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ON THE SELF-DECOMPOSABILITY OF THE FRÉCHET

DISTRIBUTION

PIERRE BOSCH AND THOMAS SIMON

Abstract. Let {Γt, t ≥ 0} be the Gamma subordinator. Using a moment identification
due to Bertoin-Yor (2002), we observe that for every t > 0 and α ∈ (0, 1) the random variable
Γ−α
t is distributed as the exponential functional of some spectrally negative Lévy process.

This entails that all size-biased samplings of Fréchet distributions are self-decomposable and
that the extreme value distribution Fξ is infinitely divisible if and only if ξ 6∈ (0, 1), solving
problems raised by Steutel (1973) and Bondesson (1992). We also review different analytical
and probabilistic interpretations of the infinite divisibility of Γ−α

t for t, α > 0.

1. Introduction

The extreme value theorem - see e.g. Theorem 8.13.1 in [4] - states that non-degenerate
distribution functions arising as limits of properly renormalized running maxima of i.i.d.
random variables belong to one of the families

F0(x) = e−e−x

, x ∈ R, or Fξ(x) =

{

1− e−x1/ξ
if ξ > 0

e−x1/ξ
if ξ < 0

, x > 0.

The distribution F0 is known as the Gumbel distribution, whereas Fξ is called a Weibull
distribution for ξ > 0 and a Fréchet distribution for ξ < 0. In the following, we denote by
Xξ the random variable with distribution function Fξ. Observe that

1−Xξ

ξ
d−→ X0 as ξ → 0,

so that the above parametrization is continuous in ξ. In the present paper we are interested
in the self-decomposability (SD) of Xξ, referring e.g. to Section 15 in [14] for an account on
self-decomposability. The Gumbel distribution is SD because of the identities

X0
d
= − logL

d
= −α logL + α logSα

for every α ∈ (0, 1), where here and throughout L stands for the standard exponential
variable and Sα for the standard positive α-stable variable - see e.g. Exercise 29.16 in [14]
for a proof of the second identity. If ξ ∈ (0, 1) then the variable Xξ is not infinitely divisible
(ID) and hence not SD, because of its superexponential distribution tails - see e.g. Theorem
26.1 in [14]. When ξ ≥ 1, the variable Xξ has a completely monotone density and is ID by
Goldie’s criterion - see e.g. Theorem 4.2 in [17], or by the ME property which makes it the
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first-passage time of some continuous time Markov chain - see e.g. Chapter 9 in [5] for an
account. When |ξ| ≥ 1, the identity in law

Xξ
d
= Lξ

and the HCM theory of Thorin and Bondesson [5] show that the distribution of Xξ is a
generalized Gamma convolution (GGC) and is hence SD - see Example 4.3.4 in [5]. The
natural question whether Xξ is SD or even ID for ξ ∈ (−1, 0) was first raised by Steutel in
1973 - see Section 3.4 in [17], and has remained open ever since. In section 4.5 of [5] - see
also the Appendix B.3 of [18], this problem is rephrased in the broader context of generalized
Gamma distributions. The latter are power transformations of Γt where {Γt, t ≥ 0} is the
Gamma subordinator, and can be thought of as size-biased samplings of Xξ when ξ < 0, in
view of the formulæ

E[f(Γξ
t )] =

E[f(Xξ)X
u
ξ ]

E[Xu
ξ ]

valid for every f bounded continuous and t > 0, with u = (t − 1)/ξ. Recall in passing that
Steutel’s equation - see e.g. Theorem 51.1 in [14] - establishes a precise link between size-
biased sampling of order one and infinite divisibility for integrable positive random variables.
In this note, we provide an answer to the above questions of [17, 5].

Theorem. For every ξ ∈ (−1, 0) and t > 0, the random variable Γξ
t is SD.

As a direct consequence of this result, all Fréchet distributions are SD and the extreme
value distribution Fξ is ID if and only if ξ 6∈ (0, 1). Contrary to the case |ξ| ≥ 1, our argument

is probabilistic and consists in showing that Γξ
t is distributed as the exponential functional

of some spectrally negative Lévy process. This extends a classical result of Dufresne [6] for
the case ξ = −1. The identification is made possible thanks to a entire moment method due
to Bertoin-Yor [3], which applies in our context as a case study. The proof is given in the
next section.

In Section 3, we review the possible interpretations of the infinite divisibility of Γξ
t for ξ < 0.

The classical case ξ = −1 allows at least four different formulations in terms of processes, and
also an explicit computation of the Lévy density which shows the GGC property without the
HCM argument. For ξ < −1 the ID property is only known by analytical means and there is
no direct probabilistic explanation, save for the case t = 1 by subordination or, tentatively,
the spectral theory of a certain spectrally positive Markov processes. The situation for
ξ ∈ (−1, 0) is exactly the opposite since in addition to the exponential functional argument,
the ID property can also be obtained rigorously by a first-passage time argument for a
spectrally positive Markov processes. On the other hand there is no analytic proof of the ID
property for ξ ∈ (−1, 0). In this situation the GGC character of Γξ

t remains in particular an
open question, which we plan to tackle in some further research.

2. Proof of the Theorem

We begin with a computation on the Gamma function.
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Lemma. For every α ∈ (0, 1) and u, t > 0 one has

uΓ(t+ α(u+ 1))

Γ(t + αu)
=

(

Γ(t+ α)

Γ(t)

)

u +

∫ 0

−∞

(eux − 1− ux)fα,t(x)dx,

where

fα,t(x) =
e(1+t/α)x(α + ex/α + t(1− ex/α))

αΓ(1− α)(1− ex/α)α+2

is the density of a Lévy measure on (−∞, 0).

Proof. We set λ = t+ αu > 0 and compute

Γ(λ+ α)

Γ(λ)
=

λβ(λ+ α, 1− α)

Γ(1− α)

=
λ

Γ(1− α)

∫ +∞

0

e−(α+λ)x

(1− e−x)α
dx

=
α

Γ(1− α)

∫ +∞

0

(1− e−λx)
e−αx

(1− e−x)α+1
dx

where the second equality comes from a change of variable and the third from an integration
by parts. This yields

uΓ(t+ α(u+ 1))

Γ(t+ αu)
=

αu

Γ(1− α)

∫ +∞

0

(1− e−(t+αu)x)
e−αx

(1− e−x)α+1
dx

=

(

Γ(t+ α)

Γ(t)

)

u +
αu

Γ(1− α)

∫ 0

−∞

(1− eαux)
e(α+t)x

(1− ex)α+1
dx

=

(

Γ(t+ α)

Γ(t)

)

u +

∫ 0

−∞

(eux − 1− ux)fα,t(x)dx

where again, the second equality comes from a change of variable and the third from an
integration by parts.

�

Remarks. (a) The above proof follows [2] p. 102. Notice in passing that some computations
performed in [2] are slightly erroneous. For example the subordinator whose exponential
functional is distributed as τ−α

α (with the notation of [2]) has no drift, but it is also killed at
rate 1/Γ(1− α).

(b) The above decomposition extends to α = 1 since

uΓ(t+ (u+ 1))

Γ(t+ u)
= u(t+ u)

is the Lévy-Khintchine exponent of a drifted Brownian motion (the latter was already noticed
in [3] - see Example 3 therein - in order to recover Dufresne’s identity). However, such a
formula does not seem to exist for α > 1.
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End of the proof. Fix ξ ∈ (−1, 0), t > 0, and set α = −ξ ∈ (0, 1) for simplicity. The entire
moments of Γα

t are given for every n ≥ 1 by

E[Γαn
t ] =

Γ(t+ αn)

Γ(t)

=
Γ(t+ α)

Γ(t)
× · · · × Γ(t+ αn)

Γ(t+ α(n− 1))
= m

ψ(1) . . . ψ(n− 1)

(n− 1)!

with the notation

ψ(u) =
uΓ(t+ α(u+ 1))

Γ(t + αu)
=

(

Γ(t+ α)

Γ(t)

)

u +

∫ 0

−∞

(eux − 1− ux)fα,t(x)dx

by the Lemma, and

m =
Γ(t+ α)

Γ(t)
= ψ′(0+).

It is clear that ψ is the Lévy-Khintchine exponent of a spectrally negative Lévy process Z
with infinite variation and mean m > 0. By Proposition 2 in [3], this entails

E[Γαn
t ] = E[I−n]

for every n ≥ 1, where I is the exponential functional of Z:

I =

∫

∞

0

e−Zs ds.

Since Z has no positive jumps, Proposition 2 in [3] shows also that the random variable 1/I
is moment-determinate, whence

Γξ
t

d
= I.

The self-decomposability of I is a direct consequence of the Markov property. More precisely,
introducing the stopping-time Ty = inf{s > 0, Zs = y} for every y > 0, the fact that
Zs → +∞ a.s. as s → +∞ and the absence of positive jumps entail that Ty < +∞ a.s.
Decomposing, we get

I =

∫ Ty

0

e−Zs ds +

∫

∞

Ty

e−Zs ds
d
=

∫ Ty

0

e−Zs ds + e−y

∫

∞

0

e−Z′

s ds

where Z ′ is an independent copy of Z and the second equality follows from the Markov
property at Ty. This shows that for every c ∈ (0, 1) there is an independent factorization

I = cI + Ic

for some random variable Ic, in other words that I
d
= Γξ

t is self-decomposable.
�

Remarks. (a) By the above Remark 1 (b), it does not seem that Γξ
t is distributed as the

exponential functional of a Lévy process for ξ < −1. It would be interesting to have an
explanation of the infinite divisibility of Γξ

t in terms of processes when ξ < −1. See next
section for a more precise conjecture in the case t = 1.
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(b) The self-decomposability of Sα
α for every α ∈ (0, 1) has been shown by Patie [12] in using

the same kind of argument. Specifically, one can write

E[Snα
α ] =

Γ(1 + n)

Γ(1 + αn)
= m

ψ(1) . . . ψ(n− 1)

(n− 1)!

where we use the same notation as above and, correcting small mistakes made in Paragraph
3.2 of [12],

ψ(u) =
u

Γ(1 + α)
+

∫ 0

−∞

(eux − 1− ux)
(1− α)ex/α((2− α)ex/α + (1− ex/α))

α2Γ(1 + α)(1− ex/α)3−α
dx

is the Lévy-Khintchine exponent of some spectrally negative Lévy process with positive
mean. Setting α = t = 1/2 and comparing the above expression to the one in the Lemma,
one can check the well-known identity in law

(2.1)
√

S1/2 =
1

2
√

Γ1/2

·

The present paper shows that all positive powers of S1/2 are SD and one may wonder if the
same is true for Sα with any α ∈ (0, 1). See [9] for related results and also for a characteri-
zation of the SD property of negative powers of Sα when α ≤ 1/2.

3. Further remarks and open questions

In this section we would like to review several existing or tentative approaches for the ID,
SD and GGC properties of the distribution of Γξ

t or Xξ when ξ ≤ 0.

3.1. The case ξ = 0. This is a rather specific situation but we include it here for complete-
ness. As mentioned in Section 3.4 of [17], the SD property of the two-sided X0 is a direct
consequence of the extreme value theory because

(3.1) L1 +
L2

2
+ · · ·+ Ln

n
− log n

d
= max(L1, . . . , Ln)− logn

d−→ X0

as n → +∞, where L1, . . . , Ln are independent copies of L ∼ Exp (1). The above identity
and convergence in law, readily obtained in comparing Laplace transforms and distribu-
tion functions, yield after some further computations the following closed expression for the
Laplace transform of X0:

E[e−λX0 ] = Γ(1 + λ) = exp

[

−γλ +

∫

∞

0

(e−λx − 1 + λx)
dx

x(ex − 1)

]

,

where γ is Euler’s constant. The complete monotonicity of 1/(ex − 1) shows then that X0

is an extended GGC in the sense of Chapter 7 in [5]. See also Exercise 18.19 in [14] and
Example 7.2.3 in [5] for another argument based on Pick functions, recovering (3.1).
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3.2. The case ξ = −1. This is the classical situation, very well-known, but we give some
details for comparison purposes. The ID property of X−1 can first be understood by the sole
fact that

lim
n→+∞

(

nx

1 + nx

)n

= e−1/x

because the left-hand side is the first-passage time distribution function of a certain birth
and death process - see Theorem 3.1 and (3.3) in [17]. The random variable Γ−1

t is also a
GIG and is hence distributed as the unilateral first-passage time of a diffusion [1], which
explains its infinite divisibility by continuity and the Markov property. More precisely one
has

(3.2)
1

4Γt

d
= inf{u > 0, X t

u = 0}

where {X t
u, u ≥ 0} is a Bessel process of dimension 2(1 − t) starting from one. The SD

property follows as above from Dufresne’s identity [6], which reads

(3.3)
2

Γt

d
=

∫

∞

0

eBu−tu/2 du

where {Bu, u ≥ 0} is a standard linear Brownian motion. Also, Exercise 16.4 in [14] shows
that Γ−1

t is the one-dimensional marginal of a certain self-similar additive process, whence
its self-decomposability by Theorem 16.1 in [14]. The link between this latter interpretation
and (3.2) and (3.3) has been explained in depth in [19].

It does not seem that these four interpretations can provide any explicit information on
the Lévy-Khintchine exponent of Γ−1

t . But in this case analytical computations can also
be performed. More precisely, taking for simplicity the same normalization as in (3.2) and
setting ϕt(λ) = − logE[e−λ/4Γt ], formulæ (7.12.23), (7.11.25) and (7.11.26) in [7] entail

(3.4) ϕ′

t(λ) =
Kt−1(

√
λ)

2
√
λKt(

√
λ)

where Kt is the Macdonald function. This shows ϕ′

1/2(λ) = 1/2
√
λ viz. ϕ1/2(λ) =

√
λ when

t = 1/2, and one recovers the identity (2.1). For t = 3/2, one obtains

2ϕ′

3/2(λ) =
1

1 +
√
λ

= E[e−λ(L2
×S1/2)] =

∫

∞

0

(

1

λ+ x

) √
x dx

π(1 + x)

where the first equality follows from Formula (7.2.40) in [7], and the third equality from
Exercise 29.16 in [14] and (2.2.5) in [5]. This means precisely - see (3.1.1) in [5] - that the
distribution of 1/4Γ3/2 is a GGC with zero drift and Thorin measure

U3/2(dx) =

√
x dx

2π(1 + x)
·

The latter property can be extended to all values of t thanks to a result originally due to
Grosswald [8] on Student’s distribution. Together with (3.4), the main theorem in [8] entails
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namely that the distribution of 1/4Γt is a GGC with zero drift and Thorin measure

Ut(dx) =
1

π2x(J2
t (
√
x) + Y 2

t (
√
x))

where Jt and Yt are the usual Bessel functions of the first kind - see [7] p. 4.

3.3. The case ξ ∈ (−1, 0). In this situation, the present paper yields an interpretation of

the self-decomposability of Γξ
t by the identification

Γξ
t

d
=

∫

∞

0

e−Zu du,

where Z is a spectrally negative Lévy process. Another explanation, similar to (3.2), can
then be obtained by the Lamperti transformation - see e.g. the introduction of [3] for an
account and references. More precisely, setting

Yu = exp[−Zτu ]

with the notation τu = inf{s > 0,
∫ s

0
e−Zv dv > u}, then Y = {Yu, 0 ≤ u < Γξ

t} is a
spectrally positive Markov process (which is also self-similar) starting from one and we have

Γξ
t

d
= inf{u > 0, Yu = 0},

so that the infinite divisibility of Γξ
t (but not, or at least not directly, its self-decomposability)

is a consequence of the Markov property and the absence of negative jumps for Y. It would
be interesting to see if Γξ

t could be embedded in some self-similar additive process analogous
to the Brownian escape process of the case ξ = 1, described in Exercise 16.4 of [14].

Our main result can also be interpreted analytically in terms of generalized Bessel func-
tions. Setting α = −ξ and writing down

(3.5) E[e−λΓξ
t ] =

1

αΓ(t)

∫

∞

0

x−tα−1e−λx+x−1/α

dx =
Z

t/α
1/α(λ)

αΓ(t)

with the notation (1.7.42) of [11], the infinite divisibility of Γξ
t entails that the function

(3.6) λ 7→ −
(

Zν ′

ρ (λ)

Zν
ρ (λ)

)

is completely monotone for any ρ > 1 and ν > 0. One might ask if the latter function is also
a Stieltjes transform, which is equivalent to the GGC property for the distribution of Γξ

t -
see Chapter 3 in [5]. Indeed, it is very natural to conjecture such a property for ξ ∈ (−1, 0)
in view of the above cases ξ = 0 and ξ = −1. Compared to classical Bessel functions, the
theory of generalized Bessel functions is however rather incomplete, and proving like in [8]
that the function (3.6) is a Stieltjes transform is believed to be challenging.
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3.4. The case ξ < −1. In this situation the GGC property of the distribution of Γξ
t is

most quickly obtained from the HCM character of the density function - see Chapter 5 and
especially Example 5.5.2 in [5]. Notice that this analytical argument extends to ξ = −1 but

not to ξ ∈ (−1, 0) since otherwise Γ−ξ
t would also have a HCM density and hence be ID,

which is false. This entails that the function in (3.6) is indeed a Stieltjes transform for any
ρ ∈ (0, 1) and ν > 0, and it would be interesting to identify the underlying Thorin measure
as in Grosswald’s theorem.

A probabilistic interpretation of the self-decomposability of Γξ
1 = Lξ can also be given by

Bochner’s subordination. Setting α = −1/ξ ∈ (0, 1), one has indeed

Lξ d
= L−1 × Sα

d
= Sα

L−α .

where {Sα
u , u ≥ 0} stands for the α−stable subordinator with marginal Sα

1
d
= Sα. Since L

−α

is SD by our result, this means that Lξ is the marginal of some subordinator which is itself
subordinated to the α−stable one, and Proposition 4.1. in [15] shows that Lξ is SD. Besides,
setting ϕα resp. ϕξ for the Lévy-Khintchine exponent of L−α resp. Lξ, one deduces from
Theorem 30.4 in [14] the following relationship

ϕξ(λ) = ϕα(λ
α).

Another, tentative, probabilistic interpretation of the self-decomposability of Lξ could be
given in terms of a certain spectrally positive Markov process. Setting α = −1/ξ and

yα(λ) = E[e−λLξ
], Theorem 4.17 p. 258 in [11] and (3.5) above show that yα is a solution to

the fractional differential equation

xDα+1
−

yα − αyα = 0,

where Dα+1
−

is a fractional Riemann-Liouville derivative - see Section 2.1 in [11]. When
α = 1 viz. ξ = −1 the above amounts to a Bessel equation and Feller’s theory applies,
making L−1 the first-passage time of a Bessel process of index 0 - see [10]. When α ∈ (0, 1)
the operator Dα+1

−
is the infinitesimal generator of a spectrally positive (1+α)−stable Lévy

process reflected at its minimum, which is a spectrally positive Markov process - see Section
3 in [13] and the references therein. By downward continuity, one may wonder if Lξ cannot
be viewed as the first-passage time of some scale-transformation of the latter, eventhough
no Feller’s theory is available for fractional operators whose order lies in (1, 2).

The above probabilistic interpretations do not seem to hold for t 6= 1. On the one hand,
Theorem 4.17 in [11] yields then an equation with two fractional derivatives of different

order for the Laplace transform of Γξ
t . On the other hand, keeping the notation α = −1/ξ,

Theorem 1 in [16] shows the factorization

Γξ
t = Γ−1

αt × S(t)
α

where S
(t)
α is the size-biased sampling of Sα of order −αt, viz.

E[f(S(t)
α )] =

E[f(Sα)S
−αt
α ]

E[S−αt
α ]

·
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The GGC character of S
(t)
α follows from that of Sα and Theorem 6.2.4. in [5], which shows

by the above case ξ = −1 that Γξ
t is the independent product of two SD random variables.

By Theorem 16.1 in [14], this entails that there exist two independent 1-self-similar additive
increasing processes Y and Z such that

Γξ
t

d
= YZ1

.

Unfortunately, contrary to Bochner’s subordination the independent composition of two
additive processes is not necessarily an additive process anymore, so that the above identity
does not provide a probabilistic proof of the self-decomposability of Γξ

t .
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