Mugurel Ionut ¸andreica

Nicolae T ¸ȃpus

SEQUENTIAL AND MAPREDUCE-BASED ALGORITHMS FOR CONSTRUCTING AN IN-PLACE MULTIDIMENSIONAL QUAD-TREE INDEX FOR ANSWERING FIXED-RADIUS NEAREST NEIGHBOR QUERIES

Keywords: 2010 Mathematics Subject Classification:68P05, 68P10, 68P15, 68P20, 68U35, 68W10, 68W15

Answering fixed-radius nearest neighbor queries constitutes an important problem in many areas, ranging from geographic systems to similarity searching in object databases (e.g. image and video databases). The usual approach in order to efficiently answer such queries is to construct an index. In this paper we present algorithms for constructing a multidimensional quad-tree index. We start with well-known sequential algorithms and then adapt them to the MapReduce computation model, in order to be able to handle large amounts of data. In all the algorithms the objects are indexed in association with quad-tree cells (or nodes) which they intersect (plus possibly a few other nearby cells). When processing a query, multiple quad-tree cells may be searched in order to find the answer.

Introduction

The fixed-radius nearest neighbor problem is defined as follows. Given a set of objects in a D-dimensional space, a query point P and a distance R, find the closest object to the point P located at a distance at most equal to R. Usually, the set of objects is fixed and it requires pre-processing in order to answer multiple queries in an efficient manner. This problem has applications in many areas. The most obvious one is in the domain of geographic information systems (GIS). A user may send his coordinates to a GIS and receive back information about the closest object of interest (e.g. address, restaurant, etc.) located at a distance at most R from him. Another application is given by similarity search queries. There are many services storing data objects (e.g. images, video clips) which can be described by the values of their features. The set of features forms the feature space. A query point in this

Problem Statement

The problem addressed in this paper is the following. We consider N objects in a D-dimensional space. The objects can be of any type (e.g. points, segments, polyhedra, unions of simpler objects, etc.), where both N and the total amount of data representing the objects are very large. We also consider a distance function over the D-dimensional space (e.g. one of the L p norms (1 ≤ p ≤ +∞)). We are interested in efficiently answering the following types of queries: Given a point P in the D-dimensional space and a distance threshold R, return the object O closest to P , located at distance at most R from P .

The distance between a point P and an object O is defined in the usual way, as the distance between P and the closest point Q to P , such that Q ∈ O. We will assume that a function dist(P, O) which computes the distance between a point P and an object O is given. We assume a normal distance function, without additive or multiplicative weights.

Choice of the Index Data Structure

Since the number of objects N is large, a brute force approach which, for each query considers every object, is out of the question. Thus, we need to construct an index over the objects as part of a preprocessing stage, which will help us efficiently M. I. Andreica, N. T ¸ȃpuş -Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries

The considered indexing strategy was as follows: Every object is indexed only in cells which it intersects (plus, possibly, a few other neaby cells). Then, at query time, we will have to search multiple cells in order to find the answer (we call this the "in-place" indexing, "out-of-place" searching method).

Main Prerequisites, Assumptions and Terms

In this section we describe the main assumptions and prerequisites which will be considered during the indexing process and at query time. First, we will describe in more detail what a multidimensional quad-tree is. Each node of the tree has a unique identifier and corresponds to a finite hyper-rectangular region of the D-dimensional space, having a pre-specified aspect ratio. To be more precise, let (ar 1 , . . . , ar D-1) be a set of constant positive values and let (L 1 , . . . , L D) be the side lengths of a hyper-rectangle corresponding to any tree node. Then we must have L i /L D = ar i (for 1 ≤ i ≤ D -1). (ar 1 , . . . , ar D-1) are constant parameters of the tree. The same holds for another constant K ≥ 2, which describe how the regions corresponding to a node's sons are computed. Let's consider the hyper-rectangular region Cell(Q) corresponding to a node Q (with Q being the node's identifier). The node has K D children and their regions are computed as follows: For each dimension i (1 ≤ i ≤ D), divide the side length of Cell(Q) in dimension i into K equal parts, by drawing K -1 equally-spaced hyper-planes. (K -1) • D hyper-planes drawn this way divide the interior of Cell(Q) into K D equal hyper-rectangles, each of them having the same aspect ratio as Cell(Q). Each of these hyper-rectangles corresponds to a child of Q. Note that we consider Cell(Q) to contain all the points in its interior.

Each node Q of the tree has an associated level: Level(Q). Level(root) = 1 and Level(Q = root) = Level(P arent(Q)) + 1, where root is the root node of the tree and P arent(Q) is the parent node of Q (every node except the root has a parent). In theory, the tree can have an infinite number of nodes. Because of this, we will set a threshold M axLevel and we will consider that the nodes at the level M axLevel have no children.

Given the identifier Q of a node, the following functions must be computed efficiently, preferably based only on Q and the constant parameters of the tree (i.e. (ar 1 , . . . , ar D-1) and K):

• Level(Q): returns the level of the node.

• P arent(Q): returns the identifier of the node's parent.

• Cell(Q): returns the geometric representation of the hyper-rectangle (cell) corresponding to the node Q.

• Children(Q): returns a set consisting of the identifiers of the node's children (if any); nodes at level M axLevel have no children and the result is not defined for Level(Q) > M axLevel.

• N eighbors(Q): returns a set consisting of the identifiers of the nodes Q such that Level(Q) = Level(Q) and Cell(Q) touches Cell(Q) in at least one point.

Based on these functions, we can define the following extra functions:

• Siblings(Q): returns the set of identifiers of all the nodes Q such that P arent(Q) = P arent(Q); this function can be implemented as:

-

Sibling(root) = {} -Sibling(Q = root) = Children(P arent(Q)) \ {Q}
• ExtN eighbors(Q): returns the set consisting of node Q's neighbors and siblings; the function can be implemented as:

ExtN eighbors(Q) = N eighbors(Q)∪ Siblings(Q).
• Descendants(Q, dlevel): returns the identifiers of all the descendants of Q located at the level dlevel; the function can be implemented as follows:

-

Descendants(Q, dlevel < Level(Q)) = {} -Descendants(Q, dlevel = Level(Q)) = {Q} -Descendants(Q, dlevel > Level(Q)) = ∪{Descendants(Q , dlevel)|Q ∈ Children(Q)}
• Ancestor(Q, alevel): returns the ancestor of the node Q located at the level alevel; we can implement this function as follows:

-

Ancestor(Q, alevel > Level(Q)) is not defined -Ancestor(Q, Level(Q)) = Q -Ancestor(Q, alevel < Level(Q)) = Ancestor(P arent(Q), alevel)
• Ancestors(Q, alevel): returns the set of ancestor of the node Q located at or below the level alevel; we can implement this function as follows:

-

Ancestors(Q, alevel > Level(Q)) = {} -Ancestors(Q, Level(Q)) = {Q} -Ancestors(Q, alevel < Level(Q)) = {Q}∪ Ancestors(P arent(Q), alevel)
M. I. Andreica, N. T ¸ȃpuş -Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries

The function Ancestors(Q, alevel) can be extended to Ancestors(S, alevel), where S is a set of nodes. In this case, Ancestors(S, alevel) returns the union of the sets Ancestors(Q, alevel) for Q ∈ S.

Using the Z-order (or Morton curve) [START_REF] Kumar | A Study of Spatial Clustering Techniques[END_REF] in order to assign identifiers to the cells of a multidimensional quad-tree helps us to easily implement all the functions mentioned above. For simplicity, let's assume that, in our quad-tree, we have K = 2 H . At each level, the cells of the quad-tree form a D-dimensional grid with the same number of cells in each dimension. The cell located at position (c(1), . . . , c(D)) (c(i) ≥ 0, 1 ≤ i ≤ D) in this grid has an identifier equal to the bit interleaving of the bit representations of c(1), . . . , c(D) (i.e. we take the first bit of each number, in order, from 1 to D, then the second bit of each number, in the same order, and so on), to which we add an encoding of the cell's level in the tree. The positions of the level L + 1 children of a cell located at position (c(1), . . . , c(D)) in the grid at level L will be obtained by appending H bits to each number c(1), . . . , c(D), thus obtaining 2 H•D = K D new positions (from which we can compute the corresponsing identifiers). Computing the position of a cell from its identifier is also very easy, by reversing the encoding algorithm. If K is not a power of 2, then we will use H = log 2 K . Other encoding schemes with similar properties are also possible [START_REF] Kumar | A Study of Spatial Clustering Techniques[END_REF].

Figure 1 presents the positions of the children of the level 2 node (01 2 , 11 2), when D = 2 and K = 4. The identifier of the node is (0111 2 .2), while the identifier of the child (0101 2 , 1101 2) is (01110011 2 .3).

In our geometric interpretations, we will mainly use the following terms, with the specified meanings:

• Object: one of the N objects from the object database • Cell: the region associated to a node from the tree • Polyhedron: this has the usual meaning; note that a cell is a polyhedron, as well as the faces and borders of each cell

• Figure: a geometric shape, which may be either an object or a polyhedron Another set of functions which we require are the following:

• Distance(F, P): returns the distance between a D-dimensional polyhedron P and a figure F (P may be degenerate, in the sense that it may be a Ddimensional polyhedron, placed in a D-dimensional space, where D < D; think, for instance, of a 2D polygon placed in a 3D-space).

• Cover(F, clevel): returns the set of all the node identifiers Q such that Level(Q) = clevel and the figure F intersects Cell(Q). essarily assume the previous equivalence and we will consider that the intersection between an object and a cell is computed geometrically. Based on the Distance function above we can compute the distance between the cells of two nodes A and B of the tree: Distance(Cell(A), Cell(B)), which is 0 if one of the cells is included in the other (i.e. if one of the two nodes is an ancestor of the other one). We will also make use of two other functions, which can be implemented easily:

• Diameter(F) which returns the diameter of the figure F , i.e. the largest distance between any pair of points belonging to F .

• Border(Q): returns a geometric representation of the hyper-rectangle Cell(Q), but without the points in its interior (i.e. containing only the borders of Cell(Q)).

Using the functions defined above, we can define a new function: Inf late(F, ilevel, radius) which returns a set of identifiers of all the nodes at level ilevel whose cells are at distance at most radius from the geometric figure F . We will refer to the set of cells of the identifiers from this set as a "covering". See Fig. 2 for an example, where the covered figure (object) F consists of two line segments in 2D. See also Fig. 3 for an example with two objects.

Actually, we will define a more general function, ExtInf late(F, ilevel, radius, f raction). This function can be implemented as in Algorithm 1. Then, we can define Inf late(F, ilevel, radius) = ExtInf late(F, ilevel, radius, 0). The f raction parameter can be used in order to also include in the covering a cell Cell(Q) if it is adjacent to a same-level cell Cell(Q) intersecting the figure F and the distance between the figure F and Cell(Q) does not exceed f raction•Diameter(Cell(Q)) (note M. I. Andreica, N. T ¸ȃpuş -Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries

Algorithm 2 SplitAtLevel(Q, slevel) for Q ∈ Descendants(Q, slevel) do Lid(Q) = Lid(Q) {Optionally, if needed, we may also set Lobj(Q) = Lobj(Q)} Add Q as leaf in T end for Lobj(Q) = {} Lid(Q) = {} {Q is now no longer a leaf in T } 5.
Sequential "In-Place" Indexing and "Out-of-Place" Searching Every object O is indexed only in a set of cells which it intersects (plus, possibly, a few other nearby cells). We present both the top-down and the bottom-up methods of implementing this approach.

The Top-Down Method

Constructing the Index

We start with a sub-tree T consisting only of the root node and we insert the objects one at a time, in an arbitrary order. Algorithm 3 describes a recursive insertion procedure. The initial call is InsertT opDown(root, O, radius, f raction), where O is the current object and radius and f raction have the same meaning as in Algorithm 1.

Answering a Query

A query specifies a point P and a distance threshold R. We define Algorithm 6, in which P is an arbitrary polyhedron and R is a threshold (note that a point is a particular case of polyhedron). The algorithm must be called for the root of the tree and returns a list of object identifiers from the leaves whose cells are located at distance at most R from P . Thus, the list of identifiers will contain the identifiers of all the objects located at distance at most R from the query point P , plus, possibly, a few others. The closest object with the identifier in this list will be the final answer.

The Bottom-Up Method

The bottom-up method constructs the tree starting from the leaves. The objects are still considered sequentially, one at a time. We will store the identifiers of the leaf nodes of T into a hash table, because we need to be able to efficiently test if a given node is a leaf of T or not. We denote the set of leaves of T by Leaves T . Initially, only the root is a leaf.

Constructing the Index

For each object O we first compute the set ExtInf late(O, M axLevel, radius, f raction). Then, for each of the nodes Q ∈ (Ancestors(ExtInf late(O, M axLevel, radius, f raction), M inLevel)∩ Leaves T), we call the function AddObjectT oLeaf (Q, O, radius, f raction). Basically, this part is implemented by computing the mentioned set first (see Fig. 4) and then, for each node Q in the set, look it up in the hash table in order to check if it is also a leaf of T .

Answering a Query

A query specifies a point P and the distance threshold R. Then, similarly to the previous case, we compute the list of object identifiers, this time by calling BottomU pQuery(root, P, R). Then, as before, the closest object whose identifier is in this list is returned as the final answer. M. I. Andreica, N. T ¸ȃpuş -Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries compute the distance from the query point to it. The objects may also be distributed over the same set of machines (or over another set of machines). Unlike the lists of object ids, an object is fully stored on a single machine (it wouldn't make sense to split an object over multiple machines). A good idea might be to store an object O together with an inverted index IID(O), consisting of the set of nodes Q for which id(O) ∈ Lid(Q), on the same machine. An inverted index can be computed easily [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF] from the lists Lid(*) (considering every list to be a document and every object id from the list as a token). This distributed query processing model is similar to the query processing model used by Google [START_REF] Barroso | Web Search for a Planet: The Google Cluster Architecture[END_REF].

Related Work

The fixed-radius nearest neighbor problem has been addressed before in several research papers (e.g. [START_REF] Bentley | The Complexity of Finding Fixed-Radius Near Neighbors[END_REF][START_REF] Aref | Efficient Processing of Proximity Queries for Large Databases[END_REF][START_REF] Castelli | Multidimensional Indexing Structures for Content-based Retrieval[END_REF][START_REF] Kirkpatrick | Optimal Search in Planar Subdivisions[END_REF]) and many data structures for solving this problem or related problems have been proposed: R-trees [START_REF] Guttman | R-Trees -A Dynamic Index Structure for Spatial Searching[END_REF][START_REF] Sharifzadeh | VoR-tree: R-trees with Voronoi diagrams for efficient processing of spatial nearest neighbor queries[END_REF], kd-trees [START_REF] Bentley | Multidimensional Binary Search Trees Used for Associative Searching[END_REF], quad-trees [START_REF] Hunter | Operations on Images using Quad Trees[END_REF], fixed-size cell subdivisions [START_REF] Lai | A Cell Subdivision Strategy for R-Nearest Neighbors Computation[END_REF][START_REF] Akman | Geometric Computing and Uniform Grid Technique[END_REF] and many others [START_REF] Chavez | A Compact Space Decomposition for Effective Metric Indexing[END_REF]. Most of the proposed solutions assume that the index can be constructed in main memory or, at least, can be stored on the disk of a single machine. Thus, the proposed algorithms are sequential in nature (see, for instance, [START_REF] Dinis | A Sweep Line Algorithm for Nearest Neighbot Queries[END_REF]).

More recently, parallel and distributed algorithms for constructing indices over geometrical data have been proposed. In [START_REF] Liu | Clustering Billions of Images with Large Scale Nearest Neighbor Search[END_REF], some parts of the construction of a hierarchical index are parallelized using the MapReduce computation model, but other parts were still implemented in a sequential manner. In [START_REF] Sundar | Bottom-Up Construction and 2:1 Balance Refinement of Linear Octrees in Parallel[END_REF], a distributed algorithm for constructing octrees (3D quad-trees) was presented. In [START_REF] Panda | PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce[END_REF], a MapReduce-based framework which can be used for constructing classification and regression trees in parallel has been proposed. Other attempts for processing spatial data using the MapReduce model for constructing an R-tree index have been made in [START_REF] Cary | Experiences on Processing Spatial Data with MapReduce[END_REF]. A generic MapReduce framework for tree data structures has been proposed in [START_REF] Sarje | A MapReduce Style Framework for Computations on Trees[END_REF].

Conclusions and Future Work

In this paper we presented several methods for constructing an in-place multidimensional quad-tree index over a set of (arbitrary) geometric objects, which can speed up the computation of answers for fixed-radius nearest neighbors queries. We started by presenting the top-down and bottom-up sequential implementations and then adapted the bottom-up indexing algorithm to the MapReduce computation model. As future work, we intend to implement the presented MapReduce-based algorithm using the Hadoop framework [START_REF] White | Hadoop: The Definitive Guide[END_REF] and assess its performance experimentally. Moreover, we want to explore other types of nearest-neighbor problems and develop new MapReduce-based indexing algorithms for these problems. An "out-of-place"

MFigure 2 :

 2 Figure 2: Inflated covering example.

7 Figure 4 :

 74 Figure 4: Example of ancestors of an inflated covering.

Acknowledgements

The work presented in this paper was partially funded by the Romanian National Council for Scientific Research (CNCS)-UEFISCDI, under research grants ID 1679/2008 (contract no. 736/2009) from the PN II -IDEI program, and PD 240 / 2010 (AATOMMS -contract no. 33/28.07.2010), from the PN II -RU program, and by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the financial agreement POSDRU/89/1.5/S/62557.

The Cover(F, clevel) function can be implemented easily for connected figures F . One possible implementation is the following. First, we find a point P ∈ F and compute the identifier Q such that Level(Q) = clevel and P ∈ Cell(Q) (i.e. we find the cell at level clevel containing the point P). This can be easily achieved, by computing the position of this cell in the level clevel grid of cells (we only need to divide the coordinates of P to the side lengths of the level clevel cells in each dimension). Then, we will perform a breadth-first search traversal starting from that cell. We will visit all the level clevel cells starting from Cell(Q) which are intersected by the figure F (once a cell is visited, we add it to a queue; when we extract a cell from the queue, we visit all of its non-visited neighbors intersected by the figure F). If F is disconnected, we can still use the same algorithm, as long as we know the coordinates of a point P from each connected component.

Note that, since the Distance function does not include additive distance weights, we have the equivalence between:

However, in the algorithms presented in the rest of this paper, we will not nec-Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries that since all the cells at the same level are identical, we have Diameter(Cell(Q)) = Diameter(Cell(Q)). The radius parameter can be used, for instance, as a tolerance level. Even if the intersection function decides that a figure F does not intersect a cell Cell(Q), but it is, however, very close to it, we may decide to include Cell(Q) in the covering. The f raction parameter may be used to insert in the covering cells which are "proportionally" close to the figure (where the proportion depends on the cell's size, i.e. its diameter). Normally, f raction would be set to a value very close to 0 (or even 0). The final assumption is that each of the N objects O has a unique identifier id(O). This way, we will differentiate between the whole object O (which contains the object's geometry and, possibly, other information) and its identifier.

All the functions defined in this section will be used in the following sections, both at indexing and at query time.

The index consists of a sub-tree T of the complete multidimensional quad-tree. During the indexing process, each leaf Q of T will have assigned a list Lobj(Q) of objects which are indexed in association with Q. At the end of the indexing process, we will compute a list Lid(Q) for each leaf Q, where

During our indexing process, we will also use a parameter M inLevel, meaning that we don't want to have leaves at a smaller level than M inLevel. Because of this, we will define the operation SplitAtLevel(Q, slevel), which replaces a leaf Q in T such that Level(Q) < slevel by its descendants at the level slevel (see Algorithm 2).

We will denote by Children T (Q) the set of identifiers of the nodes of T which are also children of Q. Children T (Q) is a subset of Children(Q). Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries

We will associate to each object O a non-negative weight W (O). We provide guidelines as to how this weight should be chosen. The weight should be proportional to:

• the size of the object (i.e. the storage space it takes) and/or

• the duration of computing the distance from a query point to the object For each leaf Q of the tree, we will maintain a value W L(Q) representing the aggregate weight of the objects associated to Q. We will use an aggregation function aggf (e.g. aggf = addition). We will use an indexing weight threshold IW T in order to decide when we need to split a leaf. If the aggregate weight of the objects associated to a leaf Q exceeds IW T and Level(Q) < M axLevel, then we will need to split the leaf.

we denote by 0 the neutral element for the aggregation function)

end for return result end if Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries

"In-Place" Indexing using MapReduce

The MapReduce computation model is based on the existence of two functions, Map and Reduce, which are used for processing input data. Let's assume that the input data consists of M records. The M ap function is called independently for processing each record (the record to be processed will be its argument), possibly on separate machines. Each Map function may emit zero, one or more (key, value) pairs. After the Map stage is over (i.e. all the Map functions finished their execution), all the emitted (key, value) pairs are sorted and grouped according to the key (the shuffle stage). Basically, the Shuffle stage computes for each emitted key Key the list of all its values Lvalues(Key) (multiple equal values are preserved in the list). Then, for each pair (Key, Lvalues(Key)), the Reduce function is called (the two input arguments to the Reduce function are the key and its list of values). Each Reduce function call may emit zero, one or more output values (they can be anything, not necessarily values from the lists of values associated to the keys). The output values of all the Reduce function calls constitute the output of the MapReduce operation.

In this section we describe a chain of 3 MapReduce phases which can construct the "in-place" multidimensional quad-tree index.

Generation of candidate cells

The input to this MapReduce phase is the set of objects and the output is a set of candidate cells (or nodes). The M ap function is presented in Algorithm 8 and the Reduce function is presented in Algorithm 9. The M axLevel, M inLevel, radius and f raction parameters must be known by the Mappers and Reducers, when they are needed (they can be either constant values or given as side inputs, where needed).

Algorithm 8 IP I -GenCandCells -M ap(O)

for Q ∈ Ancestors(ExtInf late(O, M axLevel, radius, f raction), M inLevel) do Emit(key = Q, value = W (O)) end for

Filtering candidate cells

In this sub-section we introduce a generic MapReduce phase for filtering cells. The side parameter of the M ap function is the boolean value ShouldOutputCell, which will take different values, depending on the set of cells being filtered. Algorithm 10 presents the M ap function of this phase and Algorithm 11 presents the Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries

Reduce function. The input to the M ap function is a candidate cell and the output of the Reduce function is the set of candidate cells which were kept (the others were filtered out). The side parameter ShouldOutputCell is set to true in this case. The main rule used for filtering the candidate cells is also depicted in Fig. 5.

if Lvalues contains only one value V and V = CandidateCell then Emit(Q) end if

Computing the lists of object ids for the cells

The input to the Mappers of this phase is the set of N objects and the set of filtered candidate cells. Basically, we perform a MapReduce join between two inputs:

• the set of N objects

• the set of filtered candidate cells

There are many ways of performing the join. The "standard" MapReduce way would be to use two Map functions, one for each input, and let the Reducer perform Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries When the set of filtered cells is not too large, it may be more efficient for each Mapper to read the whole set of filtered cells in memory and then simply output only those pairs for which the key exists in the set of filtered cells. Let's assume that each Mapper read the set of filtered cells into a variable CC. Algorithms 15 and 16 present the Map and Reduce functions for this case. The inputs for the Mappers are the N objects -each Map function call processes a different object. Note that care must be taken when implementing this approach. If the set of filtered cells is read by each Map function call, then this would be very inefficient. Instead, each Mapper process or thread should read the set of filtered cells in memory. Each Mapper will be used for processing multiple Map function calls -thus, the set of filtered cells will not be read at each Map function call, but rather only once for each Mapper process/thread (since it is most common for each Mapper to run on a separate machine, this means that the set of cells will be read once for each machine used during the Map stage).

Distributed Query Processing

When multiple machines are available for answering a query, we can distribute the index over these machines. From the point of view of a leaf node Q, we may choose to store its list Lid(Q) on a single machine, or have it distributed over the whole range of available machines.

When a query is performed, we first compute the set of cells SC which may have the answer to the query. Then, this set is sent to each machine, which, in turn, returns a set of candidate object ids for the query (if it stores part of Lid(Q) for some Q ∈ SC) or doesn't return anything. After computing the union of the sets of object ids returned by each machine, each object is retrieved independently and we Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries indexing method (in which objects may also be indexed outside of the cells they intersect) would be particularly interesting, especially if it could be coupled with an "in-place" searching method. We note also that there may also be other intermediate levels between "in-place" indexing plus "out-of-place" searching and "out-of-place" indexing plus "in-place" searching, which might be interesting to explore in order to better understand the trade-offs they may provide.