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Asymptotic spectral gap and Weyl law for Ruelle

resonances of open partially expanding maps

Jean Francois Arnoldi∗, Frédéric Faure†, Tobias Weich‡

12-02- 2013

Abstract

We consider a simple model of an open partially expanding map. Its trapped set
K in phase space is a fractal set. We first show that there is a well defined discrete
spectrum of Ruelle resonances which describes the asymptotic of correlation functions
for large time and which is parametrized by the Fourier component ν on the neutral
direction of the dynamics. We introduce a specific hypothesis on the dynamics that
we call “minimal captivity”. This hypothesis is stable under perturbations and means
that the dynamics is univalued on a neighborhood of K. Under this hypothesis we
show the existence of an asymptotic spectral gap and a Fractal Weyl law for the
upper bound of density of Ruelle resonances in the semiclassical limit ν → ∞. Some
numerical computations with the truncated Gauss map illustrate these results.
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1 Introduction

A “partially expanding map” is a map which is expanding except in some directions which
are called “neutral”. An “open map” is a map for which the non wandering set (or trapped
set) is not the full manifold but a relatively compact subset. The aim of this paper is to
study the dynamics of a class of open partially expanding maps from the spectral approach
initiated from Ruelle and Bowen. In this approach, the pull back operator by the map, also
called transfer operator, is shown to have some discrete spectrum in some specific functional
spaces. These eigenvalues called “Ruelle resonances” are very useful to describe the effective
long time behavior of the dynamics: to express dynamical correlation functions and deduce
statistical properties of the dynamics such as mixing and central limit theorems.

In Section 2 we define the model of expanding maps on some union of intervals I ⊂
R precisely called an iterated function scheme (I.F.S.). This is a well studied class of
dynamical systems for which the trapped set K ⊂ I is a Cantor set and has some Hausdorff
dimension dimHK ∈ [0, 1[. In Section 2.4 we extend this model by adding a neutral
direction and obtain a “partially expanding map”. The transfer operator is defined in
Section 2.5. We can decompose the transfer operators into its Fourier components ν ∈ Z

with respect to the neutral direction and obtain a family of operators F̂ν also written F̂~

with ~ := 1/ (2πν) (if ν 6= 0).
In Section 3 we present the main new results of this paper. Theorem 12 shows that each

transfer operator F̂ν has some discrete spectrum of Ruelle resonances in specific Sobolev
space. Then Theorem 20 shows that in the limit of large frequencies |ν| → ∞ the spectral
radius of F̂ν is bounded by some expression, under some condition that we call “minimal
captivity”. In order to derive this result we use a semiclassical approach which consists
in considering that the operator F̂ν has some microlocal properties in phase space T ∗I
(precisely it is a Fourier integral operator). This allows to consider the associated canonical
map F on T ∗I. This canonical map has a trapped set K which is also a Cantor set (which
projects on K). We also obtain an upper bound on the number of Ruelle resonances in
the limit |ν| → ∞ in Theorem 22. This upper bound involves the Hausdorff dimension
dimHK is is usually called fractal Weyl law after the work of J. Sjöstrand in [24]. The
“minimal captivity” condition means that the dynamics of the canonical map F restricted
to its trapped set K is one-to-one (whereas the map F on T ∗I is multivalued).
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In Section 4 we illustrate our results by numerical computations with a particular model:
the Gauss map.

The same semiclassical approach has been used before for “closed dynamical systems”
in [9] and [16], i.e. for systems in which the trapped set was the full manifold. In these
latter papers as well as in [28] a similar result for the asymptotic spectral radius has been
obtained. Technically the open aspect here is overcame by using a truncation function
χ as explained in Section 2.6. In [16] the author considers models for which the neutral
direction is a non commutative compact Lie group and shows discrete spectrum of Ruelle
resonances, asymptotic spectral radius and Weyl law. Let us remark that we could extend
the present results similarly by considering extensions with compact groups.

As explained in Section 4.1 our results can be applied to “Bowen Series maps” and
“Bowen Series transfer operators” associated to the geodesic flow of “convex co-compact
hyperbolic surfaces” also called “Shottky surfaces”. So our results give some results for
the zeroes of the Selberg zeta function and resonances of the Laplacian of these surfaces.
In that case the Weyl law of Theorem 22 is in close relation with the results obtained
by Lin, Guilloppe and Zworski in [13] where they give an upper bound on the density of
resonances for the Laplace-Beltrami operator on open hyperbolic surfaces. We can also
apply our results to the quadratic maps and recover results already obtained in [25, 19].

Also let us remark that with the condition of “minimal captivity”, the dynamics of the
canonical map F in the vicinity of the trapped set K is univalued and can be identified
with the classical dynamics of a “open quantum map”. The results of S. Nonnenmacher
et M. Zworski [20] about asymptotic spectral radius and Weyl law of these open quantum
maps are in that sense very similar to the results presented in this paper.

2 The transfer operator

2.1 Iterated function scheme

The transfer operator studied in this paper is constructed from a simple model of chaotic
dynamics called “an iterated function scheme, I.F.S.”[8, chap.9]. We give the definition
below and refer to Section 4 where many standard examples are presented.
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Definition 1. “An iterated function scheme (I.F.S.)”. Let N ∈ N, N ≥ 1. Let
I1, . . . IN ⊂ R be a finite collection of disjoint and closed intervals. Let A be a N ×N
matrix, called adjency matrix, with Ai,j ∈ {0, 1}. We will note i  j if Ai,j = 1.
Assume that for each pair i, j ∈ {1, . . . , N} such that i j, we have a smooth invertible
map φi,j : Ii → φi,j (Ii) with φi,j (Ii) ⊂ Int (Ij). Assume that the map φi,j is a strict
contraction, i.e. there exists 0 < θ < 1 such that for every x ∈ Ii,

∣
∣φ′

i,j (x)
∣
∣ ≤ θ (1)

We suppose that different images of the maps φi,j do not intersect (this is the “strong
separation condition” in [7, p.35]):

φi,j (Ii) ∩ φk,l (Ik) 6= ∅ ⇒ i = k and j = l. (2)

Remark that the derivative φ′
i,j (x) may be negative. Figure 1 illustrates Definition 1

on a specific example.

2.2 Example with the truncated Gauss map

The Gauss map is

G :

{

]0, 1] → ]0, 1[

y →
{

1
y

} (3)

where {a} := a − [a] ∈ [0, 1[ denotes the fractional part of a ∈ R. For j ∈ N\ {0}, and
y ∈ R such that 1

j+1
< y ≤ 1

j
then G (y) = Gj (y) :=

1
y
− j. Notice that dG/dy < 0 . The

inverse map is y = G−1
j (x) = 1

x+j
.

Let N ≥ 1. We will consider only the first N “branches” (Gj)j=1,...N . In order to have
a well defined I.F.S according to definition 1, for 1 ≤ i ≤ N , let i′ = N + 1 − i (which
just inverses the labels of the Branch’s). Let αi = G−1

i′

(
1

N+1

)
, ai = 1

1+i′
, bi such that

αi < bi <
1
i′
, and intervals Ii = [ai, bi]. On these intervals (Ii)i, we define

y = φi,j (x) = G−1
j′ (x) =

1

x+ j′
, j′ = N + 1− j′. (4)

The adjency matrix is A = (Ai,j)i,j, the full N ×N matrix with all entries Ai,j = 1.

2.3 The trapped set K

We define

I :=

N⋃

i=1

Ii (5)
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K
I1 I2 I3

φ3,2

φ3,3

I2

I1

I3

Figure 1: The iterated functions scheme (IFS) defined from the truncated Gauss map (3).
Here we have N = 3 branches. The maps φ: φi,j : Ii → Ij, i, j = 1 . . . N are contractive
and given by φi,j (x) = 1

x+(N+1−j)
. The trapped set K defined in (9) is a N -adic Cantor

set. It is obtained as the limit of the sets K0 = (I1 ∪ I2 . . . ∪ IN) ⊃ K1 = φ (K0) ⊃ K2 =
φ (K1) ⊃ . . . ⊃ K.

and the multivalued map:
φ : I → I, φ = (φi,j)i,j .

φ can be iterated and generates a multivalued map φn : I → I for n ≥ 1. From hypothesis
(2) the inverse map

φ−1 : φ (I) → I

is uni-valued. Throughout the paper we will use the “unstable Jacobian function”

J (x) := log

∣
∣
∣
∣

dφ−1

dx
(x)

∣
∣
∣
∣

(6)

defined on φ (I). From (1), one has

∀x, J (x) > log
1

θ
> 0. (7)

Let
Kn := φn (I) (8)

and K0 = I. Since Kn+1 ⊂ Kn we can defined the limit set

K :=
⋂

n∈N

Kn (9)

called the trapped set. Then the map

φ−1 : K → K (10)

is well defined and uni-valued.
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2.3.1 The fractal dimension of the trapped set K and the topological pressure

In this paper we will use the following definition of fractal dimension.

Definition 2. [18, p.76],[7, p.20] If B ⊂ Rd is a non empty bounded set, its upper

Minkowski dimension (or box dimension) is

dimMB := d− codimMB (11)

with

codimMB := sup

{

s ∈ R | lim sup
δ↓0

δ−s · Leb (Bδ) < +∞
}

. (12)

where Bδ :=
{
x ∈ Rd, dist (x,B) ≤ δ

}
and Leb (.) is the Lebesgue measure.

Remark 3. In general
lim sup

δ↓0
δ−codimMB · Leb (Bδ) < +∞ (13)

does not hold, but if it does, B is said to be of pure dimension2. It is known that the
trapped set K defined in (9) has pure dimension and that the above definition of Minkowski
dimension coincides with the more usual Hausdorff dimension of K [7, p.68]:

dimMK = dimHK ∈ [0, 1[ (14)

An efficient way to calculate the fractal dimension dimHK is given by the topological
pressure. The topological pressure can be defined from the periodic points as follows. A
periodic point of period n ≥ 1 is x ∈ K such that x = φ−n (x). The topological pressure
can be defined in terms of periodic points.

Definition 4. [7, p.72] The topological pressure of a function ϕ ∈ C (I) is

Pr (ϕ) := lim
n→∞

1

n
log




∑

x=φ−n(x)

eϕn(x)





where ϕn (x) is the Birkhoff sum of ϕ along the periodic orbit:

ϕn (x) :=
n−1∑

k=0

ϕ
(
φ−k (x)

)

2see [24] for comments and further references.
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It is interesting to consider the special case of the function ϕ (x) = −βJ (x) with some
β ∈ R and J (x) defined in (6). This gives the function P : R → R defined by

P (β) := Pr (−βJ) = lim
n→∞

1

n
log




∑

x=φ−n(x)

n−1∏

k=0

∣
∣φ′
(
φ−k (x)

)∣
∣
β



 (15)

The following lemma provides an easy way to compute (numerically) the dimension of
K. See figure 2.

Lemma 5. [7, p.77] P (β) is continuous and strictly decreasing in β and its unique zero
is given by β = dimH K.

N = 1

N = 2

N = 3

PN(β)

Figure 2: Topological Pressure PN (β) defined by (15) for the truncated Gauss map ex-
ample of Section 2.2 for each value of N = 1, 2, 3 . . . being the number of branches. The
black points mark the zero of PN (β) = 0 giving the fractal dimension of the trapped set
KN for each value of N : dimH K1 = 0, dimH K2 = 0.531 . . ., dimH K3 = 0.705 . . ., and
dimH KN → 1

N→∞
.

2.4 An extended partially expanding map and reduced transfer

operators

The map φ−1 : φ (I) → I is univalued and expanding. Let τ ∈ C∞ (I;R) be a smooth real
valued function called roof function. We define the map

f :

{

φ (I)× S1 → I × S1

(x, y) → (φ−1 (x) , y + τ (x))
(16)
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with S1 := R/Z. Notice that the map f is expanding in the x variable whereas it is neutral
in the y variable in the sense that ∂f

∂y
= 1. This is called a partially expanding map and is

a very simple model of more general partially hyperbolic dynamics [21].
Let V ∈ C∞ (I;C) be a smooth complex valued function called a potential function.

Definition 6. The transfer operator of the map f with potential V is

F̂ :

{

C∞ (I × S1) → C∞ (φ (I)× S1)

ψ (x, y) → eV (x)ψ (f (x, y))
(17)

Notice that ψ (x, y) can be decomposed into Fourier modes in the y direction. For
ν ∈ Z, a Fourier mode is

ψν (x, y) = ϕ (x) ei2πνy

we have
(

F̂ψν

)

(x, y) = eV (x)ψν (f (x, y)) = eV (x)ϕ
(
φ−1 (x)

)
ei2πν(y+τ(x))

=
(

F̂νϕ
)

(x) ei2πνy

with the reduced transfer operator F̂ν : C∞ (I) → C∞ (φ (I)) defined by

(

F̂νϕ
)

(x) := eV (x)ei2πντ(x)ϕ
(
φ−1 (x)

)
(18)

So the operator F̂ is the direct sum of operators
⊕

ν∈Z F̂ν . From the next Section we will

study the individual operator F̂ν in (21). Since our main interest is the limit ν → ∞ of
large frequencies in the neutral direction, we will suppose ν 6= 0 and write ~ := 1

2πν
. In

Section 3.3 we will deduce from our principal results, some asymptotic expansions for time
correlation functions of the map (16).

2.5 The transfer operator

Notations: We denote C∞
0 (R) the space of smooth function on R with compact support.

If B ⊂ R is a compact set, we denote C∞
B (R) ⊂ C∞

0 (R) the space of smooth functions on
R with support included in B. Recall that the inverse map φ−1 : φ (I) → I is uni-valued.
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Definition 7. Let τ ∈ C∞ (I;R) and V ∈ C∞ (I;C) be smooth functions called re-
spectively roof function and potential function. Let ~ > 0. We define the transfer
operator:

F̂ :







C∞
I (R) → C∞

I (R)

ϕ = (ϕi)i →
(
∑N

i=1 F̂i,jϕi

)

j

(19)

with

F̂i,j :







C∞
Ii
(R) → C∞

Ij
(R)

ϕi →
(

F̂i,jϕi

)

(x) =

{

eV (x)ei
1
~
τ(x)ϕi

(
φ−1
i,j (x)

)
if i j and x ∈ φi,j (Ii)

0 otherwise

(20)

Remark:

• From assumption (2), for any x ∈ I, the sum
∑N

i=1

(

F̂i,jϕi

)

(x) which appears on the

right hand side of (19) contains at most one non vanishing term. See figure 3.

• For short we can write that

F̂ :







C∞
I (R) → C∞

I (R)

ϕ →
{

eV (x)ei
1
~
τ(x)ϕ (φ−1 (x)) if x ∈ φ (I)

0 otherwise

(21)

Remark 8.

• For any ϕ ∈ C∞
I (R), n ≥ 0 we have

supp
(

F̂ nϕ
)

⊂ Kn (22)

with Kn defined in (8).

• In the definition (10) we can write eV (x)ei
1
~
τ(x) = exp

(
i1
~
V (x)

)
with V (x) := τ (x) +

~ (−iV (x)). More generally we may consider a finite series V (x) =
∑n

j=0 ~
jVj (x)

with leading term V0 (x) = τ (x) and complex valued sub-leading terms Vj : I → C,
j ≥ 1.

10



F̂ϕ

ϕ

I1 I2 I3

Figure 3: Action of the transfer operator F̂ on a function ϕ as defined in (21). In this
schematic figure we have V = 0 and τ = 0. In general the factor eV (x) changes the
amplitude and ei

1
~
τ(x) creates some fast oscillations if ~ ≪ 1.

2.6 Extension of the transfer operator to distributions

The transfer operator F̂ has been defined on smooth functions C∞
I (R) in (21). We will

need to extend it to the space of distributions. For that purpose we first introduce a cut-off
function χ ∈ C∞

I (R) such that χ (x) = 1 for every x ∈ K1 = φ (I), i.e. χ (φi,j (x)) = 1
for every x ∈ Ii and j such that i  j. We denote χ̂ the multiplication operator by the
function χ. Let us define:

F̂χ := F̂ χ̂, F̂i,j,χ := F̂i,jχ̂ (23)

Note that for any ϕ ∈ C∞
K1

(R) we have χ̂ϕ = ϕ hence
(

F̂ χ̂
)

ϕ = F̂ϕ. Also χ̂ :

C∞
0 (R) → C∞

I (R) hence F̂χ is defined on C∞
0 (R).

The formal adjoint operator F̂ ∗
i,j,χ : C∞

0 (R) → C∞
Ii
(R) is defined by

〈ϕi|F̂ ∗
i,j,χψj〉 = 〈F̂i,j,χϕi|ψj〉, ∀ϕi ∈ C∞

0 (R) , ψj ∈ C∞
0 (R) , (24)

with the L2-scalar product 〈u|v〉 :=
∫
u (x) v (x) dx.

Lemma 9. For i j, the adjoint operator F̂ ∗
i,j,χ : C∞

0 (R) → C∞
Ii
(R) is given, for y ∈ Ii

by (

F̂ ∗
i,j,χψj

)

(y) = χ (y)
∣
∣φ′

i,j (y)
∣
∣ eV (φi,j(y))e−

i
~
τ(φi,j(y))ψj (φi,j (y)) (25)

The adjoint operator F̂ ∗
χ : C∞

0 (R) → C∞
I (R) is given by

ψ = (ψj)j →
(

F̂ ∗
χψ
)

i
(y) =

∑

j s.t. i j

(

F̂ ∗
i,j,χψj

)

(y)

11



Proof. Using the change of variables x = φi,j (y) and definition (24), we write

〈ϕi|F̂ ∗
i,j,χψj〉 =

∫

ϕi (y)
(

F̂ ∗
i,j,χψj

)

(y) dy

= 〈F̂i,j,χϕi|ψj〉 =
∫

φi,j(Ii)

eV (x)ei
1
h
τ(x)ϕi

(
φ−1
i,j (x)

)
χ
(
φ−1
i,j (x)

)
ψj (x) dx

=

∫

Ii

ϕi (y)χ (y)
∣
∣φ′

i,j (y)
∣
∣ eV (x)e−i 1

h
τj(x)ψj (x) dy

and deduce (25).

Remark 10.

• Without the cut-off function χ the image of F̂ ∗
i,j may not be continuous on the

boundary of Ii.

• An other more general possibility would have been to consider χ ∈ C∞
I (R) such that

0 < χ (x) for x ∈ Int (I) (without assumption that χ ≡ 1 on K1) and define

F̂i,j,χ := χ̂−1F̂i,jχ̂ : C∞
Ii
(R) → C∞

Ij
(R) (26)

which is well defined since supp
(

F̂i,jχ̂ϕ
)

⊂ Int (Ij) where χ does not vanish. This

more general definition (26) may be more useful in some cases, e.g. we use it in
numerical computation. We recover the previous definition (23) if we make the
additional assumption that χ ≡ 1 on K1.

Proposition 11. By duality the transfer operator (23) extends to distributions:

F̂χ : D′ (R) → D′ (R) (27)

F̂ ∗
χ : D′ (R) → D′ (R)

Similarly to (22) we have that for any n ≥ 1, any α ∈ D′ (R),

supp
(

F̂ n
χα
)

⊂ Kn (28)

with Kn defined in (8).

Proof. The extension is defined by3

F̂i,j,χ (αi) (ψj) = αi

(

F̂ ∗
i,j,χψj

)

, αi ∈ D′ (R) , ψj ∈ C∞
0 (R) , (29)

3The complex conjugation appears in (29) because duality is related to scalar product on L2 by α (ϕ) :=
∫
ϕα = 〈ϕ, α〉L2 .
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Then the transfer operator extends to: F̂χ : D′ (R) → D′ (R).

If ψj (φi,j (y)) = 0, ∀y ∈ Ii, Eq.(25) shows that F̂ ∗
i,j,χψj ≡ 0. More generally let ψ ∈

C∞
0 (R) with supp (ψ) ∩Kn = ∅ with n ≥ 1 and Kn defined in (8). Then

(

F̂ ∗
χ

)n

ψ ≡ 0 (30)

For any α ∈ D′ (R), we deduce that
(

F̂ n
χα
)(
ψ
)
= α

((

F̂ ∗
χ

)n

ψ

)

= 0. By definition, this

means that supp
(

F̂ n
χα
)

⊂ Kn.

3 Main results

3.1 Discrete spectrum of Ruelle resonances

Theorem 12 below shows that the transfer operator F̂χ (for any ~) has discrete spectrum
called “Ruelle resonances” in ordinary Sobolev spaces with negative order and that the
spectrum does not depend on the choice of χ. Recall that for m ∈ R, the Sobolev space
H−m (R) ⊂ D′ (R) is defined by ([26] p.271).

H−m (R) :=
〈

ξ̂
〉m (

L2 (R)
)

(31)

with the differential operator ξ̂ := −i d
dx

and the notation 〈x〉 := (1 + x2)
1/2

.

Theorem 12. ”Discrete spectrum of resonances”. For any fixed ~, any m ∈ R, the
transfer operator F̂χ in (27) is bounded in the Sobolev space H−m (R) and can be written

F̂χ = K̂ + R̂ (32)

where K̂ is a compact operator and R̂ is such that:

∥
∥
∥R̂
∥
∥
∥
H−m(R)

≤ rm, rm := θm
√
Nθe2Vmax (33)

where 0 < θ < 1 is given in (1) and Vmax = maxx∈IRe (V (x)). Notice that rm → 0 as
m→ +∞ and that the operator F̂χ has discrete spectrum on the domain |z| > rm. These

eigenvalues of F̂χ and their eigenspace do not depend on m nor on χ. The support of
the eigendistributions is contained in the trapped set K. These discrete eigenvalues are
denoted

Res
(

F̂
)

:= {λi}i ⊂ C
∗ (34)

and are called Ruelle resonances.

In Section 4 we show the discrete spectrum of Ruelle resonances computed numerically
for different examples.

13



3.2 Asymptotic spectral gap and Fractal Weyl law

We will give some partial description of the discrete spectrum of Ruelle resonances of the
operator F̂χ,~, Eq.(27), in the limit ~ → 0. For brevity we will drop the index χ and simply

write F̂~. In Theorem 20 below we present a result giving an upper bound for the spectral
radius of F̂~ in the semiclassical limit ~ → 0. In Theorem 22 we provide an upper bound for
the number of resonances outside any radius ε > 0 as ~ → 0. This is called “fractal Weyl
law”. These results rely on the study of the dynamics of a symplectic map or canonical

map F : T ∗I → T ∗I associated to the family of operators
(

F̂~

)

~

, that we describe first.

Lemma 13. The family of operators
(

F̂~

)

~

restricted to C∞
I (R) is a ~-Fourier integral

operator (FIO). Its canonical transform is a multi-valued symplectic map F : T ∗I →
T ∗I (with T ∗I ∼= I × R) given by:

F :

{

T ∗I → T ∗I

(x, ξ) → {Fi,j (x, ξ) with i, j s.t. x ∈ Ii, i j} (35)

with

Fi,j :

{

x′ = φi,j (x)

ξ′ = 1
φ′
i,j(x)

ξ + τ ′ (x′)
(36)

The proof of Lemma 13 will be given in the beginning of Section 6.

Remark 14. For short, we can write

F :

{

T ∗I → T ∗I

(x, ξ) →
(

φ (x) , 1
φ′(x)

ξ + τ ′ (φ (x))
) (37)

We will study the dynamics of F in detail in later Sections, but we can already make
some remarks. The term

dτj
dx

(x′) in the expression of ξ′, Eq.(36), complicates significantly
the dynamics near the zero section ξ = 0. However the next Lemma shows that a trajectory
from an initial point (x, ξ) with |ξ| large enough, escape towards infinity:

Lemma 15. For any 1 < κ < 1/θ, there exists R ≥ 0 such that for any |ξ| > R and any
i j,

|ξ′| > κ |ξ| (38)

where (x′, ξ′) = Fi,j (x, ξ).

14



Proof. From (36), one has ξ′ = 1
φ′
i,j(x)

ξ + τ ′ (x′). Also
∣
∣
∣

1
φ′
i,j(x)

∣
∣
∣ ≥ θ hence

|ξ′| − κ |ξ| =

∣
∣
∣
∣

1

φ′
i,j (x)

ξ + τ ′ (x′)

∣
∣
∣
∣
− κ |ξ| ≥

∣
∣
∣
∣

1

φ′
i,j (x)

ξ

∣
∣
∣
∣
− |τ ′ (x′)| − κ |ξ|

≥
(
1

θ
− κ

)

|ξ| −max
x

|τ ′ (x)| > 0,

the last inequality holds true if |ξ| > R :=
(
1
θ
− κ
)−1

maxx |τ ′|.

Definition 16. The trapped set in phase space T ∗I is defined as

K = {(x, ξ) ∈ T ∗I, ∃C ⋐ T ∗I, ∀n ∈ Z, F n (x, ξ) ∩ C 6= ∅} (39)

Remark 17. Since the map F : T ∗I → T ∗I is a lift of the map φ : I → I, we have
K ⊂ (K × R). For any R given from Lemma 15 we can precise this and obtain:

K ⊂ (K × [−R,R])

For ε > 0, let Kε denote a ε−neighborhood of the trapped set K, namely

Kε := {(x, ξ) ∈ T ∗I, ∃ (x0, ξ0) ∈ K, max (|x− x0| , |ξ − ξ0|) ≤ ε} .

From now on we will make the following hypothesis on the multi-valued map F .

Assumption 18. We assume the following property called “minimal captivity”:

∃ε > 0, ∀ (x, ξ) ∈ Kε, ♯
{

F (x, ξ)
⋂

Kε

}

≤ 1. (40)

This means that the dynamics of F is univalued on the trapped set K.

Remark 19. In the paper [9] we introduced the property of “partial captivity” which is
weaker than “minimal captivity” : partial captivity roughly states that most of trajecto-
ries escape from the trapped set K whereas minimal captivity states that every trajectory
except one, escape from the trapped set K.

In Section 6 we provide more details on the dynamics of the map F : T ∗I → T ∗I, namely
we provide a more precise description of the trapped set K, a detailed symbolic coding for
this dynamics and some equivalent statements to the property of minimal captivity.
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For the next Theorem, let us define the function V0 ∈ C∞ (I)

V0 (x) :=
1

2
J (x) (41)

called “potential of reference” with J (x) defined in (6). Recall from (7) that

V0 (x) ≥
1

2
log

(
1

θ

)

> 0.

Let us define the function D ∈ C∞ (I)

D (x) := Re (V (x))− V0 (x) (42)

called “effective damping function”.

Theorem 20. Spectral gap in the semi-classical limit. With assumption 18 of
“minimal captivity” (and m sufficiently large so that rm ≪ 1 in (33)), the spectral radius
of the operators F̂~ : H

−m (R) → H−m (R) satisfies in the semi-classical limit ~ → 0:

rs

(

F̂~

)

≤ eγ+ + o (1) (43)

with

γ+ := lim sup
n→∞

(

sup
x,w0,n

1

n
Dw0,n (x)

)

where Dw0,n (x) :=
∑n

k=1D
(
φwk,n

(x)
)

is the Birkhoff average of the damping function
D along a trajectory of length n, starting from the point x. Moreover the norm of the
resolvent is controlled uniformly with respect to ~: for any ρ > eγ+, there exist Cρ > 0,
~ρ > 0 such that ∀~ < ~ρ, ∀ |z| > ρ then

∥
∥
∥
∥

(

z − F̂~

)−1
∥
∥
∥
∥
H−m(R)

≤ Cρ. (44)

Remark

• Notice that Theorem 20 depends on the roof function τ only implicitly through
assumption 18. The value of the upper bound (43) does not depend on τ .
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• Eq.(44) implies (43) and is equivalent4 to the following property that the norm
∥
∥
∥F̂ n

~

∥
∥
∥

is controlled uniformly with respect to ~: For any ρ > eγ+ , there exist cρ > 0, ~ρ > 0
such that ∀~ < ~ρ, for any n ∈ N,

∥
∥
∥F̂ n

~

∥
∥
∥
H−m(R)

≤ cρ.ρ
n (45)

We will use (45) later to compute asymptotic of correlation functions.

Lemma 21. If assumption 18 holds true and if the adjency matrix A is symmetric then

dimMK = 2dimMK = 2dimHK (46)

where dimMB stands for the Minkowski dimension of a set B as defined in Eq.(11).

Recall from (14) that dimHK = dimMK.

Theorem 22. ”Fractal Weyl upper bound”. Suppose that the assumption of minimal
captivity 18 holds and that the adjency matrix A is symmetric. For any ε > 0, any η > 0,
we have for ~ → 0

♯
{

λ~i ∈ Res
(

F̂~

)

|
∣
∣λ~i
∣
∣ ≥ ε

}

= O
(
~
− dimH (K)−η

)
(47)

3.3 Decay of correlations

In this subsection we present a quite immediate consequence of the existence of an asymp-
totic spectral radius eγ+ obtained in Theorem 20: we obtain a finite expansion for cor-
relation functions 〈v|F̂nu〉 of the extended transfer operator F̂ defined in (17), with
u, v ∈ C∞ (I × S1).

4Let us show the equivalence. In one sense, let ρ2 > ρ1 > eγ+ , suppose that
∥
∥
∥F̂n

~

∥
∥
∥
H−m(R)

≤ cρ1
.ρn1 . Let

|z| > ρ2. The relation
(

z − F̂~

)−1

= z−1
∑

n≥0

(
F̂h

z

)n

gives that

∥
∥
∥
∥

(

z − F̂~

)−1
∥
∥
∥
∥
≤ |z|−1

∑

n≥0

∥
∥
∥F̂h

∥
∥
∥

n

|z|n ≤ |z|−1
cρ1

∑

n≥0

ρn1
|z|n =

cρ1

|z| − ρ1
≤ cρ1

ρ2 − ρ1
=: Cρ2

For the other sense, suppose that for |z| > ρ,

∥
∥
∥
∥

(

z − F̂~

)−1
∥
∥
∥
∥

≤ Cρ. From the Cauchy formula F̂n
~

=

1
2πi

∮
zn
(

z − F̂~

)−1

dz where γ is the circle of radius ρ one deduces that
∥
∥
∥F̂n

~

∥
∥
∥ ≤ ρCρρ

n.
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We first introduce a notation: for a given ν ∈ Z, we have seen in Theorem 12 that the
transfer operator F̂ν ≡ F̂N has a discrete spectrum of resonances. For ρ > 0 such that
there is no eigenvalue on the circle |z| = ρ for any ν ∈ Z, we denote by Πρ,ν the spectral

projector of the operator F̂ν on the domain {z ∈ C, |z| > ρ}. These projection operators
are obviously finite rank and commute with F̂ν .

Theorem 23. For any ρ > eγ+, there exists ν0 ∈ N such that for any u, v ∈ C∞ (I × S1),
in the limit n→ ∞,

〈v|F̂nu〉 =
∑

|ν|≤ν0

〈v|
(

F̂νΠρ,ν

)n

u〉+O (ρn) (48)

Remark 24. In the right hand side of (48) there is a finite sum and each operator F̂νΠρ,ν is

finite rank. Using the spectral decomposition of F̂ν we get an expansion of the correlation
function 〈v|F̂nu〉 with a finite number of terms which involve the leading Ruelle resonances
(i.e. those with modulus greater than ρ) plus the error term O (ρn).

Proof. Let ρ > eγ+ . Recall that ~ = 1
2πν

and that we note F̂~ = F̂ν . In Theorem 12 we

have for ~ → 0 that rs
(

F̂~

)

≤ eγ+ + o (1). Let the value of ν0 be such that rs
(

F̂~

)

< ρ

for every ν > ν0. Then

〈v|F̂nu〉 =
∑

|ν|≤ν0

〈v|
(

F̂νΠρ,ν

)n

u〉+Oν0 (ρ
n) +

∑

|ν|>ν0

〈v|F̂ n
ν u〉 (49)

But
∣
∣
∣〈v|F̂ n

ν u〉
∣
∣
∣ ≤ ‖uν‖Hm ‖vν‖H−m

∥
∥
∥F̂ n

ν

∥
∥
∥
H−m

where uν , vν ∈ C∞ (S1) stand for the Fourier

components of the smooth functions u, v ∈ C∞ (I × S1). On one hand, for smooth
functions one has fast decay ‖uν‖ , ‖vν‖ = O (ν−∞). On the other hand from (45),∥
∥
∥F̂ n

ν

∥
∥
∥
H−m

= O (ρn). So
∣
∣
∣
∑

|ν|>ν0
〈v|F̂ n

ν u〉
∣
∣
∣ = O (ρn). Then (49) gives (48).

We recall the following result called “Perron-Frobenius Lemma”:

Lemma 25. For real potential V , if the map φ−1 is ergodic then the transfer operator F̂
has a leading and simple eigenvalue λ0 > 0 in the Fourier mode ν = 0, i.e.

F̂ν=0 = λ0Πλ0 + F̂ ′

with Πλ0 being the rank 1 spectral projector associated to λ0, the remainder operator has

rs

(

F̂ ′
)

< λ0 and for any ν 6= 0, we also have rs

(

F̂ν

)

< λ0.

For example without potential, i.e. V = 0, then λ0 = exp (Pr (−J)) with J given in
(6). As a consequence of Lemma 25 and Theorem 23 we obtain (a result already obtained
by Dolgopyat [5]):
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Theorem 26. Let u, v ∈ C∞ (I × S1), then for n→ ∞,

〈v|F̂nu〉 = λn0 〈v|Πλ0u〉+O (|λ1|n)

where λ1 is the second eigenvalue with |λ1| < λ0. The case V = 0 gives that the extended
map f : I × S1 → I × S1 is mixing with exponential decay of correlations.

4 Numerical results for the truncated Gauss map

In this section we still consider the example of the I.F.S. defined from the truncated Gauss
map presented in Section 2.2 with N intervals. For the roof function τ and the potential
function V which enter in the definition of the transfer operator (20) we will choose:

τ (x) = −J (x) , V (x) = (1− a)J (x) , a ∈ R. (50)

where J (x) = log
(∣
∣(φ−1)

′
(x)
∣
∣
)
= log (|G′ (x)|) = log

(
1
x2

)
has been defined in 6 and a ∈ R.

Let us write for ~ 6= 0,

s = a + ib ∈ C, a, b =
1

~
∈ R.

In other words, we consider for every s ∈ C the transfer operator L̂s := F̂ as given in (21)
and written simply for s ∈ C as:

L̂sϕ = F̂ϕ = eV (x)ei
1
~
τ(x)ϕ ◦ φ−1 = e(1−s)Jϕ ◦ φ−1 (51)

As explained in Section 4.1 below, this choice is interesting due its relation with the dy-
namics on the modular surface. The (adjoint of the) transfer operator F̂ constructed in this
way is usually called the Gauss-Kuzmin-Wirsing transfer operator or “Dieter-Mayer
transfer operator” for the truncated Gauss map.

Proposition 27. For every N ≥ 1, the minimal captivity assumption 18 holds true for
the truncated Gauss transfer operator defined by (50).

Proof. The canonical map F in (35) is the union of maps from each branch j = 1 . . .N
explicitly given by

(
x′j , ξ

′
j

)
= Fj (x, ξ) =

(
G−1

j (x) , G′
(
x′j
)
ξ + τ ′ (xj)

)

=

(
1

x+ j
,− (x+ j)2 ξ − 2 (x+ j)

)

We first observe that the trapped set K is included in the bandB :=
{
(x, ξ) , x ∈]0, 1[,− 2

1+x
< ξ < 0

}

because points outside of it escape towards infinity. Now consider the sub-band

Bj :=

{

(x, ξ) , x ∈]0, 1[,− 2

j + x
< ξ < − 2

j + 1 + x

}
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x x

ξ ξ

N = 3 N = 10

Figure 4: The trapped set KN := K for the truncated Gauss map with functions (50), for
the cases of N = 3 and N = 10 branches. This corresponds to the Gauss-Kuzmin-Wirsing
transfer operator (51). We have KN ⊂ KN+1 and for N → ∞, the limit trapped set
K∞ =

⋃

N≥0KN =
{
(x, ξ) , x ∈]0, 1[,− 2

1+x
< ξ < 0

}
is the band between the marked black

lines. (More precisely, we have represented the periodic points with period n = 6. That
explains the sparse aspect of the trapped set).

We easily compute that

Fj (Bj) =

{

(x, ξ) , x ∈]0, 1[,− 2

1 + x
< ξ < 0

}

So the map F−1 is injective on B. This implies that the map F is minimally captive.

4.1 Relation with the zeroes of the Selberg zeta function

For the geodesic flow on the modular surface SL2Z\SL2R it is possible to define the Selberg
zeta function:

ζSelberg (s) =
∏

γ

∏

m≥0

(
1− e−(s+m)|γ|

)
, s ∈ C,

where the product is over periodic orbits γ of the geodesic flow and |γ| denotes the length of
the orbit. Using the Gauss map and continued fractions, C. Series has shown that a periodic
orbit γ is in one to one correspondence with a periodic sequence (wj)j∈Z ∈ (N\ {0})Z where

wj ∈ N\ {0} is the number of the branch of the Gauss map G−1
wj

in (4). Given N ≥ 1, we
can restrict the product

∏

γ over periodic orbits for which wj ≤ N , ∀j ∈ Z and define a
truncated Selberg zeta function:

ζSelberg,N (s) =
∏

γ, wj≤N.∀j,

∏

m≥0

(
1− e−(s+m)|γ|

)
, s ∈ C,

On the other hand, for fixed s ∈ C, we have from Theorem 12 that the operator L̂s has
discrete spectrum of Ruelle resonances. It is possible to define the dynamical determinant
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x x xb = 0 b = 1/~ = 100 1/~ = 1000

y y y

Figure 5: The discrete spectrum of Ruelle resonances λj (in log scale writing: log λ = x+iy)
for the truncated Gauss-Kuzmin-Wirsing transfer operator (51) associated to the Gauss
map, for N = 3 branches and parameters a = 1, b = 0, 100, 1000. For b = 0 there is the
eigenvalue λ = ePr(−J) at x = Pr (−J), y = −π corresponding to the “equilibrium measure”.
The full vertical line is at x = Pr (−J). The dashed vertical line is at x = γ+ which is
shown in (43) to be an asymptotic upper bound for b = 1/~ → ∞.

of L̂s by

d (z, s) := Det
(

1− zL̂s

)

:= exp

(

−
∑

n≥1

zn

n
Tr♭
(

L̂n
s

)
)

, z ∈ C

where Tr♭
(

L̂n
s

)

stands for the flat trace of Atiyah-Bott. It is known that the zeroes of

d (., s) coincide with multiplies with the Ruelle resonances [1]. In the case z = 1, we also
have that d (1, s) coincides with the truncated Selberg zeta function [22][2, p.306]:

Det
(

1− L̂s

)

= ζSelberg,N (s) (52)

which means that the zeroes of ζSelberg,N (.) are given (with multiplicity) by the event that

1 is a Ruelle resonance of the transfer operator L̂s. (Remark: in [22][2, p.306] they consider
the adjoint operator of L̂s called the Perron-Frobenius operator).

5 Proof of Theorem 12 about the discrete spectrum

For this proof we follow closely the proof5 of Theorem 2 in the paper [9] which uses
semiclassical analysis.

5see also theorem 4 in [10] although we are dealing in this paper with expanding maps instead of
hyperbolic maps which simplifies the analysis, since we can work with ordinary Sobolev spaces and not
anisotropic Sobolev spaces.
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log(b) = log(1/~)

logN (⌊)

Figure 6: This is the Weyl law for the model of Gauss map withN = 3 branches. The points

represent the number of resonances N (b) = ♯
{

λj ∈ Res
(

L̂s

)

, |λj| > e−3.5
}

computed

numerically, as a function of the semiclassical parameter b = 1/~ in log scale. The linear
fit gives logN (b) = −0.70 · log b− 0.96 which has to be compared to the fractal Weyl law
(47) giving logN (b) ≤ − dimH (K) · log b + cste. From (2) with have dimH K3 = 0.705
giving an excellent agreement with the numerical results and suggesting that the upper
bound is in fact optimal.

5.1 Dynamics on the cotangent space T ∗I

In order to study the spectral properties of the transfer operator, we have first to study
the dynamics of the map φ : I → I lifted on the cotangent space T ∗I.

Proposition 28. Considering ~ > 0 fixed, the transfer operator F̂χ restricted to C∞
I (R) is

a Fourier integral operator (FIO). Its canonical transform is a multi-valued symplectic
map F : T ∗I → T ∗I on the cotangent space T ∗I ≡ I × R given by:

F :

{

T ∗I → T ∗I

(x, ξ) → {Fi,j (x, ξ) , with i, j s.t. x ∈ Ii, i j}

with

Fi,j :

{

x′ = φi,j (x)

ξ′ = 1
φ′
i,j(x)

ξ
(53)

Remarks:
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• For short, we can write

F :

{

T ∗I → T ∗I

(x, ξ) →
(

φ (x) , 1
φ′(x)

ξ
) (54)

• Notice that the map F differs from the canonical map F introduced in (37). The
reason is that this latter map is used in the asymptotic limit ~ → 0, whereas the
study in this Section is for fixed ~.

Proof. of Proposition 54. The operator ϕ → ϕ ◦ φ−1
i,j is a pull back operator, one of the

simplest example of Fourier integral operator in the sense of semiclassical homogeneous
theory [27], see also [17] example 2 p.150. In that case the canonical map Fi,j is the map
φi,j lifted on the cotangent space T ∗I in the canonical way. In particular the action on ξ

is linear. The term eV (x)e
i
~
τ(x)χ

(
φ−1
i,j (x)

)
in (20) does not contribute to the expression of

F because it acts as a pseudodifferential operator, equivalently as a FIO whose canonical
map is the identity.

Remarks

• Observe that the dynamics of the map F on T ∗I has a quite simple property: the
zero section {(x, ξ) ∈ I × R, ξ = 0} is globally invariant and any other point (x, ξ)
with ξ 6= 0 escapes towards infinity (ξ → ±∞) in a controlled manner, because
∣
∣φ′

i,j (x)
∣
∣ < θ < 1, with θ given in (1), hence:

|ξ′| ≥ 1

θ
|ξ| (55)

• Due to hypothesis (2) the map φ−1
i,j is uni-valued (when it is defined). Therefore the

map F−1 is also uni-valued and one has

F−1 ◦ F = IdT ∗I (56)

5.2 The escape function

Definition 29. [27, p.2] For m ∈ R, the class of symbols S−m (T ∗R), with order m,
is the set of functions on the cotangent space A ∈ C∞ (T ∗R) such that for any α, β ∈ N,
there exists Cα,β > 0 such that

∀ (x, ξ) ∈ T ∗
R,

∣
∣
∣∂αx ∂

β
ξ A (x, ξ)

∣
∣
∣ ≤ Cα,β 〈ξ〉−m−|β| , with 〈ξ〉 =

(
1 + ξ2

)1/2
. (57)
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Lemma 30. Let m > 0 and let

Am (x, ξ) := 〈ξ〉−m ∈ S−m (T ∗
R) .

We have

∀R > 0, ∀ |ξ| > R, ∀i j, ∀x ∈ Ii,
Am (Fi,j (x, ξ))

Am (x, ξ)
≤ Cm < 1, (58)

with C =
√

R2+1
R2/θ2+1

< 1. We say that Am is an escape function: (58) shows that Am

decreases strictly along the trajectories of F outside the zero section.

Proof. From Eq. (53) and (55) we have

Am (Fi,j (x, ξ))

Am (x, ξ)
=

(1 + ξ2)
m/2

(
1 + (ξ′)2

)m/2
≤ (1 + ξ2)

m/2

(1 + ξ2/θ2)m/2
≤
(

1 +R2

1 +R2/θ2

)m/2

= Cm

The last inequality is because the function decreases with |ξ|.

Using the standard quantization rule [27, p.2] the symbol Am can be quantized into a
pseudodifferential operator Âm (PDO for short) which is self-adjoint and invertible on
C∞

0 (R):
(

Âmϕ
)

(x) =
1

2π

∫

Am (x, ξ) ei(x−y)ξϕ (y) dydξ. (59)

Conversely Am is called the symbol of the PDO Âm. In our simple case, this is very
explicit: in Fourier space, Âm is simply the multiplication by 〈ξ〉m. Its inverse Â−1

m is the
multiplication by 〈ξ〉−m.

5.3 Use of the Egorov Theorem

Let
Q̂m := ÂmF̂χÂ

−1
m : L2 (R) → L2 (R) .

which is unitarily equivalent to F̂χ : H−m (R) → H−m (R) (from the definition of H−m (R),
Eq.(31)). This is expressed by the following commutative diagram

L2 (R)
Q̂m→ L2 (R)

↓ Â−1
m ↓ Â−1

m

H−m (R)
F̂χ→ H−m (R)
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We will therefore study the operator Q̂m in L2 (R). Notice that Q̂m is defined a priori on
a dense domain C∞

0 (R). Define

P̂ := Q̂∗
mQ̂m = Â−1

m

(

F̂ ∗
χÂ

2
mF̂χ

)

Â−1
m = Â−1

m B̂Â−1
m (60)

with
B̂ := F̂ ∗

χÂ
2
mF̂χ = χ̂F̂ ∗Â2

mF̂ χ̂. (61)

Now, the crucial step in the proof is to use Egorov Theorem.

Lemma 31. (Egorov theorem). B̂ defined in (61) is a pseudo-differential operator with
symbol in S−2m (T ∗R) given by:

B (x, ξ) =



χ2 (x)
∑

j s.t.i j

∣
∣φ′

i,j (x)
∣
∣ e2Re(V (φi,j(x)))A2

m (Fi,j (x, ξ))



+R (62)

where R ∈ S−2m−1 (T ∗R) has a lower order, x ∈ Ii, ξ ∈ R.

Proof. F̂ and F̂ ∗ are Fourier integral operators (FIO) whose canonical maps are respectively
F and F−1. The pseudodifferential operator (PDO) Âm can also be considered as a FIO
whose canonical map is the identity. By composition we deduce that B̂ = χ̂F̂ ∗Â2

mF̂ χ̂ is
a FIO whose canonical map is the identity since F−1 ◦ F = I from (56). Therefore B̂ is
a PDO. Using (20), (25) we obtain that the principal symbol of B̂ is the first term of
(62).

Remark: contrary to (61), F̂ ÂmF̂
∗ is not a PDO, but a FIO whose canonical map F ◦ F−1

is multivalued.
Now by theorem of composition of PDO [27, p.11], Eq.(60) and Eq.(62) imply that

P̂ is a PDO with symbol in S0 (R) and principal symbol:

P (x, ξ) =
B (x, ξ)

A2
m (x, ξ)

=



χ2 (x)
∑

j s.t. i j

∣
∣φ′

i,j (x)
∣
∣ e2Re(V (φi,j(x)))

A2
m (Fi,j (x, ξ))

A2
m (x, ξ)



 , x ∈ Ii, ξ ∈ R.

(63)
The estimate (58) gives the following upper bound for any R > 0, x ∈ I and |ξ| > R:

|P (x, ξ)| ≤ χ2 (x)C2m
∑

j,i j

∣
∣φ′

i,j (x)
∣
∣ e2Re(V (φi,j(x))) ≤ C2mNθe2Vmax

with Vmax = maxx∈IRe (V (x)).
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We apply6 the L2-continuity theorem for PDO to P̂ as given in [12, th 4.5 p.42].
The result is that for any ε > 0,

P̂ = k̂ε + p̂ε

with k̂ε a smoothing operator (hence compact) and ‖p̂ε‖ ≤ C2mNθe2Vmax + ε.

If Q̂m = Û
∣
∣
∣Q̂m

∣
∣
∣ is the polar decomposition of Q̂m, with Û unitary, then from (60),

P̂ =
∣
∣
∣Q̂m

∣
∣
∣

2

, hence
∣
∣
∣Q̂m

∣
∣
∣ =

√

P̂ and the spectral theorem ([27] p.75) gives that
∣
∣
∣Q̂m

∣
∣
∣ has a

similar decomposition ∣
∣
∣Q̂m

∣
∣
∣ = k̂′ε + q̂ε

with k̂′ε compact and ‖q̂ε‖ ≤
√
C2mNθe2Vmax +ε, with any ε > 0. Since

∥
∥
∥Û
∥
∥
∥ = 1 we deduce

a similar decomposition for Q̂m = Û
∣
∣
∣Q̂m

∣
∣
∣ : L2 (I) → L2 (I). We also use the fact that

C → θ as R → ∞ in (58) and we deduce (32) and (33) for F̂χ : H−m (R) → H−m (R).
The fact that the eigenvalues λi and their generalized eigenspaces do not depend on

the choice of space H−m (R) is due to density of C∞
0 (R) in Sobolev spaces. We refer to

the argument given in the proof of corollary 1 in [10].
Finally, if ϕ is an eigendistribution of F̂χ, i.e. F̂χϕ = λϕ with λ 6= 0, we deduce that

ϕ = 1
λn F̂

n
χϕ for any n ≥ 1, and (28) implies that supp (ϕ) ⊂ K =

⋂

n∈NKn. On the trapped

set we have χ = 1 hence the eigendistribution and eigenvalues of F̂χ do not depend on χ.
This finishes the proof of Theorem 12.

6 Dynamics of the canonical map F : T ∗I → T ∗I

The map F appears in Proposition 13. In this Section we study its trapped set and its
symbolic dynamics. Before we give:

Proof. of Proposition 13. This is the same argument as in the proof of Proposition 28

except that now the family of operators
(

e
i
~
τ(x)
)

~>0
which appears in (20) is a FIO. As

explained in [17] example 1 p.150, its canonical map is (x, ξ) →
(
x, ξ + dτ

dx

)
. We compose

with the previous canonical map (53) to get (36).

6.1 The trapped set K in phase space

We have provided a definition of the trapped set K in (39). We will give now a more precise
description of it. Recall that the inverse maps φ−1 and F−1 are uni-valued. For any integer

6Actually, we can not apply directly the L2-continuity theorem for PDO to P̂ because P̂ doesn’t have
a compactly supported Schwartz kernel. However B̂ obviously has a compactly supported Schwartz kernel
due to the presence of χ̂ in Eq.(61). The trick is to approximate Â−1

m by a properly supported operator
Λm as it is done in [12, p.45] and then apply the L2-continuity theorem to Λ̂mB̂Λ̂m.
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m ≥ 0, let
K̃m := F−m (Km × [−R,R])

where Km = φm (I) has been defined in (8) and R is given by Lemma 15. In particular
K̃0 = I × [−R,R]. Let π : (x, ξ) ∈ T ∗I → x ∈ I be the projection map. These sets have
the following properties:

π
(

K̃m

)

= I,

K̃m+1 ⊂ K̃m (64)

Proof. of (64). From Lemma 15 we have

(Km+1 × [−R,R]) ⊂ F (Km × [−R,R])

hence
K̃m+1 = F−m

(
F−1 (Km+1 × [−R,R])

)
⊂ F−m (Km × [−R,R]) = K̃m

Let us define
K̃ :=

⋂

m

K̃m (65)

Now we combine the sets Kn defined in (8) with the sets K̃m and define for any integers
a, b ≥ 0

Ka,b := π−1 (Ka)
⋂

K̃b (66)

We have
Ka+1,b ⊂ Ka,b, Ka,b+1 ⊂ Ka,b (67)

and
F−1 (Ka,b) = Ka−1,b+1. (68)

Remark 32. We can interpret the trapped set K ⊂ I with respect to the lifted map
F : T ∗I → T ∗I, as follows. The trapped set π−1 (K) ⊂ T ∗I is characterized by

π−1 (K) =
{
(x, ξ) ∈ T ∗I, ∃compact C ⋐ T ∗I, ∀n ≥ 0, F−n (x, ξ) ∈ C

}

i.e. π−1 (K) can be considered as the “trapped set of the map F in the past”. Similarly
K̃ ⊂ T ∗I can be interpreted as the “trapped set of the map F in the future”and K ⊂ T ∗I
as the full trapped set (past and future) since they are characterized by

K̃ = {(x, ξ) ∈ T ∗I, ∃compact C ⋐ T ∗I, ∀n ≥ 0, F n (x, ξ) ∩ C 6= ∅}

K = {(x, ξ) ∈ T ∗I, ∃compact C ⋐ T ∗I, ∀n ∈ Z, F n (x, ξ) ∩ C 6= ∅} (69)

= π−1 (K) ∩ K̃
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From this previous remark, the next definition is equivalent to (39).

Definition 33. The trapped set K ⊂ T ∗I of the map F is

K :=

∞⋂

a=0

Ka,a (70)

The hypothesis of minimal captivity has been defined in (18). The following proposition
gives equivalent, stronger and weaker definition of minimal captivity. They are convenient
for practical purposes.

Proposition 34.

1. The map F is minimally captive (i.e. Eq.(40) holds true) if and only if the map F
satisfies

∃a, ∀ (x, ξ) ∈ Ka,a, ♯
{

F (x, ξ)
⋂

Ka,a

}

≤ 1. (71)

2. If map F is minimally captive then

∃a, ∃C, ∀n s.t. ∀ (x, ξ) ∈ Ka,0, ♯
{

F n (x, ξ)
⋂

Ka,0

}

≤ C. (72)

where Ka,0 := (π−1 (Ka)
⋂

[−R,R]) has been defined in (18).

3. If there exists two smooth functions u1, u2 : I → R with u1 < u2 such that for
U := {(x, ξ) , u1 (x) < ξ < u2 (x)} one has K ⊂ U and

∀ (x, ξ) ∈ U, ♯ {F (x, ξ) ∩ U} ≤ 1.

then the map F is minimally captive.

Proof. The fact that (71) is equivalent to (40) is because

∀ε > 0, ∃a s.t. Ka,a ⊂ Kε

∀a, ∃ε > 0 s.t. Kε ⊂ Ka,a

6.2 Symbolic dynamics

The purpose of this Section is to describe precisely the dynamics of φ and F using “symbolic
dynamics”. This is very standard for expanding maps [3]. This somehow refines the
structure of the sets Ka,b introduced before.
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6.2.1 Symbolic dynamics on the trapped set K ⊂ I

Let

W− :=
{

(. . . , w−2, w−1, w0) ∈ {1, . . . , N}−N , wl−1  wl, ∀l ≤ 0
}

(73)

be the set of admissible left semi-infinite sequences. For w ∈ W− and i < j we write
wi,j := (wi, wi+1, . . . wj) for an extracted sequence. For simplicity we will use the notation

φwi,j
:= φwj−1,wj

◦ . . . ◦ φwi,wi+1
: Iwi

→ Iwj
(74)

for the composition of maps. For n ≥ 0, let

Iw−n,0 := φw−n,0

(
Iw−n

)
⊂ Iw0 (75)

For any 0 < m < n we have the strict inclusions

Iw−n,0 ⊂ Iw−m,0 ⊂ Iw0

From (1), the size of Iw−n,0 is bounded by:

∣
∣Iw−n,0

∣
∣ ≤ θn |Iw0|

hence the sequence of sets
(
Iw−n,0

)

n≥1
is a sequence of non empty and decreasing closed

intervals and
⋂∞

n=1 Iw−n,0 is a point in K. We define

Definition 35. The “symbolic coding map” is

S :

{

W− → K

w → S (w) :=
⋂∞

n=1 Iw−n,0

(76)

In some sense we have decomposed the sets Kn, Eq.(8), into individual components:

Kn =
⋃

w−n,0∈W−

Iw−n,0 (77)

K =
⋃

w∈W−

S (w)

Let us introduce the left shift, a multivalued map, defined by

L :

{

W− → W−

(. . . , w−2, w−1, w0) → (. . . , w−2, w−1, w0, w1)
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with w1 ∈ {1, . . . , N} such that w0  w1. Let the right shift be the univalued map
defined by

R :

{

W− → W−

(. . . , w−2, w−1, w0) → (. . . , w−2, w−1)

Proposition 36. The following diagram is commutative

W−
S−→ K (78)

R ↑↓ L φ−1 ↑↓ φ
W−

S−→ K

and the map S : W− → K is one to one. This means that the dynamics of points on
the trapped set K under the maps φ−1, φ is equivalent to the symbolic dynamics of the
shift maps R,L on the set of admissible words W−. Notice that the maps R and φ−1

are univalued, whereas the maps L and φ are multivalued (in general).

Proof. From the definition of S we have

φw0w1 (S (. . . , w−2, w−1, w0)) = S (. . . , w−2, w−1, w0, w1) (79)

and
φ−1
w−1w0

(S (. . . , w−2, w−1, w0)) = S (. . . , w−2, w−1) (80)

which gives the diagram (78). The map S : W− → K is surjective by construction. Let
us show that the hypothesis (2) implies that it is also injective. Let w,w′ ∈ W− and
suppose that w 6= w′, i.e. there exists k ≥ 0 such that w−k 6= w′

−k. From (2) we have

φw−k,w−k+1,

(
Iw−k

)
∩ φw′

−k,w
′
−k+1

(

Iw′
−k

)

= ∅. We deduce recursively that φw−k,0

(
Iw−k

)
∩

φw′
−k,0

(

Iw′
−k

)

= ∅. Since S (w) ∈ φw−k,0

(
Iw−k

)
and S (w′) ∈ φw′

−k,0

(

Iw′
−k

)

we deduce that

S (w) 6= S (w′). So S is one to one.

6.2.2 The “future trapped set” K̃ in phase space T ∗I

Let us consider

W+ :=
{

(w0, w1, w2 . . .) ∈ {1, . . . , N}N , wl  wl+1, ∀l ≥ 0
}

be the set of admissible right semi-infinite sequences. We still use the notation wi,j :=
(wi, wi+1, . . . wj) for an extracted sequence. For any n ≥ 0 let:

Ĩw0,n := F−n
(
Iw0,n × [−R,R]

)
(81)
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be the image of the rectangle under the univalued map F−n. Notice that π
(

Ĩw0,n

)

= Iw0

where π (x, ξ) = x is the canonical projection map. Since the map F−1 contracts strictly

in variable ξ by the factor θ < 1 then
(

Ĩw0,n

)

n∈N
is a sequence of decreasing sets: Ĩw0,n+1 ⊂

Ĩw0,n and we can define the limit

S̃ : w ∈ W+ → S̃ (w) :=
⋂

n≥0

Ĩw0,n ⊂ K̃ (82)

Proposition 37. For every w ∈ W+, the set S̃ (w) is a smooth curve given by

S̃ (w) = {(x, ζw (x)) , x ∈ Iw0 , w ∈ W+}

with
ζw (x) = −

∑

k≥1

φ′
w0,k

(x) · τ ′
(
φw0,k

(x)
)
, (83)

We have an estimate of regularity, uniform in w: ∀α ∈ N, ∃Cα > 0, ∀w ∈ W+,
∀x ∈ Iw0,

|(∂αx ζw) (x)| ≤ Cα (84)

Moreover, with the hypothesis 18 of minimal captivity there exists a ≥ 1 such that these
branches do not intersect on π−1 (Ka),

∀w,w′ ∈ W+, w 6= w′ ⇒ π−1 (Ka) ∩ S̃ (w) ∩ S̃ (w′) = ∅ (85)

The set (65) can be expressed as

K̃ =
⋃

w∈W+

S̃ (w)

Proof. From (36) we get

F−1 (φi,j (x) , ξ) =
(
x, φ′

i,j (x) (ξ − τ ′ (φi,j (x)))
)
. (86)

Iterating this equation we get, that

ζw,n (x) := −
n∑

k=1

φ′
w0,k

(x) · τ ′
(
φw0,k

(x)
)
= F−n

(
φw0,n (x) , 0

)

thus ζw,n(x) ∈ S̃ (w) for all n ∈ N and we get (83). In order to prove (84) we can check,
that the series of ζw,n(x) and ∂αx ζw,n(x) converge with uniform bounds in w which follows
after some calculations from (1) and the fact that φ′

w0,k
(x) ≤ θk independent of w.
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6.2.3 Symbolic dynamics on the trapped set K in phase space T ∗I

Recall from (69) that K = π−1 (K) ∩ K̃. Let

W :=
{

(. . . w−2, w−1, w0, w1, . . .) ∈ {1, . . . , N}Z , wl  wl+1, ∀l ∈ Z

}

be infinite admissible sequences. For a given w ∈ W anda, b ∈ N, let

Iw−a,0,w0,b
:=
(

π−1
(
Iw−a,0

)
∩ Ĩw0,b

)

⊂ Ka,b

where Ka,b has been defined in (66).

Definition 38. The symbolic coding map is

S :

{

W → K
w → S (w) :=

⋂∞
n=1 Iw−n,0,w0,n =

(

π−1 (S (w−)) ∩ S̃ (w+)
) (87)

with w− = (. . . w−1, w0) ∈ W−, w+ = (w0, w1, . . .) ∈ W+.

More precisely we can express the point S (w) ∈ K as

S (w) =
(
xw−, ξw

)
, xw− = S (w−) , ξw = ζw+ (S (w−)) , (88)

withζw+ given in (83). We also have

Ka,b =
⋃

w∈W

Iw−a,0,w0,b

Proposition 39. The following diagram is commutative

W S−→ K (89)

R ↑↓ L F−1 ↑↓ F
W S−→ K

If assumption 18 of minimal captivity holds true then the map S : W → K is one to one.
This means that the univalued dynamics of points on the trapped set K under the maps
F−1, F is equivalent to the symbolic dynamics of the full shift maps R,L on the set of
words W.
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Proof. Commutativity of the diagram comes from the construction of S. Also S is surjec-
tive. Let us show that S is injective. Let w,w′ ∈ W, with w 6= w′. There exists n ≥ 0 such
that (Ln (w))− 6= (Ln (w′))−. So S

(
(Ln (w))−

)
6= S

(
(Ln (w′))−

)
because S : W− → K is

one to one from Lemma 36. Hence S (Ln (w)) 6= S (Ln (w′)) and F n (S (w)) 6= F n (S (w′))
from commutativity of the diagram. We apply F−n and deduce that S (w) 6= S (w′) because
F−1 and F−n are injective on K from assumption 18.

6.3 Dimension of the trapped set K
6.3.1 Proof of Theorem 21

For w = (wk)k∈Z ∈ W, we note w− = (. . . , w−2, w−1, w0) ∈ W− and w+ = (w0, w1, . . .) ∈
W+. Let

Inv (w+) := (. . . w2, w1, w0)

be the reversed word. Since the adjency matrix A is supposed to be symmetric we have
that Inv (w+) ∈ W−. Then, let us consider the following one to one map

D :

{

W → (W− ×W−)l
w → (w−, Inv (w+))

where
(W− ×W−)l := {(w,w′) ∈ W− ×W−, w0 = w′

0} (90)

is a subset of W− ×W−. The index l stands for “linked”. Let

Φ := (S ⊗ S) ◦D ◦ S−1 : K → K ×K

where S : W → K has been defined in (87) and is shown in Proposition 39 to be one to
one under assumption 18. The map S : W+ → K has been defined in (76) and is also one
to one. Consider

(K ×K)l := (S ⊗ S) ((W− ×W−)l) ⊂ K ×K (91)

the image of (90) under the map S ⊗ S. From the previous remarks, the map Φ : K →
(K ×K)l is one to one.

Lemma 40. The map Φ : K → (K ×K)l is bi-Lipchitz.

As a consequence of this Lemma, since the Hausdorff and Minkowski dimension is
invariant under bi-Lipchitz maps [7, p.24], we deduce that

dimM (K) = dimM (K ×K)l (92)
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Before proving Lemma 40, let us show how to deduce Theorem 21 from it. Let us
temporally write Ki := K ∩ Ii. From (91) we have that

(K ×K)l =
⋃

i

Ki ×Ki

hence
dimM (K ×K)l == sup

i
(2 dimM Ki) = 2 dimM K (93)

Eq.(92) and (93) give Theorem 21.

Proof. of Lemma 40. Let w ∈ W. We write w = (w−, w+) as before and xw− := S (w−) ∈
K, ρ =

(
xw−, ξw

)
= S (w) ∈ K. Similarly for another w′ ∈ W we get another point

ρ′ =
(

xw′
−
, ξw′

)

∈ K. We have that

Φ (ρ) = (S (w−) , S (Inv (w+))) =
(
xw− , xInv(w+)

)
∈ K ×K.

That the map Φ is bi-Lipchitz means that

|Φ (ρ)− Φ (ρ′)| ≍ |ρ− ρ′|

uniformly7 over ρ, ρ′. Equivalently this is
∣
∣
∣xw− − xw′

−

∣
∣
∣+
∣
∣
∣xInv(w+) − xInv(w′

+)

∣
∣
∣ ≍

∣
∣
∣xw− − xw′

−

∣
∣
∣ + |ξw − ξw′| (94)

uniformly over w,w′ ∈ W. Let us show (94). Let w,w′ ∈ W and let n ≥ 0 be the integer
such that that (w+)j =

(
w′

+

)

j
for −n ≤ j ≤ 0 but (w+)−n−1 6=

(
w′

+

)

−n−1
. From the

definition (75) of the intervals Iw−n,0 , we see that the two points xInv(w+), xInv(w′
+)

belong

both to the interval I(Inv(w+))−n,0
but inside it, they belong to the disjoint sub-intervals

I(Inv(w+))−n−1,0
and I(Inv(w′

+))−n−1,0

respectively. Hence

∣
∣
∣xInv(w+) − xInv(w′

+)

∣
∣
∣ ≍

∣
∣
∣I(Inv(w+))−n,0

∣
∣
∣

uniformly over w,w′ ∈ W, where |I| is the length of the interval I. From the definition

(81) of the sets Ĩw0,n we observe that the points ρ =
(
xw−, ξw

)
and ρ′ =

(

xw′
−
, ξw′

)

belong

respectively to the sets Ĩw0,n and Ĩw′
0,n

. Let w̃′ :=
(
w′

−, w+

)
.We have

|ρ− ρ′| =
∣
∣
∣

(
xw−, ξw

)
−
(

xw′
−
, ξw′

)∣
∣
∣ (95)

≍
∣
∣
(
xw−, ξw

)
−
(
xw−, ξw̃′

)∣
∣ +
∣
∣
∣

(
xw− , ξw̃′

)
−
(

xw′
−
, ξw′

)∣
∣
∣ (96)

≍
∣
∣
∣xw− − xw′

−

∣
∣
∣+ |ξw − ξw̃′|

7The notation |Φ (ρ)− Φ (ρ′)| ≍ |ρ− ρ′| means precisely that there exist C > 0 such that for every
ρ, ρ′, C−1 |ρ− ρ′| ≤ |Φ (ρ)− Φ (ρ′)| ≤ C |ρ− ρ′|.
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The points ξw, ξw̃′ belong to the same set Ĩw0,n. However if assumption of “minimal captiv-

ity” holds, they belong to disjoint sub-sets Ĩw0,n+1 and Ĩw′
0,n+1

respectively. Hence

|ξw − ξw̃′| ≍ |Jw,n| (97)

with the interval Jw,n := Ĩw0,n ∩ π−1
(
xw−

)
. From the bounded distortion principle [7] we

have that
∀x, y ∈ Iw−n,0 ,

∣
∣
(
Dφw−n,0

)
(x)
∣
∣ ≍

∣
∣
(
Dφw−n,0

)
(y)
∣
∣ ≍

∣
∣Iw−n,0

∣
∣

uniformly with respect to w, n, x, y. From the expression of the canonical map F in (36)
and the bounded distortion principle, we have that

|Jw,n| ≍
∣
∣
(
Dφw−n,0

)
(x)
∣
∣ , ∀x ∈ Iw0 ,

uniformly with respect to w, n, x. Using the previous results we get
∣
∣
∣xw− − xw′

−

∣
∣
∣+ |ξw − ξw′| ≍

∣
∣
∣xw− − xw′

−

∣
∣
∣+ |ξw − ξw̃′|

≍
∣
∣
∣xw− − xw′

−

∣
∣
∣+ |Jw,n|

≍
∣
∣
∣xw− − xw′

−

∣
∣
∣+
(
Dφw0,n

)
(x) , ∀x ∈ Iw0,

≍
∣
∣
∣xw− − xw′

−

∣
∣
∣+
∣
∣IInv(w0,n)

∣
∣ ,

≍
∣
∣
∣xw− − xw′

−

∣
∣
∣+
∣
∣
∣xInv(w+) − xInv(w′

+)

∣
∣
∣ .

We have obtained (94) and finished the proof of Lemma 40 and Theorem 21.

7 Proof of Theorem 20 for the spectral gap in the semi-

classical limit

For the proof of Theorem 20, we will follow step by step the same analysis as in Section
5 (and also follow closely the proof of Theorem 2 in [9]). The main difference now is that
~ ≪ 1 is a semi-classical parameter (no more fixed). In other words, we just perform a
linear rescaling in cotangent space: ξh := ~ξ. Our quantization rule for a symbol A (x, ξh) ∈
S−m (R), Eq.(59) writes now (see [17] p.22), for ϕ ∈ S (R):

(

Âϕ
)

(x) :=
1

2π~

∫

A (x, ξh) e
i(x−y)ξh/~ϕ (y) dydξh (98)

For simplicity we will still write ξ instead of ξh below.
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7.1 The escape function

Let 1 < κ < 1/θ and R > 0 given in Lemma 15. Let m > 0, η > 0 (small) and consider a
C∞ function Am (x, ξ) on T ∗R so that:

Am (x, ξ) := 〈ξ〉−m for |ξ| > R + η

:= 1 for ξ ≤ R

where 〈ξ〉 := (1 + ξ2)
1/2

. Am belongs to the symbol class S−m (R) defined in (57).
From Eq. (38) we can deduce, similarly to Eq.(58) and if η is small enough, that:

∀x ∈ I, ∀ |ξ| > R, ∀i j
Am (Fi,j (x, ξ))

Am (x, ξ)
≤ Cm < 1, with C =

√

R2 + 1

κ2R2 + 1
< 1

(99)
This means that the function Am is an escape function since it decreases strictly along
the trajectories of F outside the zone Z0 := I × [−R,R]. For any point (x, ξ) ∈ T ∗I we
have the more general bound:

∀x ∈ I, ∀ξ ∈ R, ∀i j
Am (Fi,j (x, ξ))

Am (x, ξ)
≤ 1. (100)

Let ~ > 0. Using the quantization rule (98), the symbol Am can be quantized giving a
~-pseudodifferential operator Âm which is self-adjoint and invertible on C∞ (I). In our
case Âm is simply a multiplication operator by Am (ξ) in ~−Fourier space.

7.2 Using the Egorov Theorem

Let us consider the Sobolev space

H−m (R) := Â−1
m

(
L2 (R)

)

which is the usual Sobolev space as a linear space, except for the norm which depends on
~. Then F̂ : H−m (R) → H−m (R) is unitary equivalent to

Q̂ := ÂmF̂ Â
−1
m : L2 (R) → L2 (R)

Let n ∈ N∗, a fixed time which will be made large at the end of the proof, and define

P̂ (n) := Q̂∗nQ̂n = Â−1
m F̂ ∗nÂ2

mF̂
nÂ−1

m (101)

From Egorov Theorem, as in Lemma 31), we have that B̂ := F̂ ∗Â2
mF̂ is a PDO with

principal symbol

B (x, ξ) = χ2 (x)
∑

j s.t.i j

∣
∣φ′

i,j (x)
∣
∣ e2Re(V (φi,j(x)))A2

m (Fi,j (x, ξ)) , (x, ξ) ∈ T ∗I

= χ2 (x)
∑

j s.t.i j

e2D((φi,j(x)))A2
m (Fi,j (x, ξ))
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where we have used the “damping function” D (x) := Re (V (x)) − 1
2
log
(∣
∣(φ−1)

′
(x)
∣
∣
)

al-

ready defined in (42). Iteratively for every n ≥ 1, Egorov Theorem gives that F̂ ∗nÂ2
mF̂

n is
a PDO with principal symbol

Bn (x, ξ) = χ2 (x)
∑

w−n,0∈W−

e2Dw−n,0 (x)A2
m

(
Fw−n,0 (x, ξ)

)

where W+ is the set of admissible sequences, defined in (73), with the Birkhoff sum
Dw−n,0 (x) :=

∑n
k=1D

(
φw−n,−k

(x)
)

and

Fw−n,0 := Fw−1,w0 ◦ . . . ◦ Fw−n,w−n+1.

With the Theorem of composition of PDO ([6, chap.4]), we obtain that P̂ (n) is a PDO of
order 0 with principal symbol given by

P (n) (x, ξ) =



χ2 (x)
∑

w−n,0∈W−

e2Dw−n,0 (x)
A2

m

(
Fw−n,0 (x, ξ)

)

A2
m (x, ξ)



 (102)

We define

γ(n) := sup
x∈I,w−n,0∈W−

1

n
Dw−n,0 (x)

hence e2Dw−n,0 (x) ≤ e2nγ(n) .
From Theorem 12, the spectrum of F̂~ does not depend on the choice of χ. Here we

take a ≥ 0 as given in Assumption 18 and we choose χ such that χ ≡ 1 on Ka+1, χ ≡ 0 on
R\Ka. We have P (x, ξ) = 0 if x ∈ R\Ka.

Now we will bound the positive symbol P (n) (x, ξ) from above, considering x ∈ Ka and
different possibilities for the trajectory Fw−n,0 (x, ξ):

1. If |ξ| > R, Eq.(99) gives

A2
m

(
Fw−n,0 (x, ξ)

)

A2
m (x, ξ)

=
A2

m

(
Fw−n,0 (x, ξ)

)

A2
m

(
Fw−n,−1 (x, ξ)

)
A2

m

(
Fw−n,−1 (x, ξ)

)

A2
m

(
Fw−n,−2 (x, ξ)

) . . .
A2
(
Fw−n,−n+1 (x, ξ)

)

A2 (x, ξ)
≤
(
C2m

)n

(103)
therefore

P (n) (x, ξ) ≤ (♯Wn) e
2nγ(n)

(
C2m

)n ≤
(
Ne2γ(n)C2m

)n

We have used that ♯Wn ≤ Nn. Notice that C2m can be made arbitrarily small if m
is large.

2. If |ξ| ≤ R, we have from the hypothesis of minimal captivity 18 that at time (n− 1)
every point (x′, ξ′) of the set F n−1 (x, ξ) except at most one point satisfy |ξ′| > R.
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Using (100) and (99), for all these points one has
A2

m(Fw−n,0 (x,ξ))
A2

m(x,ξ)
≤ C2m and for the

exceptional point one can only write
A2

m(Fw−n,0 (x,ξ))
A2

m(x,ξ)
≤ 1. This gives

P (n) (x, ξ) ≤ e2nγ(n)
(
(♯Wn − 1)C2m + 1

)
≤ B

with the bound
B := e2nγ(n)

(
NnC2m + 1

)
(104)

With L2 continuity theorem for pseudodifferential operators [17, 4] this implies that in
the limit ~ → 0 ∥

∥
∥P̂ (n)

∥
∥
∥ ≤ B +On (~) (105)

Polar decomposition of Q̂n gives

∥
∥
∥Q̂n

∥
∥
∥ ≤

∥
∥
∥

∣
∣
∣Q̂n

∣
∣
∣

∥
∥
∥ =

√
∥
∥
∥P̂ (n)

∥
∥
∥ ≤ (B +On (~))

1/2 (106)

Let γ+ = lim supn→∞ γ(n). Let ρ > eγ+ . We let ~ → 0 first, after m → +∞ giving

C2m → 0 and then n → ∞ so that (B +On (~))
1/(2n) → eγ+ . We have obtained that for

any ρ > eγ+ , there exists n0 ∈ N, ~0 > 0, m0 > 0 such that for any ~ ≤ ~0, m > m0,

∥
∥
∥F̂ n0

~

∥
∥
∥
H−m

=
∥
∥
∥Q̂n0

∥
∥
∥
L2

≤ ρn0 . (107)

Also, there exists c > 0 independent of ~ ≤ ~0, such that for any r such that 0 ≤ r < n0

we have
∥
∥
∥Q̂r

∥
∥
∥
L2
< c. As a consequence for any n ∈ N we write n = kn0+r with 0 ≤ r < n0

and
∥
∥
∥F̂ n

~

∥
∥
∥
H−m

=
∥
∥
∥Q̂n

∥
∥
∥
L2

≤
∥
∥
∥Q̂n0

∥
∥
∥

k

L2

∥
∥
∥Q̂r

∥
∥
∥
L2

≤ ρn

∥
∥
∥Q̂r

∥
∥
∥
L2

ρr
≤ cρn

We have obtained (45). Equivalently this gives (44).
For any n the spectral radius of Q̂ satisfies [23, p.192]

rs

(

Q̂
)

≤
∥
∥
∥Q̂n

∥
∥
∥

1/n

≤ c1/nρ

So we get that for ~ → 0,

rs

(

F̂~

)

= rs

(

Q̂
)

≤ eγ+ + o (1) . (108)

which finishes the proof of Theorem 20.
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8 Proof of Theorem 22 about the Fractal Weyl law.

8.1 A refined escape function

8.1.1 Distance function

The escape function A will be constructed from a distance function δ. For x ∈ I, let

K̃ (x) := K̃
⋂

({x} × R) (109)

where K̃ has been defined in (65). With this notation we can define the following distance
function.

Definition 41. Let x ∈ Iw0 and ξ ∈ R, we define the distance of (x, ξ) to the set K̃
given in (65) by

δ (x, ξ) := dist
(

ξ, K̃ (x)
)

= min
w∈W+

|ξ − ζw (x)| (110)

We will show that the distance function δ (x, ξ) decreases along the trajectories of F .
First, the next Lemma shows how the branches ζw are transformed under the canonical
map F and follows from straightforward calculations.

Lemma 42. For every w+ = (w0, w1, . . .) ∈ W+, x ∈ Iw0 we have

Fw0,w1

(
x, ζw+ (x)

)
=
(
x′, ζL(w+) (x

′)
)

(111)

with L (w+) := (w1, w2, . . .) and x′ = φw0,w1 (x).

Lemma 43. ∀i, j, i j, ∀x ∈ Ii, ∀ξ ∈ R,

δ (Fi,j (x, ξ)) ≥
1

θ
δ (x, ξ)

where θ < 1 is given by (1).

Proof. Let i = w0  j = w1, x ∈ Iw0. Let (x′, ξ′) := Fw0,w1 (x, ξ) with x′ ∈ Iw1 . We use
(111) and also that Fw0,w1 is expansive in ξ by a factor larger than θ−1 > 1 (Eq.(36)), and
get

∣
∣ξ′ − ζL(w+) (x

′)
∣
∣ =

∣
∣
∣

(
Fw0,w1 (x, ξ)− Fw0,w1

(
x, ζw+ (x)

))

ξ

∣
∣
∣ ≥ 1

θ

∣
∣ξ − ζw+ (x)

∣
∣
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Thus

δ (Fw0,w1 (x, ξ)) = min
w∈W+

∣
∣ξ′ − ζw+ (x′)

∣
∣ = min

w+∈W+

∣
∣ξ′ − ζL(w+) (x

′)
∣
∣

≥ 1

θ
min

w+∈W+

∣
∣ξ − ζw+ (x)

∣
∣ =

1

θ
δ (x, ξ)

8.1.2 Escape function

The aim of this section is to prove the existence of an escape function with the following
properties:

Proposition 44. ∀1 < κ < θ−1,∃C0 > 0,∀µ, s.t. 0 ≤ µ < 1
2
, ∀m > 0, there exists an

~-dependent order function Am,µ ∈ OFmµ(〈ξ〉−m)(as defined in Definition 54) which
fulfills the following ’decay-condition’:

∀i, j, s.t. i  j and∀ (x, ξ) ∈ Ii × R s.t. δ (x, ξ) > C0~
µ the following estimate

holds:

(
Am,µ ◦ Fi,j

Am,µ

)

(x, ξ) ≤ κ−m, (112)

In order to prove the above proposition we first remark that the distance function (110)
is not differentiable, however Lipschitz.

Lemma 45. Let C1 := supx∈I,ω∈W+
|(∂xζω)(x)|. Then δ : T ∗I → R+is a Lipschitz

function with constant C1 + 1

Proof. Let x, y ∈ Ii, then from the fact, that |(∂xζω)(x)| is uniformly bounded by C1 we
have

|δ(x, ξ)− δ(y, ξ)| ≤ C1|x− y|.
On the other hand clearly

|δ(y, ξ)− δ(y, ζ)| ≤ |ξ − ζ |
thus

|δ(x, ξ)− δ(y, ζ)| ≤ C1|x− y|+ |ξ − ζ | ≤ (C1 + 1)dist((x, ξ), (y, ζ))
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Next we choose 0 ≤ µ < 1/2 and regularize the function δ at the scale ~µ. For this
we choose χ ∈ C∞

0 (R2) with support in the unit ball B1(0) of R2 and χ (x, ξ) > 0 for
‖(x, ξ)‖ < 1. This function can be rescaled to

χ~µ (x, ξ) :=
1

~2µ ‖χ‖L1

χ

(
x

~µ
,
ξ

~µ

)

such that suppχ~µ ⊂ B~µ(0) and
∫
χ~µ (x) dx = 1. Now we can define the regularized

distance function by

δ̃ (x, ξ) :=

∫

T ∗I

δ (x′, ξ′)χ~µ (x− x′, ξ − ξ′) dx′dξ′.

This smoothed distance function δ̃ differs only at order ~µ from the original one because

∣
∣
∣δ̃(x, ξ)− δ(x, ξ)

∣
∣
∣ = |

∫

R2

(δ(x, ξ)− ˜δ(x− x′, ξ − ξ′))χ~µ(x′, ξ′)dx
′dξ′|

≤ sup
(x′,ξ′)∈B~µ (0)

|(δ(x, ξ)− δ(x− x′, ξ − ξ′)|

≤ (C1 + 1)~µ. (113)

Furthermore we get the following estimates for its derivatives:

Lemma 46. For all α, β ∈ N the estimate

|∂αx∂βξ δ̃(x, ξ)| ≤ Cα,β~
−µ(α+β)(δ(x, ξ) + C~µ)

holds

Proof. From the definition of χ~µ we have ‖∂αx ∂βξ χ~µ‖∞ ≤ Cα,β~
−2−(α+β)µ and thus:

∣
∣
∣

(

∂αx ∂
β
ξ δ̃(x, ξ)

)∣
∣
∣ =

∫

T ∗I

δ (x′, ξ′) ∂αx ∂
β
ξ χ~µ(x− x′, ξ − ξ′)dx′dξ′

≤ π~2µ‖δ‖∞,B~µ(x,ξ)
Cα,β~

−(2+α+β)µ

≤ πCα,β~
−(α+β)µ(δ(x, ξ) + (C1 + 1)~µ)

where we used the Lipschitz property of δ in the last inequality.

As |δ(x, ξ)| ≤ |ξ|+C the above lemma gives us directly that δ̃ ∈ S1
µ (T

∗I). Now we
define the escape function as:

Am,µ (x, ξ) := ~
mµ

(

~
2µ +

(

δ̃ (x, ξ)
)2
)

−m
2 (114)

This is obviously a smooth function and it obeys the following estimates:

Lemma 47. The function Am,µ defined in (114) is an ~-dependent order function: Am,µ ∈
OFmµ(〈ξ〉−m).
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Proof. As min(0, |ξ|−C) ≤ δ̃(x, ξ) ≤ |ξ|+C it follows, that Am,µ(x, ξ) ≤ C̃〈ξ〉−m and that
Am,µ(x, ξ) ≥ C ′~mµ〈ξ〉−m. It remains thus to show, that for arbitrary α, β ∈ N one has:

|∂αx∂βξ Am,µ(x, ξ)| ≤ Cα,β~
−µ(α+β)Am,µ(x, ξ) (115)

where Cα,β depends only on α and β
First consider the case α = 1, β = 0

|∂xAm,µ(x, ξ)| = |~mµm
(∂xδ̃(x, ξ))δ̃(x, ξ)

(

~2µ +
(

δ̃ (x, ξ)
)2
)

m+2
2

| ≤ C~−µAm,µ (x, ξ)

where we used δ̃ ≤
√

~2µ + δ̃2 and |∂xδ̃| ≤ C~−µ
√

~2µ + δ̃2 which follows from lemma
46 together with (113). Inductively one obtains the estimate for arbitrary α, β ∈ N by
repeated use of lemma 46 and (113).

Finally it remains to show the decay estimates for
(

Am,µ◦Fi,j

Am,µ

)

(x, ξ).

Combining (113) with lemma 43 we then get

δ̃(Fi,j(x, ξ)) ≥ δ(Fi,j(x, ξ))−(C1+1)~µ ≥ 1

θ
δ(x, ξ)−(C1+1)~µ ≥ 1

θ
δ̃(x, ξ)−(

1

θ
+1)(C1+1)~µ

and thus

Am,µ(Fi,j(x, ξ))

Am,µ(x, ξ)
≤
(

1 + (1
θ
· δ̃(x,ξ)

~µ
− C̃)2

1 + ( δ̃(x,ξ)
~µ

)2

)m
2

(116)

where C̃ = (1
θ
+1)(C1+1). Clearly the right side of (116) converges to (1

θ
)−m for δ̃(x,ξ)

~µ
→ ∞

which proves the existence of a desired C0 and finishes the proof of proposition 44.

8.1.3 Truncation in x

Here we choose a similar truncation operator χ̂ as in Eq.(23) but in a finer vicinity of the
trapped set K. First notice that K~µ ⋐ φ−1 (K~µ) where K~µ has been defined in definition
2. For ~ small enough we have φ−1 (K~µ) ⋐ I. Let χ ∈ C∞

φ−1(K~µ)
such that χ (x) = 1 for

x ∈ K~µ . χ can be considered as a function χ (x, ξ) := χ (x) (independent of ξ) and we
have that χµ ∈ S0

µ (T
∗R). As in Eq.(23) we define χ̂ := Opw

~ (χ) which is the multiplication
operator by χ,

F̂i,j,χ := F̂i,jχ̂, F̂χ := F̂ χ̂.

We will again omit the χ in the notation and write F̂~ for F̂χ in the sequel.

42



8.2 Weyl law

The Weyl law will give an upper bound on the number of eigenvalues of F̂~ on the Sobolev
spaces Hm. These estimates will be obtained by conjugating F̂~ with Opw

~
(Am,µ) in the

same way as for the discrete spectrum or the spectral gap. Note that we use the Weyl
quantization (see Definition 53) in this section, because we want to obtain self adjoint
operators. In order to be able to conjugate we have to show, that Opw

~
(Am,µ) : H

−m → L2

is an isomorphism. We already know that Opw
~
(〈ξ〉m) : L2 → H−m is an isomorphism,

thus it suffices to show, that B̂ := Opw
~
(Am,µ)Op

w
~
(〈ξ〉m) : L2 → L2 is invertible. From

the ~-local symbol calculus (Theorem 58) it follows that B̂ is an elliptic operator in the
~-local symbol class Sµ(Am,µ〈ξ〉m) and thus the invertibility follows from proposition 61.

Note that it is necessary to work in the ~-local symbol classes as B̂ would not be an elliptic
operator in Sµ(1). Proposition 61 also gives us the leading order of our inverse B̂−1 which
is A−1

m,µ〈ξ〉−m. So the inverse of Opw
~
(Am,µ) is again a PDO with leading symbol A−1

m,µ.
With the isomorphism Opw

~
(Am,µ) : Hm → L2 we can thus define a different scalar

product on the Sobolev spaces which turnsOpw
~
(Am,µ) into a unitary operator. The Sobolev

space equipped with this scalar product will be denoted by Hm
~,µ and the study of F̂~ is

thus unitary equivalent to the study of Q̂m defined by the following commutative diagram
(where we noted Âm,µ := Opw

~
(Am,µ):

L2 (R)
Q̂m→ L2 (R)

↓ Â−1
m,µ ↓ Â−1

m,µ

H−m
~,µ

F̂~→ H−m
~,µ

(117)

In the next Lemma, C0 and κ are as in lemma 44.

Lemma 48. ∃C > C0, ∀ǫ > 0, ∀µ s.t. 0 ≤ µ < 1
2
, ∀m > 0 sufficiently large, as ~ → 0

we have:

♯
{

λ~i ∈ σ
(

F̂~|Hm
~,µ

)

|
∣
∣λ~i
∣
∣ ≥ ǫ

}

≤ 1

2π~

(

C̃1Leb {KC1~
µ}+ C̃2~

)

. (118)

Before proving Lemma 48, let us show that it implies Theorem 22. From Theorem 12,

the discrete spectrum of F̂~|Hm
~,µ

is the Ruelle spectrum of resonances Res
(

F̂~

)

, independent

of µ and m. With assumption 18 we can use Eq.(46) and that K has pure dimension thus

equation (13) gives Leb {KC1~
µ} = O

(

(~µ)codimM(K̃)
)

. As codimM (K) < 2 and µ < 1
2

equation(118) and gives

♯
{

λ~i ∈ Res
(

F̂~

)

|
∣
∣λ~i
∣
∣ ≥ ǫ

}

= O
(

~
−1 (~µ)codimM(K̃)

)

= O
(

~
−1 (~µ)2−2dimH (K)

)

= O
(
~
2µ−1−2µdimH (K)

)
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for any fixed 0 ≤ µ < 1/2. This gives Theorem 22 with η = (1− 2µ)(1− dimH(K)).

Proof. of Lemma 48. From (117), F̂χ,~ : Hm
~,µ → Hm

~,µ is unitary equivalent to

Q̂m,µ := Opw
~
(Am,µ) F̂~χ̂Opw

~
(Am,µ)

−1 : L2 (R) → L2 (R) .

Consider

P̂µ := Q̂∗
m,µQ̂m,µ = Opw

~
(Am,µ)

−1 χ̂F̂ ∗
~
Opw

~
(Am,µ)

2 F̂~χ̂Opw
~
(Am,µ)

−1 .

By the composition Theorem (Th 58) and the Egorov theorem (Th 62) for ~-local symbols,
P̂µ is a PDO with leading symbol Pµ (x, ξ) ∈ Sµ (1), for x ∈ Ii, ξ ∈ R, given by the same
expression as in (63):8

Pµ (x, ξ) = χ2 (x)
∑

j s.t. i j

∣
∣φ′

i,j (x)
∣
∣ e2ℜ(V (φi,j(x)))

A2
m,µ (Fi,j (x, ξ))

A2
m,µ (x, ξ)

mod ~
1−2µS−1

µ (T ∗
R)

(119)
From the definition of χ and Eq.(112), the operator P̂µ can be decomposed into self-adjoint
operators

P̂µ = k̂µ + r̂µ

where k̂µ is a PDO with symbol kµ ∈ S0
µ (T

∗R) supported on KC1~
µ for some C1 > 0. Hence

k̂µ is a trace-class operator. The operator r̂µ is a PDO with symbol rµ ∈ S0
µ (T

∗R) such
that

‖rµ‖∞ ≤ θe2‖ℜ(V )‖∞κ−2m +O
(
~
1−2µ

)
,

hence ‖r̂µ‖ ≤ Cκ−2m +O(~1−2µ).
Using lemma 49 in appendix A we have that for every ǫ > 0, in the limit ~ → 0,

♯
{

µ~

i ∈ σ
(

k̂µ

)

|
∣
∣µ~

i

∣
∣ ≥ ǫ

}

≤ (2π~)−1
(

C̃1Leb {KC1~
µ}+ C̃2~

)

. (120)

By a standard perturbation argument the same estimates holds for the operator P̂µ(for m
sufficiently large): for every ǫ > 0, in the limit ~ → 0,

♯
{

µ~

i ∈ σ
(

P̂µ

)

|
∣
∣µ~

i

∣
∣ ≥ ǫ+ ‖r̂µ‖

}

≤ (2π~)−1
(

C̃1Leb {KC1~
µ}+ C̃2~

)

. (121)

From the definition P̂µ := Q̂∗
m,µQ̂m,µ, the

√

µ~
i are singular values of Q̂m,µ. Then corollary

51 from appendix B shows that the same estimate holds true for the eigenvalues of Q̂m,µ,

hence of F̂~, yielding the result (118).

A Adapted Weyl type estimates

8Also for this calculation it is crucial to work with the ~-local calculus in order to obtain sufficient
remainder estimates.
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Lemma 49. Let a~ ∈ Sµ (〈x〉−2〈ξ〉−2) with 0 ≤ µ < 1
2

be a real compactly supported

symbol. ∀~ > 0, Â := Opw
~
(a~) is self-adjoint and trace class on L2 (R) and for any

ǫ > 0, as ~ → 0 :

(2π~) ♯
{

λ~i ∈ σ
(

Â
)

|
∣
∣λ~i
∣
∣ ≥ ǫ

}

≤ C1Leb {(x, ξ) ; |a| > 0}+ C2~ (122)

where C1 and C2 depend only on µ and ǫ.

Proof. As a~ is compactly supported Â is trace class for every ~ (see theorem C.17 [6]). Con-
sequently also 1

ǫ2
Â2 is trace class and its trace is given by Lidskii’s theorem by Tr( 1

ǫ2
Â2) =

∑

i

(
λ~

i

ǫ

)2

. As Â is self adjoint all λ~i are real and one clearly has

♯
{

λ~i ∈ σ
(

Â
)

|
∣
∣λ~i
∣
∣ ≥ ǫ

}

≤ Tr

(
1

ǫ2
Â2

)

.

If we denote by b~(x, ξ) the complete symbol of Â2 we can calculate the trace by the
following exact formula

Tr(Â2) =
1

2π~

∫

b~(x, ξ)dxdξ

According to the theorem of composition of PDO’s b~can be written as b~ = b
(1)
~

+ ~1b
(2)
~

where suppb
(1)
~

= suppa~ and b
(2)
~

∈ Sµ (〈x〉−2〈ξ〉−2)(note that this decomposition depends
on µ. Thus

1

ǫ²
Tr(Â2) =

1

2π~ǫ2

(∫

b
(1)
~
(x, ξ)dxdξ + ~

1

∫

b
(1)
~
(x, ξ)dxdξ

)

≤
(

1

2π~
C1Leb(supp(a~)) + C2~

)

B General lemmas on singular values of compact oper-

ators

Let (Pν)ν∈N be a family of compact operators on some Hilbert space. Consider any Pν

and let (λj,ν)j∈N∗ ∈ C be the sequence of its eigenvalues ordered decreasingly according to
multiplicity:

|λ1,ν| ≥ |λ2,ν | ≥ ...

In the same manner, define (µj,ν)j∈N∗ ∈ R
+, the decreasing sequence of singular values of

Pν -i.e. the eigenvalues of
√
P ∗
νPν .
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Lemma 50. Suppose there exits a map N : N → N s.t. N(ν) → ∞ and µN(ν),ν → 0
as ν grows. Then ∀C > 1, |λ[C·N(ν)],ν| →ν→∞ 0.

Corollary 51. Let N : N → N be as in lemma 50. Suppose that ∀ǫ > 0, ∃Aǫ ≥ 0
s.t. ∀ν ≥ Aǫ; # { j ∈ N∗ | µj,ν > ǫ} < N(ν). Then for any C > 1, ǫ > 0 there exists
BC,ǫ ≥ 0 such that:

∀ν ≥ BC,ǫ; # {j ∈ N
∗ | |λj,ν| > ǫ} ≤ [C ·N(ν)]. (123)

Proof. (Of corollary 51). Suppose that for any ǫ > 0, there exists a rank Aǫ s.t. for all
ν ≥ Aǫ # {j ∈ N∗ | µj,ν > ǫ} < N(ν), which means that µN(ν),ν →ν→∞ 0 and from Lemma
50, ∀C > 1, |λ[C·N(ν)],ν| →ν→∞ 0, which can be directly restated as (123).

Proof. (Of lemma 50) The main relation between singular and eigenvalues is given by the
Weyl inequalities (see [11] p. 50 for a proof):

k∏

j=1

µj,ν ≤
k∏

j=1

|λj,ν| ; ∀k ∈ N
∗. (124)

Let mj,ν := −log (µj,ν), lj,ν := −log (|λj,ν|) to define Mk,ν :=
∑k

j=1mj,ν , and Lk,ν :=
∑k

j=1 lj,ν . The Weyl inequalities (124) thus read : Mk,ν ≤ Lk,ν , ∀k ∈ N∗. Both sequences
(lj,ν)j≥1 and (mj,ν)j≥1 are increasing so, ∀k ∈ N

∗, k · lk,ν ≥ Lk,ν , and for any k,K ∈ N
∗,

Mk+K,ν ≥ K ·mk,ν. (125)

Suppose that µN(ν),ν → 0 (hence mN(ν),ν → ∞) as ν → ∞ and choose some constant
C > 1, By (125) we have that

M[C·N(ν)],ν ≥ ([C ·N(ν)]−N(ν)) ·mN(ν),ν , (126)

and therefore, since l[C·N(ν)],ν ≥ 1
[CN(ν)]

· L[C·N(ν)],ν ≥ 1
[C·N(ν)]

M[C·N(ν)],ν , from (126) we get

l[CN(ν)],ν ≥ [C ·N(ν)]−N(ν)

[C ·N(ν)]
·m[CN(ν)],ν . (127)

Notice that [C ·N(ν)]−N(ν) > 0 for ν large enough. Therefore (127) gives the result.

C Symbol classes of local ~-order

In this Appendix we will first repeat the definitions of the standard symbol classes which are
used in this article as well as their well known quantization rules. Then we will introduce
a new symbol class which allows ~-dependent order functions and will prove some of the
classical results which are known in the usual case for these new symbol classes.
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C.1 Standard semiclassical Symbol classes and their quantization

The standard symbol classes (see e.g. [6] chapter 4 or [4] ch 7) of ~PDO’s are defined
with respect to an order function f(x, ξ). This order function is required to be a smooth
positive valued function on R2n such that there are constants C0 and N0 fulfilling

f(x, ξ) ≤ C0〈(x, ξ)− (x′, ξ′)〉N0f(x′, ξ′). (128)

An important example of such an order function is given by f(x, ξ) = 〈ξ〉m with k ∈ R.

Definition 52. For 0 ≤ µ ≤ 1
2

the symbol classes ~kSµ(m) contain all families of
functions a~(x, ξ) ∈ C∞(R2n) parametrized by a parameter ~ ∈]0, ~0] such that

|∂αx∂βξ a~(x, ξ)| ≤ C~k−µ(|α|+|β|)f(x, ξ)

where C depends only on α and β.

Unless we want to emphasize the dependence of the symbol a~ on ~ we will drop the
index in the following. For the special case of order function f(x, ξ) = 〈ξ〉m we also write
Sm
µ = Sµ(〈ξ〉m), if µ = 0 we write S(f) := S0(f).

As quantization we use two different quantization rules in this article which are called
standard quantization respectively Weyl quantization.

Definition 53. Let a~ ∈ Sµ (f) the Weyl quantization is a family of operators Opw
~
(a) :

S (Rn) → S (Rn), defined by

(Opw
~
(a~)ϕ) (x) = (2π~)−n

∫

e
i
~
ξ(x−y)a~

(
x+ y

2
, ξ

)

ϕ(y)dydξ, ϕ ∈ S (Rn) . (129)

while the standard quantization Op~(a) : S (Rn) → S (Rn) is given by

(Op~(a~)ϕ) (x) = (2π~)−n

∫

e
i
~
ξ(x−y)a~ (x, ξ)ϕ(y)dydξ, ϕ ∈ S (Rn) . (130)

Both quantization extend continuously to operators on S ′(Rn). While the standard
quantization is slightly easier to define, the Weyl quantization has the advantage, that real
symbols are mapped to formally self adjoint operators.
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C.2 Definition of the Symbol classes Sµ(A~)

In this standard ~-PDO calculus the symbols are ordered by there asymptotic behavior
for ~ → 0. If we take for example a symbol a ∈ ~kSµ(f) then a(x, ξ) is of order ~k for all
(x, ξ) ∈ R2n. The symbol classes that we will now introduce will also allow ~−dependent
order function which will allow to control the ~-order of a symbol locally, i.e. in dependence
of (x, ξ). First we define these ~-dependent order functions:

Definition 54. Let f be an order function on R2n and 0 ≤ µ ≤ 1
2
. Let A~ ∈ Sµ(f) a

(possibly ~-dependent) positive symbol such that for some c ≥ 0 there is a constant C
that fulfills

A~(x, ξ) ≥ C~cf(x, ξ) (131)

and that for all multiinidices α, β ∈ Nn:

∣
∣
∣∂αx∂

β
ξ A~(x, ξ)

∣
∣
∣ ≤ Cα,β~

−µ(|α|+|β|)A~(x, ξ) (132)

holds. Then we call A~an ~-dependent order function and say A~ ∈ OF c(f)

Definition 55. The symbol class Sµ(A~) is then defined to be the space of smooth
functions a~(x, ξ) defined on R2n and parametrized by ~ > 0 such that

∣
∣
∣∂αx∂

β
ξ a~(x, ξ)

∣
∣
∣ ≤ Cα,β~

−µ(|α|+|β|)A~(x, ξ) (133)

By ~kSµ(A~) we will as usual denote the symbols a~ for which ~−ka~ ∈ Sµ(A~)

As Ah(x, ξ) ≤ C0f(x, ξ) and from (132) it is obvious, that

Sµ(A~) ⊂ Sµ(f) (134)

and via this inclusion for a~ ∈ Sµ(A~) the standard Quantization Op~(a) and the Weyl
quantization Opw

~
(a~) are well defined and give continuous operators on S(Rn)respectively

on S ′(Rn). Furthermore equation (131) gives us a second inclusion

Sµ(f) ⊂ ~
−cSµ(A~) (135)

thus combining these two inclusions we have:

~
cSµ(f) ⊂ Sµ(A~) ⊂ Sµ(f)

As for standard ~− PDO symbol we can define asymptotic expansions:
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Definition 56. Let aj ∈ Sµ(A~) for j = 0, 1, . . . then we call
∑

j

~jaj an asymptotic

expansion of a ∈ Sµ(A~) (writing a ∼∑
j

~jaj) if and only if:

a−
∑

j<N

~
jaj ∈ ~

NSµ(A~)

As in for the standard ~-PDOs we have some sort of Borel’s theorem also for symbols
in Sµ(A~)

Proposition 57. Let ai ∈ Sµ(A~) then there is a symbol a ∈ Sµ(A~) such that

a−
∑

j<k

~
jaj ∈ ~

kSµ(A~) (136)

Proof. Once more we can use the inclusion (134) into the standard h− PDO classes and
obtain the existence of a symbol a ∈ Sµ(f) such that

a−
∑

j<k

~
jaj ∈ ~

kSµ(f) (137)

and we will show that this symbol belongs to Sµ(A~) and that (136) holds: For the first
statement we write

a = a−
∑

j<c

~
jaj

︸ ︷︷ ︸

∈~cSµ(f)

+
∑

j<c

~
jaj

︸ ︷︷ ︸

∈Sµ(A~)

and use the inverse inclusion (135).
In order to prove (136) write

a−
∑

j<k

~
jaj = a−

∑

j<k+c

~
jaj

︸ ︷︷ ︸

∈~c+kSµ(f)

+

k+c−1∑

j=k

~
jaj

︸ ︷︷ ︸

∈~kSµ(A~)

and use once more (135).

The advantage of this new symbol class is, that the order function A~(x, ξ) itself can
depend on ~ and thus the control in ~ can be localized. A simple example for such an
order function would be A~ = ~mµ〈 ξ

~µ
〉m ∈ OF c(〈ξ〉m). For ξ 6= 0 this function is of order

~0 whereas for ξ = 0 it is of order ~mµ. Thus also all symbols in Sµ(A~) have to show this
behavior.
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C.3 Composition of symbols

By using the inclusion (134) we will show a result for the composition of Symbols absolutely
analogous to the one in the standard case Th 4.18 in [6]. We first note that for A~ ∈
OF cA(fA) and B~ ∈ OF cB(fB) the product formula for derivative yields that A~B~ ∈
OF cA+cB(fAfB) and can now formulate the following theorem:

Theorem 58. Let A~ ∈ OF cA(fA) and B~ ∈ OF cB(fB) be two ~-dependent order
functions and a ∈ Sµ(A~) and b ∈ Sµ(B~) two ~-local symbols. Then there is a symbol

a#b ∈ Sµ(A~B~)

such that
Opw

~
(a)Opw

~
(b) = Opw

~
(a#b) (138)

as operators on S and the at first order we have

a#b− ab ∈ ~
1−2µSµ(A~B~) (139)

Proof. The standard theorem of composition of ~-PDOs (see e.g. Th 4.18 in [6]) together
with the inclusion of symbol-classes (134) provides us a symbol a#b ⊂ Sµ(fA · fB) that
fulfills equation (138). Furthermore it provides us with a complete asymptotic expansion
for a#b:

a#b−
N−1∑

k=0

(

1

k!

[
i~(〈Dx, Dη〉 − 〈Dy, Dξ〉)

2

]k

a(x, ξ)b(y, η)

)

|y=x,η=ξ

∈ ~
N(1−2µ)Sµ(fA · fB)

(140)
In order to prove our theorem it thus only rests to show, that a#b ∈ Sµ(A~B~) and
that equation (139) holds. We start with the second one. First let N ∈ N be such that
(N−1)(1−2µ) ≥ cA+cB, then equation (140) and inclusion (135) assure that the remainder
term in (140) is in ~1−2µSµ(A~B~). For 0 ≤ k ≤ N − 1 each term in (140) can be written
as a sum of finitely many terms of the form

(i~)k

2kk!

(

Dα
xD

β
ξ a(x, ξ)

)

·
(
Dγ

xD
δ
ξb(x, ξ)

)

where α, β, γ, δ ∈ Nn are multiindices fulfilling |α|+ |β|+ |γ|+ |δ| = 2k. Via the product
formula one easily checks, that these terms are all in ~k(1−2µ)Sµ(A~B~) which proves that
a#b ∈ Sµ(A~B~).

C.4 Ellipticity and inverses

In this section we will define ellipticity for our new symbol classes and will prove a result
on L2-invertibility.

50



Definition 59. We call a symbol a ∈ Sµ(A~) elliptic if there is a constant C such that:

|a(x, ξ)| ≥ CA~(x, ξ) (141)

For an ~-dependent order function A~ ∈ OF c(f)From (132) and (131) it follows, that
~cA−1

~
∈ OF c(f−1) is again a ~dependent order function and we can formulate the following

proposition

Proposition 60. If a ∈ Sµ(A~) is elliptic then a−1 ∈ ~−cSµ(~
cA−1

~
)

Proof. We have to show, that |∂αx∂βξ a−1(x, ξ)| ≤ C~−µ(|α|+|β|)A−1
~
(x, ξ) uniformly in ~, x

and ξ. For some first derivative (i.e. for α ∈ N2n, |α| = 1) we have

|∂αx,ξa−1| =
|∂αx,ξa|
|a2| ≤ C

~−µA~

A2
~

= C~−µA−1
~

where the inequality is obtained by (132) and (141). The estimates of higher order deriva-
tives can be obtained by induction.

As for standard ~-PDOs this notion of ellipticity implies that the corresponding oper-
ators are invertible for sufficiently small ~.

Proposition 61. Let A~ ∈ OF c(1) and a ∈ Sµ(A~) be an elliptic symbol, then
Opw

~
(a) : L2(Rn) → L2(Rn) is a bounded operator. Furthermore there exists ~0 > 0

such that Opw
~
(a) is invertible for all ~ ∈]0, ~0]. Its inverse is again bounded and a pseu-

dodifferential operator Opw
~
(b) with symbol b ∈ Sµ(A

−1
~
). At leading order its symbol is

given by
b− a−1 ∈ ~

1−2µSµ(A
−1
~
)

Proof. As a ∈ Sµ(A~) ⊂ Sµ(1) the boundedness of Opw
~
(a) follows from theorem 4.23 in

[6]. By theorem 58 we calculate

Opw
~
(a)Opw

~
(a−1) = Id+R

where R = Opw
~
(r) is a PDO with symbol r ∈ ~1−2µSµ(1). Again from theorem 4.23 in [6]

we obtain ‖R‖L2 ≤ C~1−2µ thus there is ~0 such that ‖R‖L2 < 1 for ~ ∈]0, ~0]. According
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to theorem C.3 in [6] we can conclude that Opw
~
(a) is invertible and that the inverse is

given by Opw
~
(a−1)(Id + R)−1. The semiclassical version of Beals theorem allows us to

conclude that (Id+R)−1 =
∞∑

k=0

(−R)k is a PDO with symbol in Sµ(1) (cf. theorem 8.3 and

the following remarks in [6]). The representation of (Id− R)−1 as a series finally gives us
the symbol of the inverse operator at leading order.

C.5 Egorov’s theorem for Diffeomorphisms

In this section we will study the behavior of symbols a ∈ Sµ(A~) under variable changes.
Let γ : Rn → Rn be a diffeomorphism that equals identity outside some bounded set then
the pullback with this coordinate change acts as a continuous operator on S(Rn) by:

(γ∗u)(x) := u(γ(x))

Which can be extended by its adjoint to a continuous operator γ∗ : S ′(Rn) → S ′(Rn). By a
variable change of an operator we understand its conjugation by γ and we are interested for
which a ∈ Sµ(A~) the conjugated operator (γ∗)−1Op~(a)γ

∗ is again a ~-PDO with symbol
aγ . At leading order this symbol will be the composition of the original symbol with the
so called canonical transformation

T : R2n → R
2n, (x, ξ) 7→ (γ−1(x), (∂γ(γ−1(x)))T ξ)

and the symbol class of aγ will be Sµ(A~ ◦ T ). For the A~ ∈ OF c(f) defined in Definition
54 the composition A~◦T will in general however not be a ~-dependent order function itself
because the derivatives in x create a supplementary ξ factor which has to be compensated
(cf. discussion in chapter 9.3 in [6]). We therefore demand in this section that our order
function A~ satisfies:

∣
∣
∣∂αx∂

β
ξ A~(x, ξ)

∣
∣
∣ ≤ Cα,β~

µ(|α|+|β|)〈ξ〉−|β|A~(x, ξ)

A straightforward calculation shows then, that A~ ◦T ∈ OF c(f ◦T ) is again a ~dependent
order function. The same condition has to be fulfilled by the symbol of the conjugated
operator:

|∂αx∂βξ a(x, ξ)| ≤ ~
−µ(|α|+|β|)〈ξ〉−|β|A~(x, ξ) (142)

Theorem 62. Let a ∈ Sµ(A~) be an symbol which fulfills (142) and has compact

support in x (i.e. {x ∈ Rn|∃ξ ∈ Rn : a(x, ξ) 6= 0} is compact) and let γ : Rn → Rn be a
diffeomorphism. Then there is a symbol aγ ∈ Sµ(A~ ◦ T ) such that

(Op~(aγ)u)(γ(x)) = (Op~(a)(u ◦ γ))(x) (143)
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for all u ∈ S ′(Rn). Furthermore aγ has the following asymptotic expansion.

aγ(γ(x), η) ∼
k−n∑

ν=0

1

ν!
〈i ~

〈η〉Dy, Dξ〉νe
i
~
〈ρx(y),η〉a(x, ξ)∣∣y=0,ξ=(∂γ(x))T η

(144)

where ρx(y) = γ(y+x)−γ(x)−γ′(x)y. The terms of the series are in ~
ν(1−2µ)

2 Sµ(〈η〉
ν
2A~◦

T (γ(x), η)).

We will prove this theorem similar to theorem 18.1.17 in [15] by using a parameter
dependent stationary phase approximation (Thm7.7.7 in [14]) as well as the following
proposition which forms the analog to Proposition 18.1.4 of [15] for our symbol classes and
which we will prove first.

Proposition 63. Let a(x, ξ; ~) ∈ C∞(R2n) a family of smooth functions that fulfills

|∂αx ∂βξ a(x, ξ)| ≤ C~−l〈ξ〉lf(x, ξ) (145)

where C and l may depend on α and β. Furthermore let And let aj ∈ Sµ(A~), j =
0, 1, . . . be a sequence of symbols such that

|a(x, ξ)−
∑

j<k

~
jaj(x, ξ)| ≤ C~τk〈ξ〉−τkf(x, ξ) (146)

where τ > 0. Then a ∈ Sµ(A~) and a ∼∑ ~
jaj.

Proof. We have to show that for all k ≥ 0 and gk(x, ξ) := a(x, ξ) − ∑

j<k

~jaj(x, ξ) we

have |∂αx∂βξ gk| ≤ C~k−µ(|α|+|β|)A~. This result can be obtained by iterating the following
argument for the first derivative in x1:

Let e1 ∈ Rn be the first eigenvector and 0 < ǫ < 1. For arbitrary j ∈ N we can write
by Tailor’s Formula

|gj(x+ ǫe1, ξ)− gj(x, ξ)− ∂x1gj(x, ξ)ǫ)| ≤ Cǫ2 sup
t∈[0,ǫ]

|∂2x1
gj(x+ te1, ξ)|

From (145) and the property, that all aj are in Sµ(A~) we get

sup
t∈[0,ǫ]

|∂2x1
gj(x+ te1, ξ)| ≤ C~−l〈ξ〉lf(x, ξ)
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for some l ∈ R and get

|∂x1gj(x, ξ)| ≤ Cǫ~−l〈ξ〉lm(x, ξ) +
|gj(x+ ǫe1, ξ)− gj(x, ξ)|

ǫ

which turns for j > 2k+2c+l
τ

and ǫ = ~k+l+c〈ξ〉−(k+l+c) into:

|∂x1gj(x, ξ)| ≤ C~c+k〈ξ〉−(c+k)f(x, ξ) ≤ C~kA~(x, ξ)

where we used (135) in the second equation. Thus

|∂x1gk(x, ξ)| ≤ C~kA~(x, ξ) + |
j
∑

i=k

~
i∂x1ai(x, ξ)| ≤ C~k−µA~(x, ξ)

which finishes the proof.

After having proven this proposition we can start with the proof of theorem 62:

Proof. If we define

aγ(γ(x), η) := e−
i
~
γ(x)ηOp~(a)e

i
~
γ(·)η (147)

then equation (143) holds for all e
i
~
xη which form a dense subset of S ′(Rn). We thus have

to show that aγ defined in (147) is in Sµ(A~) and that (144) holds.
We will first write aγ as an oscillating integral in order to apply the stationary phase

theorem. By definition of Op~(a) one obtains

aγ(γ(x), η) =
1

(2π~)n

∫∫

a(x, ξ̃)e
i
~
((x−ỹ)ξ̃+(γ(ỹ)−γ(x))η)dỹdξ̃

which we can transform by a variable transformation ξ̃ = 〈η〉ξ and ỹ = y + x into

aγ(γ(x), η) =
1

(2π~̃)n

∫∫

a(x, 〈η〉ξ)e i

~̃
(−yξ+(γ(y+x)−γ(x)) η

〈η〉
)dydξ

where ~̃ = ~

〈η〉
.

The critical points of the phase function are given by

y = 0 and ξ = (∂γ(x))T
η

〈η〉

Let χ ∈ C∞
c ([−2, 2]n) such that χ = 1 on [−1, 1]n then we can write

aγ(γ(x), η) = I1(~̃) + I2(~̃)

with

I1(~̃) =
1

(2π~̃)n

∫∫

χ (y)χ

(

ξ − (∂γ(x))T
η

〈η〉

)

a(x, 〈η〉ξ)e i

~̃
(−yξ+(γ(y+x)−γ(x)) η

〈η〉
)dydξ
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and

I2(~̃) =
1

(2π~̃)n

∫∫ (

1− χ (y)χ

(

ξ − (∂γ(x))T
η

〈η〉

))

a(x, 〈η〉ξ)e i

~̃
(−yξ+(γ(y+x)−γ(x)) η

〈η〉
)dydξ.

While I1(~) still contains critical points, for I2(~) there are no critical points in the support
of the integrand anymore.

I1 is of the form studied in theorem 7.7.7 in [14]. Here the role of x and y is interchanged
and there is an additional parameter η

〈η〉
. We thus get from this stationary phase theorem

∣
∣
∣
∣
I1(~̃)−

k−n∑

ν=0

1
ν!
〈i~̃Dy, Dξ〉νe

i

~̃
〈ρx(y),

η
〈η〉

〉u(x, ξ, y, η)∣∣y=0,ξ=(∂γ(x))T η
〈η〉

∣
∣
∣
∣

≤ C~̃
k+n
2

∑

|α|≤2k

supy,ξ |Dα
y,ξu(x, ξ, y, η)|

(148)

where u(x, ξ, y, η) = χ (y)χ
(

ξ − (∂γ(x))T η
〈η〉

)

a(x, 〈η〉ξ). Because of (142) and (128) we

can estimate

sup
y,ξ

|Dα
y,ξu(x, ξ, y, η)| ≤ C~−µ|α|f(x, (∂γ(x))T η) = C~−µ|α|f ◦ T (γ(x), η)

Thus transforming the expansion (148) back to an expansion in ~ we get

∣
∣
∣
∣
I1(~)−

k−n∑

ν=0

1
ν!
〈i ~

〈η〉
Dy, Dξ〉νe

i
~
〈ρx(y),η〉u(x, ξ, y, η)∣∣y=0,ξ=(∂γ(x))T η

〈η〉

∣
∣
∣
∣

≤ C~
k(1−2µ)+n

2 〈η〉− k+n
2 f ◦ T (γ(x), η)

As the stationary points for I2 are not contained in the support of the integrand we get by
the non stationary phase theorem:

|I2(~)| ≤ C

(
~

〈η〉

)N

f ◦ T (γ(x), η)

for all N ∈ N. Thus we finally get

∣
∣
∣
∣
aγ(γ(x), η)−

k−n∑

ν=0

1
ν!
〈i ~

〈η〉
Dy, Dξ〉νe

i
~
〈ρx(y),η〉u(x, ξ, y, η)∣∣y=0,ξ=(∂γ(x))T η

〈η〉

∣
∣
∣
∣

≤ C~
k(1−2µ)+n

2 〈η〉− k+n
2 f ◦ T (γ(x), η)

(149)

If we show that the elements of the series are in ~
ν(1−2µ)

2 Sµ(〈η〉
ν
2A~ ◦ T (γ(x), η)) then this

equation is of the form (146). The terms of order ν in the series are of the form

(
i~

〈η〉

)ν

∂αy e
i
~
〈ρx(y),η〉(∂αξ a)(x, (∂γ(x))

T η)〈η〉ν ∣
∣y=0
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Where α ∈ Nn with |α| = ν. The second factor (∂αξ a)(x, (∂γ(x))
T η)〈η〉ν is in ~−µνSµ(A~ ◦

T (γ(x), η)) as we demanded the condition (142) on our symbol a. Thus it remains to show

that the other factor is of order
(

~

〈η〉

) ν
2

on the support of a. This is the case because

ρx(y) vanishes at second order in y = 0. Each derivative of e
i
~
〈ρx(y),η〉 produces a factor

i
~
〈∂yiρx(0), η〉. But as ∂yiρx(0) vanishes we need a second derivative, now acting on ∂yiρx(y),

in order to get a contribution. Thus in the worst case ∂αy e
i
~
〈ρx(y),η〉 is of order

(
~

〈η〉

)− ν
2
. Thus

we have shown that (149) is of the form (146).
The last thing that we have to show is thus, that aγ fulfills (145). If we consider the

definition (147)of aγ we see that ∂αx∂
β
ξ aγ(γ(x), η) can be written as a sum of terms of the

form P (η)
~k
e−

i
~
γ(x)ηOp~(b)e

i
~
γ(·)η where b ∈ Sµ(A~〈ξ〉j) and P (η) is a polynomial in η. The

constants j, k and the degree of P (η) depend on α and β. Thus writing these terms as
oscillating integrals and applying the same arguments as above one gets (145).

We have thus shown that all the conditions for proposition 63 are fulfilled and can
conclude that aγ belongs to Sµ(A~) and that (149) is also an asymptotic expansion w.r.t.
the order function A~.
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