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Dense point matching and tracking in image sequences is an open issue implications in several domains, from content analysis to video editing. We observe that for long term dense point matching, some regions of the image are better matched by concatenation of consecutive motion vectors, while for others a direct long term matching is preferred. We propose a method to optimally estimate the correspondence of a point w.r.t. a reference image from a set of input motion estimations over different temporal intervals. Results on texture insertion by point tracking in the context of video editing are presented and compared with a state-of-the-art approach.

INTRODUCTION

The problem of point and patch tracking is a widely studied and still open issue with implications in a broad area of computer vision and image processing [START_REF] Brox | Object segmentation by long term analysis of point trajectories[END_REF][START_REF] Fradet | Clustering point trajectories with various life-spans[END_REF][START_REF] Sand | Particle Video: Long-Range Motion Estimation Using Point Trajectories[END_REF][START_REF] Buchanan | Combining local and global motion models for feature point tracking[END_REF][START_REF] Sundaram | Dense point trajectories by GPU-accelerated large displacement optical flow[END_REF]. On one side and among others, applications such as object tracking, structure from motion, motion clustering and segmentation, and scene classification may benefit from a set of point trajectories by analyzing an associated feature space. In this case, usually a sparse or semi-sparse [START_REF] Sand | Particle Video: Long-Range Motion Estimation Using Point Trajectories[END_REF] set of meaningful points needs to be tracked, and indeed, those points that carry important information about the structure of the scene are more easily tracked. Recent approaches as those presented in [START_REF] Brox | Object segmentation by long term analysis of point trajectories[END_REF][START_REF] Fradet | Clustering point trajectories with various life-spans[END_REF] are examples of the importance of longterm motion cues for spatio-temporal video segmentation.

On the other side, applications related to video processing such as augmented reality, texture insertion, scene interpolation, view synthesis, video inpainting and 2D-to-3D conversion eventually require determining a dense set of trajectories or point correspondences that permit to propagate large amounts of information (color, disparity, depth, position, etc.) across the sequence. Dense motion information is well represented by optical flow fields and points can be simply propagated through time by accumulation of the motion vectors. That is why state-ofthe-art methods have built on top of optical flow methods for dense point tracking [START_REF] Brox | Object segmentation by long term analysis of point trajectories[END_REF][START_REF] Sand | Particle Video: Long-Range Motion Estimation Using Point Trajectories[END_REF][START_REF] Sundaram | Dense point trajectories by GPU-accelerated large displacement optical flow[END_REF].

Our approach is similar as we exploit a set of input motion fields computed independently, which we call elementary motion fields. This set, however, is composed by motion fields obtained with different estimation steps, i.e., time intervals between pairs of images. We have observed that for long term dense point matching, some regions of the image are better matched by concatenation of instantaneous motion vectors, while for others a direct long term matching is preferred.

The contribution of this work is two-fold: first we propose a novel sequential method of accumulating elementary motion fields to produce a long term matching; second, we show how to optimally combine different motion estimation steps in order to decide for the best point correspondence between two images. We present results in the context of video editing for automatic logo insertion by point tracking. Comparisons w.r.t. a state-of-the-art approach are given.

MULTI-STEP POINT MATCHING

Sequential displacement field construction

Consider an image sequence and let the last image be the reference image. Our objective is to compute the displacement vector at each location of each image w.r.t. the reference, i.e.

, for each n, where belongs to the image grid . For the time being, we only assume that the elementary motion fields, , computed between pairs of consecutive frames are available as input information.

In previous point tracking approaches based on optical flow [START_REF] Brox | Object segmentation by long term analysis of point trajectories[END_REF][START_REF] Sand | Particle Video: Long-Range Motion Estimation Using Point Trajectories[END_REF][START_REF] Sundaram | Dense point trajectories by GPU-accelerated large displacement optical flow[END_REF], a simple 1st-order Euler integration is conducted as follows: 1) take a starting grid point in , 2) for obtain iteratively ,

3) repeat for each . This gives an estimate of the positions of the points at time , by forwards concatenation of elementary motion fields. This simple scheme can then be combined with a more sophisticated global formulation for track estimation [START_REF] Sand | Particle Video: Long-Range Motion Estimation Using Point Trajectories[END_REF].

Our approach is based on a different strategy that runs backwards and aims at computing while exploiting the elementary motion fields. It is given by the following iteration:

(2) for each grid location in . That is, the current long-term displacement field is obtained by concatenation of the previously computed long-term field and an elementary motion field .

Note the difference between (1) and [START_REF] Fradet | Clustering point trajectories with various life-spans[END_REF]. Starting from the grid point at image , and its elementary displacement , one computes . Then, in the former approach (Eq. 1), one interpolates the velocity in (e.g. by bilinear interpolation), and continues accumulating elementary motion vectors in the forward direction (Fig. 1a). In the second approach, the interpolation is applied once on the long term motion field directly between instants and . This procedure implies that in ( 2) is available from the previous iteration (Fig. 1b). The result is that we sequentially compute the dense displacement maps backwards, for every frame with respect to the reference frame .

In order to obtain the correspondence between all pixels of all images w.r.t. the reference, it is easy to see that for the standard method the complexity is while for the proposed method it is , where is the number of pixels for a single image. Besides a higher efficiency, it also appears that this approach is more accurate. Fig. 2: Multi-step point correspondence. For a given point, the displacement from frames n to N can be obtained through different paths according to the input elementary motion fields (solid lines) and the previously estimated long-term displacements (dashed lines).

Multi-step flow

Now we exploit the previous strategy for defining an optimal and sequential way of combining elementary motion fields estimated with different frame steps (i.e. the time interval between two frames) in order to obtain an improved and dense displacement map. The reasoning is based on the following. We want to compute . Suppose that for a set of frame steps at instant , say , the set of corresponding motion fields is available. For each we write

In this manner we generate different candidate displacements or paths (Fig. 2) among which we aim at deciding the optimal for each location . With and it reduces to (2). This scheme is somewhat related to that presented in [START_REF] Lempitsky | FusionFlow: Discretecontinuous optimization for optical flow estimation[END_REF] for computing a single optical flow field between two given images, where several candidate solutions are fused on the basis of a global optimization framework.

Optimal path selection

Let us recall the setting so far: we want to compute ; we have defined and computed the candidates for every point in image and now the best one has to be selected at each location. For that sake, we need to define an optimality criterion and an optimization strategy. We first define the function as a matching cost between location in image and location in . It can be arbitrarily constructed so as to exploit different spatio-temporal image cues in order to evaluate the goodness of the match. For the results presented here, it is defined in section 3. Deciding for each location independently by selecting k such that is minimized may result in the introduction of an undesired noise in the final motion field, as neighboring image points will be frequently assigned with motion values computed with different values of k. Moreover, the proposed cost may not be robust enough. Thus, we improve the result by embedding it together with a spatial Potts-like regularization process. Let be a full labeling of the image grid, where each label indicates one of the available candidate paths. We introduce the energy function: ,

where is a pair of neighboring image locations according to the 4-point connected neighborhood, is the Kronecker delta and the spatial regularization parameter defined in [START_REF] Boykov | Efficient Approximate Energy Minimization via Graph Cuts[END_REF]. We obtain the optimal by applying a graph-cut-based minimization [START_REF] Boykov | Efficient Approximate Energy Minimization via Graph Cuts[END_REF]. This in turn gives the optimal long-term correspondence field .

DENSE POINT TRACKING AND VIDEO EDITING

Sequential forward-backward processing

The multi-step algorithm was described on the basis of a set of forward motion fields as inputs. The result is a forward correspondence vector for each point of each image before . This reasoning is especially useful for video editing tasks, e.g. for the consistent insertion of graphics elements such as logos. Basically, one is able to edit frame , and then propagate the modified values to the preceding frames using the estimated correspondence fields. Analogously, using backward motion fields as inputs one can readily consider as the reference image instead. Note that in applications where one needs to track points originated in the reference image (as opposed to track points all the way to the reference frame), it is better to apply the iteration in a different manner. In order to track each pixel in in the backward direction we write: [START_REF] Sundaram | Dense point trajectories by GPU-accelerated large displacement optical flow[END_REF] so that for each starting location we can compute the position at precedent frames. Similarly, using forward motion fields, we can track all the points from image in the forward direction. It is worth to say that combining these different variations of the algorithm, one can track and match (forward and backward) all the pixels of a reference image arbitrarily picked from within the sequence.

Input data and parameter selection

For the main results presented in this paper, we consider a sequence of 1920x1080 HD video frames with (AmeliaRetro, courtesy of Dolby ® ). To each , we associate a leap such that if then . We then have a set of input motion fields that we pre-estimate by an adapted 2D version of the 1D disparity estimator described in [START_REF] Thébault | Disparity-compensated view synthesis for s3D content correction[END_REF] and for the set of pairs .

We also define in (4) as the normalized sum of squared differences of pixel color values between image windows of size 5x5. Though this matching criterion may not be invariant to possible scale changes, illumination variations, large deformations and motion discontinuities, we have decided to keep it simple, as it permits to better observe the benefits of the multi-step approach. Meanwhile, the parameter equals , [START_REF] Boykov | Efficient Approximate Energy Minimization via Graph Cuts[END_REF] with the 3-channel color vectors at locations and , for image , respectively. The value is set manually or can be estimated locally from the color images. This enforces smoothness of the labels assigned to nearby pixels with similar color.

Results

Having manually inserted a logo at frame (Fig. 3a), we modify each image by copying the color values from according to the displacement field . We only edit the image at those pixels that fall inside a predefined insertion mask in , i.e., such that . For the rest, we leave the pixel unmodified. Note that our method notably reduces deformation, compared to the accumulation (1) of the same optical flow fields obtained with [START_REF] Thébault | Disparity-compensated view synthesis for s3D content correction[END_REF] as well as those given by [START_REF] Sundaram | Dense point trajectories by GPU-accelerated large displacement optical flow[END_REF] (implementation provided by the authors). In Fig. 4 we evaluate the accuracy of each method by propagating a region of the reference image to the whole sequence and computing the color PSNR w.r.t. the original input images at each instant . Our method shows a clear improvement at all frames especially for long term correspondences. The poor results obtained for Brox et al. [START_REF] Sundaram | Dense point trajectories by GPU-accelerated large displacement optical flow[END_REF] is a consequence of small spurious defects in the motion fields between successive frames, which are propagated to the final long-term displacement estimation. Finally, the ability of our method to combine optical flow fields estimated with different frame distances (steps) allows us to handle complex situations as, for example, logo insertion in the presence of occlusions/disocclusions. As depicted in Fig. 5, we can observe that some regions of the logo may be occluded at some instant of the sequence but they can be recovered when they reappear thanks to the long term matching. Moreover, pixels are modified only on disoccluded areas, as one would expect.

CONCLUSION

Dense point correspondences over time can be notably enhanced by considering multi-step flow fields. We have described a method to optimally combine several flow estimations also exploiting a new motion accumulation strategy. In fact, any elementary optical flow method can be leveraged with this scheme. 
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 1 Fig. 1: Estimation of . a) Scheme corresponding to (1): elementary motion vectors are interpolated and then accumulated. b) Scheme corresponding to our method (2): a previously estimated long term displacement is interpolated and then accumulated with an elementary motion vector. Dashed arrows indicate the displacement vectors at grid locations used for interpolation.
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 3 Fig. 3: Logo insertion. a-b) See image captions. c) Computed path label map for frame . Logo propagated at frame for d) Multistep flow. e) Accumulation of optical flows from [8]. f) Accumulation of optical flows from Brox et al. [5].
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 45 Fig. 4: Image registration error through time. Left: PSNR (dB) between original frame and reconstructed frame for each instant , by propagating a region of to the past. The depicted images illustrate the reconstruction provided by every method at frame .