of T − {u}, then
∣∣δkG(u)

∣∣ = 5k2.

Proof. It is easy to see that
∣∣δ(Nk[u])

∣∣ = 5(2k+1), so
∣∣δk(u)

∣∣ =
∑k−1

i=0

∣∣δ(N i[u])
∣∣ =

5
∑k−1

i=0 (2i+ 1) = 5k2. �
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For more general moats, we can prove the following inequality.

Lemma 4.3. Let G be a plane triangulation with all vertices of degree 5 and 6, T

the set of 5-vertices of G, and X ⊂ V (G). If G[X] is a p-patch such that 0 < p < 6,

and no edge of δk−1(X) is incident to a vertex of T , then∣∣δkG(X)
∣∣ ≥ (6− p)k2 + 2k

√
(6− p)A(G[X]).

If equality holds, then p = 1.

Proof. Let C be the outer cycle of G[X], and denote by n, m and f the number of

vertices, edges, and faces (including the outer face) of G[X], respectively. Summing

the vertex degrees of G[X] gives 2m =
∑

v∈V (C) dG[X](v) + 6(n− |V (C)|)− p, so

(4.1)
∑

v∈V (C)

dG[X](v) = 6|V (C)|+ p− 6n+ 2m.

Summing the face degrees gives 2m = 3(f − 1) + |V (C)|, so

(4.2) 0 = −2|V (C)|+ 4m− 6f + 6.

Adding (4.1) and (4.2),

(4.3)
∑

v∈V (C)

dG[X](v) = 4|V (C)|+ p− 6(n−m+ f − 1) = 4|V (C)|+ p− 6,

where the last equation follows from Euler’s formula.

Applying (4.3) to the p-patch G[X] and the (12− p)-patch G−X,

2|V (C)|+ 6− p =
∑

v∈V (C)

(6− dG[X](v))

=
∑

v∈N(X)

(6− dG−X(v))

= 2|N(X)| − 6 + p,

whence |N(X)| = |V (C)|+ 6− p, so by induction,

(4.4) |Nk(X)| = |V (C)|+ (6− p)k.

By (4.3) and (4.4), the number of edges in δ(Nk[X]) is∣∣δ(Nk[X])
∣∣ =

∑
v∈Nk(X)

(6− dG[X](v))

= 2|Nk(X)|+ 6− p

= 2|V (C)|+ (6− p)(2k + 1),

so the number of edges in δk(X) is

∣∣δk(X)
∣∣ =

k−1∑
i=0

∣∣δ (N i[X]
)∣∣

=

k−1∑
i=0

(2|V (C)|+ (6− p)(2i+ 1))

= 2k|V (C)|+ (6− p)k2.
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Figure 5.1. A triangulation of the truncated tetrahedron, shown
in 3D, with a packing of twelve disks and four 3-moats. The faces
spanned by disks are shaded in dark grey, and those spanned by
3-moats are shaded in medium grey. The incidence vectors of this
particular packing are r = 1, s = 1 and t = 0.

By Theorem 4.1, |V (C)| ≥
√

(6− p)A(G[X]), with equality only if p = 1. �

5. Packing moats in plane triangulations

When G is a plane triangulation, there exists, by Lemma 3.3, an optimal laminar

packing δGM(F) of inclusion-wise minimal T -cuts in the refinement GM. We may

furthermore assume that the family which gives rise to this packing satisfies |T ∩
X| ≤ 5 for all X ∈ F , and minimises

∑
X∈F |X|. We call such a packing a moat

packing. Let us remark that Král’, Sereni and Stacho [16] considered moat packings

in bipartite graphs (they used the name moat solution). The reason for choosing

this name is the following.

For every odd-cardinality subset U ⊂ T , the union of all T -cuts in δGM(F) which

separate U from T − U is of the form δkGM(X), where U ⊆ X ∈ F and k ∈ N, i.e.,

it is a moat of width k surrounding X. By the minimality of
∑

X∈F |X|, every

1-moat in δGM(F) is a disk centred on a vertex u ∈ T , and every vertex of T is

the centre of a disk of radius at least 1. Also by the minimality of
∑

X∈F |X|,
if X ∈ F is such that |X| > 1, then G[X] is 2-connected. Since every T -cut in

δGM(F) is inclusion-wise minimal, precisely one face of G[X]—the outer face—is

not a triangle. Hence, G[X] is a patch, for every X ∈ F such that |X| > 1.

Therefore, a moat packing of T -cuts may be considered as a packing of disks,

3-moats and 5-moats. Figure 5.1 shows an example of such a packing.

We are at last ready to prove Theorem 1.1. To be exact, we first prove the

following dual version.

Theorem 5.1. Let G be a plane triangulation with f faces and all vertices of degree

5 and 6. If T is the set of 5-vertices of G, then τ(G,T ) ≤
√

12
5 f , with equality if

and only if f = 60k2, for some k ∈ N, and Aut(G) ∼= Ih.

Proof. Let GM be the refinement of G; so GM is a plane triangulation with 4f faces

and all vertices of degree 5 and 6. By Lemma 3.3, there exists a moat packing
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δGM(F). Let m1, m3 and m5 be the number of edges in all disks, 3-moats, and 5-

moats of δGM(F), respectively. Define the incidence vectors r, s, t ∈ R12 as follows:

for every u ∈ T , let ru, su and tu be the radius of the disk centred on u, the width of

the 3-moat surrounding u, and the width of the 5-moat surrounding u, respectively.

By the optimality of δGM(F),

(5.1) τ(G,T ) = 1
2ν(GM, T ) = 1

2

〈
r + 1

3s+ 1
5 t, 1

〉
,

where 〈·, ·〉 denotes the inner product.

So to prove the inequality in Theorem 5.1, it suffices to find an upper bound

on
〈
r + 1

3s+ 1
5 t, 1

〉
in terms of f . To do so, we compute lower bounds on m1, m3

and m5 in terms of the vectors r, s and t, and then use the fact that the sum

m1 +m3 +m5 cannot exceed 4f , the number of faces of GM.

First suppose that δruGM(u) is a disk of δGM(F), for some u ∈ T . Recall that by

Lemma 4.2,

(5.2) |δruGM(u)| = 5r2
u,

so summing over all disks,

(5.3) m1 = 5
∑
u∈T

r2
u = 5‖r‖2,

where ‖ · ‖ denotes the norm.

Now, suppose δsuGM(X) is a non-empty 3-moat of δGM(F), where u ∈ T ∩X and

|T ∩ X| = 3. The graph GM[X] contains |δruGM(u)| triangles spanned by δruGM(u),

for every u ∈ T ∩ X. All the triangles are pairwise disjoint, so by (5.2) and the

Cauchy-Schwarz inequality,

A(GM[X]) ≥
∑

u∈T∩X
|δruGM(u)| = 5

∑
u∈T∩X

r2
u ≥

5

3

( ∑
u∈T∩X

ru

)2

.

Hence, by Lemma 4.3,

|δsuGM(X)| ≥ 3s2
u + 2su

√
3A(GM[X])

≥ 3s2
u + 2

√
5su

∑
u∈T∩X

ru

=
∑

u∈T∩X
s2
u + 2

√
5
∑

u∈T∩X
rusu.(5.4)

Summing over all 3-moats,

(5.5) m3 ≥ ‖s‖2 + 2
√

5〈r, s〉.

Finally, suppose δtuGM(Y ) is a non-empty 5-moat of δGM(F), where u ∈ T ∩Y and

|T ∩ Y | = 5. By the laminarity of δGM(F), GM[Y ] contains at most one 3-moat

δsuGM(X) of δGM(F), where X ⊂ Y and |T ∩ X| = 3. The graph GM[Y ] contains

|δruGM(u)| triangles spanned by δruGM(u), for every u ∈ T ∩ Y , as well as at least

|δsuGM(X)| triangles spanned by δsuGM(X). All the triangles are pairwise disjoint, so
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by (5.2), (5.4), and the Cauchy-Schwarz inequality,

A(GM[Y ]) ≥
∑

u∈T∩Y
|δruGM(u)|+ |δsuGM(X)|

≥ 5
∑

u∈T∩Y
r2
u + 2

√
5
∑

u∈T∩Y
rusu +

∑
u∈T∩Y

s2
u

= 5
∑

u∈T∩Y

(
ru + 1√

5
su

)2

≥

( ∑
u∈T∩Y

ru + 1√
5

∑
u∈T∩Y

su

)2

.

Hence, by Lemma 4.3,∣∣δtuGM(Y )
∣∣ ≥ t2u + 2tu

√
A(GM[Y ])

≥ t2u + 2tu
∑

u∈T∩Y
ru + 2√

5
tu

∑
u∈T∩Y

su

= 1
5

∑
u∈T∩Y

t2u + 2
∑

u∈T∩Y
rutu + 2√

5

∑
u∈T∩Y

sutu.

Summing over all 5-moats,

(5.6) m5 ≥ 1
5‖t‖

2 + 2〈r, t〉+ 2√
5
〈s, t〉.

The graph GM has 4f triangles, and the disks, 3-moats and 5-moats span m1,

m3 and m5 triangles of GM, respectively. These triangles are mutually disjoint, so

by (5.3), (5.5) and (5.6),

4f ≥ m1 +m3 +m5

≥ 5‖r‖2 + ‖s‖2 + 2
√

5〈r, s〉+ 1
5‖t‖

2 + 2〈r, t〉+ 2√
5
〈s, t〉

=
∥∥∥√5r + s+ 1√

5
t
∥∥∥2

.

Hence, by the Cauchy-Schwarz inequality and (5.1),√
12
5 f ≥

√
3
∥∥∥r + 1√

5
s+ 1

5 t
∥∥∥

≥ 1
2

〈
r + 1√

5
s+ 1

5 t, 1
〉

(5.7)

≥ τ(G,T ).

To prove the last part of Theorem 5.1, suppose that τ(G,T ) =
√

12
5 f . Equality

must hold in (5.5) and (5.6), so by Lemma 4.3, s = t = 0. Furthermore, equality

must hold in (5.7), so ru = rv for every u, v ∈ T . Therefore 4f = 5 · 12r2
u, so

f = 15r2
u. Since f is even, it follows that ru = 2k, and therefore f = 60k2, for some

k ∈ N. To see that Aut(G) ∼= Ih, note that the graph G may be constructed from

the dodecahedron by inserting into each face a 1-patch of the form G[Nk[u]].

Conversely, if G is a plane triangulation with f = 60k2 faces, all vertices of degree

5 and 6, and Aut(G) ∼= Ih, then G may be constructed from the dodecahedron by
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inserting into each face a 1-patch of the form G[Nk[u]]. Hence dist(u, v) ≥ 2k, for

every pair of distinct vertices in T , so τ(G,T ) ≥ 12k =
√

12
5 f . �

By applying Theorem 5.1 to the dual graph, we obtain a proof of Theorem 1.1.

Proof of Theorem 1.1. Let G be a fullerene graph on n vertices. The dual graph

G∗ is a plane triangulation with n faces and all vertices of degree 5 and 6. Let

T be the set of vertices of degree 5, J∗ a minimum T -join of G∗, and J the set

of edges of G which correspond to J∗. Since G∗ − J∗ has no odd-degree vertices,

G − J = (G∗ − J∗)∗ is bipartite, and by Theorem 5.1, |J | = |J∗| ≤
√

12
5 n, with

equality if and only if n = 60k2, for some k ∈ N, and Aut(G) ∼= Ih. �

6. Independent sets in fullerene graphs

Recall that a set X ⊆ V (G) is independent if the graph G[X] has no edges; the

maximum size of an independent set in G is the independence number α(G). By

the Four Colour Theorem, every planar graph on n vertices has an independent set

with at least 1
4n vertices, and by Brooks’ Theorem, every triangle-free, cubic graph

on n vertices has an independent set with at least 1
3n vertices. For triangle-free,

cubic, planar graphs, the bound can be improved a little further.

Theorem 6.1 (Heckman and Thomas [13]). If G is a triangle-free cubic planar

graph on n vertices, then α(G) ≥ 3
8n.

Daugherty [4, Conjecture 5.5.2] conjectured that every fullerene graph on n

vertices has an independent set with at least 1
2n −

√
3
5n vertices. He also conjec-

tured [4, Conjecture 5.5.1] that every fullerene graph attaining this bound has the

icosahedral automorphism group and 60k2 vertices, for some k ∈ N. Andova et

al. [1] recently proved that every fullerene graph on n vertices has an independent

set with at least 1
2n − 78.58

√
n vertices. Theorem 1.1 immediately implies both

conjectures of Daugherty.

Corollary 6.2. If G is a fullerene graph on n vertices, then α(G) ≥ 1
2n −

√
3
5n,

with equality if and only if n = 60k2, for some k ∈ N, and Aut(G) ∼= Ih.

Proof. Every graph G contains an odd cycle vertex transversal U such that |U | ≤
τodd(G), so α(G) ≥ α(G − U) ≥ 1

2n −
1
2τodd(G). Therefore, by Theorem 1.1,

α(G) ≥ 1
2n−

√
3
5n, for every fullerene graph G. When J∗ is a minimum T -join of

G∗, every face of G∗ is incident to at most one edge of J∗. This means that the

set J ⊂ E(G) corresponding to J∗ is a matching of G. Therefore, by Theorem 1.1,

equality holds if and only if n = 60k2, for some k ∈ N, and Aut(G) ∼= Ih. �

The diameter of a graph G, denoted diam(G), is defined as the maximum dis-

tance over all pairs of vertices u, v of G. The diameter of fullerene graphs satisfies

the following upper bound.

Theorem 6.3 (Andova et al. [1]). If G is a fullerene graph on n vertices, then

diam(G) ≤ 1
5n+ 1.
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Corollary 6.2, in conjunction with Theorems 6.1 and 6.3, allows us to prove a

conjecture of Graffiti [12, Conjecture 912]. Let us remark that the conjecture was

proved for fullerene graphs on at least 617 502 vertices by Andova et al. [1].

Corollary 6.4. If G is a fullerene graph, then α(G) ≥ 2(diam(G)− 1).

Proof. Let G be a fullerene graph on n vertices. It is easy to check that
⌈

3
8n
⌉
≥⌊

2
5n
⌋

if n < 40, and
⌈

1
2n−

√
3
5n
⌉
≥
⌊

2
5n
⌋

if n ≥ 36. In the former case, we

apply Theorems 6.1 and 6.3, and in the latter case, we apply Corollary 6.2 and

Theorem 6.3, to show that α(G) ≥ 2(diam(G)− 1). �

Motivated by Hückel theory from chemistry, Daugherty, Myrvold and Fowler [5]

(see also [4]) defined the closed-shell independence number α−(G) of a fullerene

graph G as the maximum size of an independent set A of G with the property that

exactly half of the eigenvalues of G − A are positive. Recall that an eigenvalue of

a graph G is an eigenvalue of its adjacency matrix, the square n × n matrix (auv)

where auv = 1 if uv ∈ E(G), and auv = 0 otherwise.

Theorem 6.5 (Daugherty, Myrvold and Fowler [5]). If G is a fullerene graph, then

α−(G) ≤ 3
8n+ 3

2 .

Daugherty, Myrvold and Fowler [5] (see also [4, Conjecture 7.7.1]) conjectured

that the equality α−(G) = α(G) holds only when G is isomorphic to one of the three

fullerene graphs in Figure 6.1, and verified the conjecture for all fullerene graphs

on n ≤ 100 vertices. Corollary 6.2 and Theorem 6.5 imply the conjecture for all

fullerene graphs on n > 60 vertices, so the conjecture is now proved completely.

Corollary 6.6. A fullerene graph G satisfies α−(G) = α(G) if and only if G is

one of the graphs in Figure 6.1.

Proof. Let G be a fullerene graph on n vertices. The conjecture was verified for

n ≤ 100 in [4], so it suffices to consider the case n > 100. Since
⌊

3
8n+ 3

2

⌋
<⌈

12n−
√

3
5n
⌉

for n > 60, it follows by Corollary 6.2 and Theorem 6.5 that α−(G) <

α(G) for n > 60. �

7. Smallest eigenvalues of fullerene graphs

As the final application of Theorem 1.1, we compute an upper bound on the

smallest eigenvalue of a fullerene graph G. Recall that the Laplacian of a graph

with adjacency matrix (auv) is the n× n matrix (cuv), where cuv = d(u) if u = v,

and cuv = −auv if u 6= v. A Laplacian eigenvalue of a graph is an eigenvalue of its

Laplacian. The smallest eigenvalue and the largest Laplacian eigenvalue of G are

denoted by λn(G) and µn(G), respectively.

The maximum size of a cut in a graph can be bounded in terms of its largest

Laplacian eigenvalue. The following is a corollary of a more general theorem of

Mohar and Poljak [19].
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20:1 40:40 60:1812

Figure 6.1. The three graphs in Corollary 6.6, with the nomen-
clature of [11]. The graph 20:1 is the dodecahedral graph, 40:40
is the unique fullerene graph on 40 vertices with the tetrahedral
automorphism group Td, and 60:1812 is the buckminsterfullerene
graph.

Theorem 7.1 (Mohar and Poljak [19]). If G is a graph on n vertices, then |δ(X)| ≤
1
4nµn(G), for every X ⊆ V (G).

Andova et al. [1] have recently used Theorem 7.1 to show that λn(G) ≤ −3 +
157.16√

n
for every fullerene graph G. Their bound can be improved by applying

Corollary 6.2.

Corollary 7.2. If G is a fullerene graph on n vertices, then λn(G) ≤ −3 + 8
√

3
5n .

Proof. Since G is 3-regular, the smallest eigenvalue of G is λn(G) = 3−µn(G), and

there exists a cut δ(X) such that |δ(X)| ≥ 3
2n−τodd(G). Therefore, by Theorem 7.1,

λn(G) ≤ −3 + 4
nτodd(G), so by Theorem 1.1, λn(G) ≤ −3 + 8

√
3

5n . �

Fowler, Hansen and Stevanović [10] showed that the smallest eigenvalue of the

truncated icosahedron (see Figure 6.1c) is equal to −φ2, where φ is the golden ratio
1+
√

5
2 , and conjectured that, among all fullerene graphs on at least 60 vertices, the

truncated icosahedron has the maximum smallest eigenvalue. By Corollary 7.2, any

fullerene graph on at least 264 vertices satisfies the conjecture.
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