
HAL Id: hal-00787664
https://hal.science/hal-00787664

Submitted on 12 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic analysis of externally excited NES-controlled
systems via a mixed Multiple Scale/Harmonic Balance

algorithm
Angelo Luongo, Daniele Zulli

To cite this version:
Angelo Luongo, Daniele Zulli. Dynamic analysis of externally excited NES-controlled systems via a
mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dynamics, 2012, 70 (3), pp.2049-2061.
�hal-00787664�

https://hal.science/hal-00787664
https://hal.archives-ouvertes.fr




2050 A. Luongo, D. Zulli

To analytically study the slow-flow dynamics of
systems with NES, the researchers generally make use
of two steps: (a) the complexification-averaging pro-
cedure by Manevitch [17], referred as CX-A, recently
extended also to nonpolynomial nonlinearity [18] and
piece-wise systems [14], and subsequently, (b) the
Multiple Scale Method (MSM), [19]. In fact, due to
the nonlinearizable nature of the equations of NES, it
was stated in [20], where a grounded NES was stud-
ied, that “for this type of problem the standard analyt-
ical techniques from nonlinear dynamics (such as the
method of multiple-scales, and the standard method of
averaging), are not directly applicable, and an alter-
native approach must be followed”; accordingly, the
complexification method was employed. Dealing with
the same problem, three different methods were used
in [21], namely, the method of harmonic balance, a
combination of a shooting method and Floquet the-
ory, and direct time integration, but not the MSM. In
the same paper, the authors used an adapted version of
the method of averaging, and defined their theoretical
analysis as “limited.” For all these reasons, it seems
interesting to investigate the possibility of implement-
ing a nonstandard version of the MSM, able to deal
directly with general systems attached to essentially
nonlinear oscillators.

In this paper, a general, nonlinear, multi-d.o.f. sys-
tem under external resonant harmonic excitation is
considered. A NES is attached to it, in order to
control amplitude of vibrations. A mixed Multiple
Scale/Harmonic Balance Method (MSHBM) is pro-
posed, to get the critical manifold and the equations
ruling both the slow-dynamics on it and the fast dy-
namics externally of it. The main advantage of the al-
gorithm is that the initial complexification procedure
is avoided, dealing directly with variables having clear
physical meanings. An example, already analyzed in
[2, 10, 11], is then considered, for which the asymp-
totic results are compared with numerical integrations.
Effects on the solution of higher frequency compo-
nents as well as analytical detection of SMR are ad-
dressed, also. However, a complete study of the dy-
namics, the influence of parameters modification, as
well as the possible beneficial effect of the NES, are
not fulfilled herein, being the aim of the paper turned
to the presentation of the algorithm.

The paper is organized as follows. In Sect. 2, the
algorithm is applied to a general system; in Sect. 3,
a sample system is studied, in Sect. 4 results are dis-
cussed, and in Sect. 5 some conclusions are drawn.

Fig. 1 Sketch of a multi-d.o.f. system equipped with a NES

2 The Multiple Scale/Harmonic Balance
algorithm

A family of damped, nonlinear, multi-d.o.f. mechan-
ical systems, under primary resonant harmonic ex-
citation, is considered herein. The main system is
equipped with an essentially nonlinear oscillator, be-
having as a nonlinear energy sink (NES), attached at a
point (see Fig. 1). The relevant nondimensional equa-
tions of motion of the whole system read:

Mẍ + Cẋ + K(σ )x + ξ
(
rT ẋ − ẏ

)
r

+ κ
(
rT x − y

)3r + n(x,x,x) = f cosωt (1)

mÿ − ξ
(
rT ẋ − ẏ

) − κ
(
rT x − y

)3 = 0 (2)

where: x = x(t) is the time-depending N -dimensional
column matrix of the displacements of the main struc-
ture; M is the mass matrix; C is the damping matrix,
and K(σ ) is the stiffness matrix, linearly depending on
a structural parameter σ , n is the column of the (cubic)
geometric nonlinearities, f is the column of the exter-
nal force, modulated with frequency ω, y = y(t) is the
time-depending displacement of the added oscillator,
m its mass, ξ its damping-ratio, and κ the coefficient
of its essentially nonlinear (cubic) spring; r is the in-
fluence coefficient column; finally, the dot represents
time-differentiation. It is assumed that when σ = 0,
the external excitation is 1:1 resonant with one of the
linear modes of the main structure (with NES disen-
gaged), and no other resonance combinations are pos-
sible; therefore, σ acts as a detuning parameter. It is
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convenient to introduce the relative displacement be-
tween main structure and NES, z := rT x − y, so that
Eqs. (1) and (2) become:

Mẍ + Cẋ + K(σ )x + ξ żr + κz3r + n(x,x,x)

= f cosωt (3)

m
(
rT ẍ − z̈

) − ξ ż − κz3 = 0 (4)

The dependent variables are rescaled through a
nondimensional small parameter ε > 0, as (x, z) :=
ε1/2(x̃, z̃), consistently with the presence of cubic non-
linearity. The damping is rescaled as C = εC̃ and
the external force as f = ε3/2 f̃, consistently with the
idea to order both damping and excitation at the same
level of the nonlinearity. The structural parameter σ is
rescaled as σ = εσ̃ . The parameters of the NES are
also rescaled, since both its mass and damping are
assumed small: (m, ξ) := ε(m̃, ξ̃ ). The rescaling and
series expansion of K(σ ) lead to the following equa-
tions, after omission of tilde and division by ε1/2:

Mẍ + εCẋ + (K0 + εσK1)x + εξ żr

+ εκz3r + εn(x,x,x) = εf cosωt (5)

εm
(
rT ẍ − z̈

) − εξ ż − εκz3 = 0 (6)

where K0 := K(0) and K1 := ∂K(0)/∂σ .
According to the multiple scale method, indepen-

dent time scales t0 := t , t1 := εt , t2 = ε2t, . . . are in-
troduced and, consistently, the derivatives expressed as
d
dt

= d0 + εd1 + ε2d2 + · · · and d2

dt2 = d2
0 + 2εd0d1 +

ε2(d2
1 + 2d0d1) + · · · . Moreover, the dependent vari-

ables are expanded in series as

{
x
z

}
=

{
x0

z0

}
+ ε

{
x1

z1

}
+ ε2

{
x2

z2

}
+ · · · (7)

Substituting in Eqs. (5) and (6) and collecting terms of
the same order in ε, lead to the following perturbation
equations:

order ε0:

Md2
0 x0 + K0x0 = 0 (8)

order ε1:

Md2
0 x1 + K0x1

= −2Md0d1x0 − Cd0x0 − σK1x0

− ξd0z0r − κz3
0r − n(x0,x0,x0) + f cosωt0 (9)

m
(
rT d2

0 x0 − d2
0z0

) − ξd0z0 − κz3
0 = 0 (10)

order ε2:

Md2
0 x2 + K0x2

= −M
(
d2

1 x0 + 2d0d2x0 + 2d0d1x1
)

− C(d2x0 + d1x1) − σK1x1 − ξ(d0z1 + d1z0)r

− 3κz2
0z1r − 3n(x1,x0,x0) (11)

m
(
rT d2

0 x1 − d2
0z1

) − ξd0z1 − 3κz2
0z1

= 2m
(
d0d1z0 − rT d0d1x0

) + ξd1z0 (12)

It should be noticed that, because of the vanishingly
small values of the mass and damping, as well of the
lack of linear stiffness, no equation of motion relevant
to NES appears in the generator problem (order ε0),
which therefore describes the linear dynamics of the
main structure alone (as if NES were disengaged).

The 1:1 external resonance with just one of the lin-
ear modes of the main system, together with the pres-
ence of damping, entails that the remaining nonres-
onant modes bring a higher-order contribution to the
overall response. Therefore, only the contribution re-
lated to the resonant mode is retained in the solution
of Eq. (8), i.e.,

x0(t0, t1, . . .) = A(t1, . . .)ueiωt0 + cc (13)

where: A(t1, . . .) is a complex modal amplitude,
whose modulation on the slower time-scales must be
evaluated; i is the imaginary unit; iω and u are the res-
onant eigenvalue and (real) eigenvector of the problem
(K0 + λ2M)u = 0, respectively; finally cc stands for
complex conjugate.

The ε-order perturbation equations (9) and (10) are
now addressed, and the NES equation (10) considered
first. Since its (steady) solution cannot be expressed by
elementary (nor Jacobi) functions, the harmonic bal-
ance method is used, letting

z0(t0, t1, . . .) = B1(t1, . . .)e
iωt0 + cc (14)

where B1(t1, . . .) is a (first order) slowly modulated
complex amplitude, to be evaluated. Other frequency
components (3ω,5ω, . . .) are not considered here (see
the next Sect. 4 for a discussion). Equations (13) and
(14) are substituted in Eq. (10) and only ω-frequency
terms are balanced. This step leads to

−mω2(B1 − rA) + iξωB1 + 3κB2
1 B̄1 = 0 (15)

where r := rT u.
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Equation (15) provides, at the first order of per-
turbation, an algebraic constrain between the (active)
resonant amplitude of oscillation of the main struc-
ture and the (passive) amplitude of the NES elonga-
tion, B1; it, therefore, describes a codimension-2 man-
ifold in the state-space, on which the asymptotic dy-
namics take place. To get the (first order) real form of
the manifold, the expressions A(t) := 1

2a(t)eiα(t) and
B1(t) := 1

2b(t)eiβ(t), are substituted in Eq. (15) and
real and imaginary parts separated:

mω2ra cos(α − β) = mω2b − 3

4
κb3 (16)

mω2ra sin(α − β) = −ξωb (17)

These latter, once squared and summed, provide

m2ω4r2a2 =
(

mω2b − 3

4
κb3

)2

+ ξ2ω2b2 (18)

which is a constrain between the two involved real am-
plitudes. Equation (15) (or (18)), however, is unable to
describe motions which occur (in relaxation oscilla-
tion) externally to the manifold, which typically con-
sist in very fast jumps. To capture this effect, a further
perturbation equation must be tackled. Equation (9) is
then considered, in which z0 is assumed as in Eq. (14).
By requiring that the resonant forcing term is orthog-
onal to the eigenvector u (solvability condition), the
following condition is obtained:

d1A = (c1 + iσ c2)A + c3B1 + ic4B
2
1 B̄1

+ ic5A
2
1Ā1 + ic6f (19)

where f := uT f, and the expressions of the coef-
ficients cj are given in Appendix. By substituting
Eq. (19) in Eq. (9) and by solving for x1, it holds

x1 = iAw1e
iωt0 + σAw2e

iωt0 + B1w3e
iωt0

+ B2
1 B̄1w4e

iωt0 + A2Āw5e
iωt0 + w6e

iωt0

+ B3
1 w7e

3iωt0 + A3w8e
3iωt0 + cc (20)

where wj , (j = 1, . . . ,8) are defined in Appendix.
Equation (12) is finally considered: a new harmonic

balance is carried out, assuming the following expres-
sion for z1:

z1(t0, t1, . . .) = B2(t1, . . .)e
iωt0 + cc (21)

Substituting Eqs. (13), (14), and (20) in Eq. (12) and
balancing the ω-frequency terms, the following equa-
tion is obtained:

−mω2B2 + iξωB2 + 3κB2
1 B̄2 + 6κB1B̄1B2

+ (ξ + 2imω)d1B1 − 2imωrd1A

+ mω2(iAw1 + σAw2 + iB1w3 + B2
1 B̄1w4

+ A2Āw5
) + mω2w6 = 0 (22)

where wj := rT wj , j = 1, . . . ,6. Equations (15) and
(22) can be reconstituted, using the definition B :=
B1 + εB2, and coming back to the true time, to obtain:

(ξ + 2imω)Ḃ − 2imωrȦ

= (
mω2(1 − iw3) − iξω

)
B

− (
3κ + mω2w4

)
B2B̄ −mω2(r + iw1+ σw2)A

− mω2w5A
2Ā − mω2w6 (23)

It appears that this equation now describes the dynam-
ics of the amplitude B , differently from Eq. (15). The
key-term containing Ḃ comes out only at the second-
order, since it is affected by small coefficients ξ and
m, thus revealing the nature of singular perturbation.
In contrast, the term proportional to Ȧ, which also ap-
pears at this order, does not add any qualitative new
contributions, being ruled by Eq. (19).

If the perturbation procedure is truncated at order ε

for the main system equation, the solvability condition
(19) can be written in terms of the true time:

Ȧ = (c1 + iσ c2)A+ c3B + ic4B
2B̄ + ic5A

2Ā+ ic6f

(24)

To get the polar form of Eqs. (24) and (23), A(t) :=
1
2a(t)eiα(t) and B(t) := 1

2b(t)eiβ(t) are substituted in
them and real and imaginary parts separated, thus ob-
taining (from Eq. (24)):

ȧ = c1a + c3b cos(α − β) + c4

4
b3 sin(α − β) (25)

aα̇ = σc2a + c3b sin(α − β) + c4

4
b3 cos(α − β)

+ c5

4
a3 + c6f (26)

and (from Eq. (23))
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ξ ḃ − 2ωmbβ̇ + 2ωmr
(
ȧ sin(α − β) + aα̇ cos(α − β)

)

= mω2w1a sin(α − β)

− mω2(r + σw2)a cos(α − β) + mω2b

− (
mω2w4 + 3κ

)b3

4
− mω2w5

a3

4
cos(α − β)

− mω2w6 cosβ (27)

2ωmḃ + ξbβ̇ − 2ωmr
(
ȧ cos(α − β) − aα̇ sin(α − β)

)

= −mω2w1a cos(α − β)

− mω2(r + σw2)a sin(α − β)

− (
mω2w3 + ωξ

)
b − mω2w5

a3

4
sin(α − β)

+ mω2w6 sinβ (28)

The nonlinear singular perturbation problem Eqs.
(25)–(28) describes the dynamics of the main system
attached to the NES, in terms of the real dependent
variables a, b,α,β . Its equilibrium points, determined
taking ȧ = ḃ = α̇ = β̇ = 0, represent periodic oscilla-
tions in the displacement x, z.

3 Sample systems and numerical results

A sample system, already studied in [2, 11], is consid-
ered here to check the reliability of the method pre-
sented in Sect. 2. A complete study of the dynam-
ics of the proposed example, as well as of the possi-
ble beneficial effect of the NES, however, are not ful-
filled herein, since they are out of the aim of this pa-
per.

The main system consists of a 1-d.o.f. linear un-
damped system, with attached NES, a sketch of which
is shown in Fig. 2. The nondimensional equations of
motion are:

ẍ + (
ω2 + σ

)
x − ξ(ẏ − ẋ) − κ(y − x)3 = f cosωt

(29)

mÿ + ξ(ẏ − ẋ) + κ(y − x)3 = 0 (30)

that, for z := x − y, become:

ẍ + (
ω2 + σ

)
x − ξ ż − κz3 = f cosωt (31)

m(z̈ − ẋ) + ξ ż + κz3 = 0 (32)

Fig. 2 Sketch of a analyzed system

Fig. 3 Nonlinear manifold when m = 0.05, ξ = 0.01,
κ = 0.067, ω = 1

Therefore, comparing it with Eqs. (3) and (4), it re-
sults:

N = 1, x = x, M = 1, C = 0,

K0 = ω2, K1 = 1, n(x,x,x) = 0,

f = f

(33)

The nonlinear manifold, Eq. (18), becomes

(
3κb2

8mω
+ ωb

2

)2

+
(

ξb

2m

)2

− ω2a2

4
= 0 (34)

and it is shown in Fig. 3 for m = 0.05, ξ = 0.01,
κ = 0.067, ω = 1 (which is the set of numerical values
considered in [2, 11]).

The (first order) solvability condition reads:

Ȧ = iσ

2ω
A − ξ

2
B − 3iκ

2ω
B2B̄ − if

4ω
(35)

and the (second order) harmonic balance becomes:

2imωȦ − (2imω + ξ)Ḃ

= mω2A + (
iξω − mω2)B + 3κB2B̄ (36)



2054 A. Luongo, D. Zulli

In polar form, they assume the forms:

ȧ = 3kb3 sin(α − β)

8ω
− 1

2
ξb cos(α − β) − f sinα

2ω

(37)

aα̇ = aσ

2ω
+ 3b3k cos(α − β)

8ω
+ 1

2
bξ sin(α − β)

− f cosα

2ω
(38)

and

mȧ sin(α − β) + maα̇ cos(α − β) + ξ

2ω
ḃ − mbβ̇

= −mω

2
a cos(α − β) − 3b3k

8ω
+ mω

2
b (39)

mȧ cos(α − β) − maα̇ sin(α − β) − mḃ − ξ

2ω
bβ̇

= ξ

2
b + mω

2
a sin(α − β) (40)

When the NES is disengaged, since the main sys-
tem is linear, the amplitudes of the periodic solutions
in x become

ae = f

σ
(41)

tanαe = aeσ

2ω
(42)

which are always stable. They are the equilibrium
points of Eqs. (37), (38), when b = 0. Due to the lack
of damping in the main system, the amplitude tends to
infinite when σ goes to zero.

In the following analysis, the NES is considered
engaged. The branches of equilibrium points of the
dynamical system (37)–(40), which represent periodic
oscillations in the original variables x and z, are shown
in Fig. 4, for increasing values of f (in Fig. 4a when
f = 0.020, in Fig. 4b when f = 0.039 and in Fig. 4c
when f = 0.075). The figures are obtained via the
software AUTO [22]. In the same figures, some equi-
librium points are marked by colored points, to get
reference with other subsequent figures, while black
boxes represent Hopf bifurcation points. It can be ob-
served that multiple solutions exist in some intervals
of σ , as in Fig. 4a around σ = −0.10 or σ = 0.10.
In Fig. 4b, around σ = 0.2, three solutions exist and

two of them are stable (green and yellow points, sta-
ble; red point, unstable); on the other hand, around the
value σ = −0.15, three solutions exist and only one
of them is stable (no colored points). A higher am-
plitude branch also exists, describing a closed island
(only partially shown in the Figs. 4a, b). As the force
is increased, the island gets wider and closer to the
lower branch, until it disappears by merging with the
lower branch (Fig. 4c). All these results are consistent
with those shown in [2, 11].

Strongly modulated responses (SMR) are detected
by numerical integration of the system (37)–(40).
They represent quasiperiodic relaxation oscillations
in the variables a and b, typically describing cycles
around the two folds of the nonlinear manifold shown
in Fig. 3. They are triggered in dependence of the po-
sition of the equilibrium points.

When σ = 0.015, f = 0.02, m = 0.05, ξ = 0.01,
κ = 0.067, the equilibrium point is unique, unstable,
and it is represented by the yellow point in Fig. 4a. In
Fig. 5a, the same equilibrium point is shown (yellow
point) on the nonlinear manifold (blue line), as well as
the trajectory of the relaxation oscillation, describing
an annular region (red line), while in Fig. 5b the latter
is substituted by its Poincaré section (black points).
The corresponding time evolutions of the ampli-
tudes a, b (obtained by numerical integration of Eqs.
(37)–(40)) and of the reconstituted displacements x, z

are shown in Figs. 6a, b. They are in very good agree-
ment with the solutions obtained by numerical inte-
gration of the original equations (31), (32), shown in
Fig. 6c.

When σ = 0.2, f = 0.039, m = 0.05, ξ = 0.01,
κ = 0.067, ω = 1 (see Fig. 4b), the three different
equilibrium points are marked with colored points.
They are also shown in Fig. 7, lying on the nonlin-
ear manifold. One of them is unstable (red point) and
the other two are stable (green and yellow points).
Two different trajectories are also shown Fig. 7 (ma-
genta and black lines), asymptotically falling to the
stable equilibria. Relaxation oscillations are not trig-
gered and, therefore, periodic solution in x, z are ob-
tained.

When σ = −0.3, f = 0.075, m = 0.05, ξ = 0.01,
κ = 0.067, ω = 1 (see Fig. 4c), the three different
equilibrium points are marked and only the green one
is stable. They are also shown in Fig. 8, on the nonlin-
ear manifold. A relaxation oscillation is triggered, and
its Poincaré section is shown (magenta points). For ini-
tial conditions close to the stable equilibrium point,
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Fig. 4 Amplitudes a and b when NES is engaged, when
m = 0.05, ξ = 0.01, κ = 0.067, ω = 1, and (a) f = 0.020,
(b) f = 0.039, (c) f = 0.075. The filled squares indicate Hopf

bifurcation points. The colored points are equilibria referred to
following figures. Continuous line: stable; dashed line: unstable

a trajectory asymptotically falling on it is also found
(black line). The corresponding time evolutions of the
amplitudes a, b and of the (reconstituted) displace-
ments x, z are shown in Figs. 9a, b, in good agreement
with the solutions obtained by numerical integration
of the original equations (31), (32), shown in Fig. 9c.

In Fig. 10, the Poincaré map of the SMR is shown
for smaller values of the NES parameters, m = 0.005,
ξ = 0.001, κ = 0.0067, and for ω = 1, σ = −0.015,

f = 0.01. The unique equilibrium point (yellow point)
is stable and stands on the right branch of the nonlin-
ear manifold. Also, trajectories falling to the equilib-
rium points are found, obtained when initial conditions
close to the equilibrium point are considered. They are
not reported in the figure. The SMR quasiperiodic time
evolutions of a, b, and corresponding quasi-periodic
time evolutions of x, z are shown in Figs. 11a, b, re-
spectively. Again, they are in good agreement with the
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Fig. 5 Nonlinear manifold (blue line), equilibrium point (yellow point) and SMR: phase plot (a, red line) and Poincaré map (b, black
points), when σ = 0.015, f = 0.02, m = 0.05, ξ = 0.01, κ = 0.067, ω = 1

Fig. 6 SMR, when σ = 0.015, f = 0.02, m = 0.05, ξ = 0.01, κ = 0.067, ω = 1; (a) amplitudes by MSHBM; (b) reconstituted
response; (c) numerical integration of the original equations (31), (32)



Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic 2057

Fig. 7 Nonlinear manifold (blue line), three equilibrium points
(green, red, and yellow points) and two transitional motions
(magenta and black lines) falling to the equilibria, when
σ = 0.2, f = 0.039, m = 0.05, ξ = 0.01, κ = 0.067, ω = 1

Fig. 8 Nonlinear manifold (blue line), three equilibrium points
(red, green and yellow points), Poincaré map of the SMR re-
sponse (magenta points), and transitional motion (black line)
falling to the equilibrium point, when σ = −0.3, f = 0.075,
m = 0.05, ξ = 0.01, κ = 0.067, ω = 1

solution of the original equations (31), (32), shown in
Fig. 11c.

4 Discussion

Few specific topics are now addressed, concerning
the potentialities of the algorithm illustrated herein,
namely, (a) the influence of higher harmonics, ne-
glected in solving the NES equation, and (b) the an-
alytical investigation of SMR, carried out in literature
via a different approach.

4.1 Higher frequency-terms

The choice of using just one frequency-term, namely
the one with frequency ω, in the Harmonic Balance

(i.e., in Eqs. (14), (21)), might appear as a strong lim-
itation of the procedure introduced herein. In princi-
ple, indeed, terms of frequency 3ω,5ω, . . . could be
involved and become significant.

To solve this issue, as a fist attempt, terms of fre-
quency 3ω have been considered, also using

z0(t0, t1, . . .)

= B11(t1, . . .)e
iωt0 + B13(t1, . . .)e

3iωt0 + cc

z1(t0, t1, . . .)

= B21(t1, . . .)e
iωt0 + B23(t1, . . .)e

3iωt0 + cc

(43)

instead of Eqs. (14), (21), and obtaining corresponding
equations which balance terms of frequency ω and 3ω,
instead of Eqs. (15), (22), not reported here.

It turns out that the amplitudes of terms of fre-
quency 3ω are always of higher order than those of
frequency ω, and then resulting as negligible. They
do not give any significant contribution to the dynam-
ics of the system. In particular, after the reconstitution
procedure (B1 := B11 + εB21, B3 := B13 + εB23, and
coming back to the true time), if b1 is the real am-
plitude of B1 and b3 is the real amplitude of B3, the
manifold should be naturally pictured as a curve in the
three-dimensional space (b1, b3, a). For the numerical
example considered in Sect. 3, it is shown in Fig. 12.
The projection in the (b1, a)-plane is practically the
same of Fig. 3 whereas, looking at the projection in
the (b1, b3)-plane, it can be observed that b3 is much
smaller than b1 and a in the considered range. Cor-
responding results (not reported here) show that the
effect of higher frequency 3ω is negligible in the equi-
librium branches and SMR, also.

In any case, the presence of higher frequency-
terms would preserve the structure of singular pertur-
bation system, since Eqs. (24), (23) would be modified
into:

Ȧ = f (A,B)

εḂ = g(A,B)
(44)

where B = {B1,B3}.

4.2 Analytical detection of SMR

The analytical detection of the SMR can be accom-
plished with the outcomes of the MSHBM, as in the
framework of the Manevitch complexification. This
task is based on the study of the singularities of the
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Fig. 9 SMR, when σ = −0.3, f = 0.075, m = 0.05, ξ = 0.01, κ = 0.067, ω = 1; (a) amplitudes by MSHBM; (b) reconstituted
response; (c) numerical integration of the original equations (31), (32)

slow dynamics on the manifold (see [11]). Already at
the first perturbation step of the MSHBM, the slow
dynamics on the manifold are addressed, whereas the
second perturbation step allows the study of the dy-
namics also outside the manifold. In fact, if Eq. (15) is
solved to obtain the expression

A = B1 − iξB1

mω1
− 3kB2

1 B̄1

mω2
1

(45)

and it is substituted in Eq. (19), after coming back to
the true time, the following complex differential equa-

tion in the dependent variables B1, B̄1 is obtained:

Ḃ1

(
−6kB1B̄1

mω2
− iξ

mω
+ 1

)
− 3kB2

1
˙̄B1

mω2

= if

4ω
+ B2

1 B̄1

(
3ikσ

2mω3
− 3ik

2ω

)

+ B1

(
− ξσ

2mω2
+ ξ

2
− iσ

2ω

)
(46)

Using the polar representation B1(t) = 1
2b(t)eiβ(t),

and separating real and imaginary parts, two real dif-
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Fig. 10 Nonlinear manifold (blue line), equilibrium point
(yellow point) and Poincaré map of the SMR response (red
points), when σ = −0.015, f = 0.01, m = 0.005, ξ = 0.001,
κ = 0.0067, ω = 1

ferential equations in b(t), β(t) are obtained. The
phase portrait in the stable sides of the manifold,
representing b(t) vs. β(t), is shown in Fig. 13 for
the numerical example, when σ = 0.15, f = 0.02,
m = 0.05, ξ = 0.01, κ = 0.067, ω = 1, where the
limits of existence of the SMR, corresponding to the
phases β1 and β2, are drawn by the vertical dashed
lines.

5 Conclusions

In this paper, a general, nonlinear, multi-d.o.f. system,
equipped with an essentially nonlinear oscillator with

Fig. 11 SMR, when σ = −0.015, f = 0.01, m = 0.005, ξ = 0.001, κ = 0.0067, ω = 1; (a) amplitudes by MSHBM; (b) reconstituted
response; (c) numerical integration of the original equations (31), (32)
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Fig. 12 Nonlinear manifold in (b1, b3, a)-space when both fre-
quencies ω and 3ω are considered, when σ = −0.3, f = 0.075,
m = 0.05, ξ = 0.01, κ = 0.067, ω = 1

Fig. 13 Phase portrait of Eq. (46) in the stable sides of the
manifold, when σ = 0.15, f = 0.02, m = 0.05, ξ = 0.01,
κ = 0.067, ω = 1

small mass (Nonlinear Energy Sink, NES), is con-
sidered. Aim of the NES is to passively control the
amplitude of vibrations of the main system. A mixed
Multiple Scale/Harmonic Balance Method (MSHBM)
is proposed to get slow-flow dynamics, described by

singular perturbation equations. The main advantage
of the procedure is that no complexification-averaging
is required, so that the analysis is reconducted to the
framework of the classical perturbation techniques.
Numerical tests on a system, already analyzed in the
literature, are pursued. The results show good agree-
ment between the outcomes of the algorithm and di-
rect integrations, in terms of equilibrium points and
strongly modulation responses (SMR).

Appendix: Coefficients of the equations

The mode u is assumed normalized to get unitary
modal mass (uT Mu = 1). The expression of the co-
efficients of Eq. (19) are:

c1= −1

2
uT Cu, c2 = − 1

2ω
uT K1u, c3 = −ξ

2
r

c4 = 3κr

2ω
, c5 = 1

2ω
uT n(u,u, ū), c6 = 1

4ω

(47)

In Eq. (20), the column matrices wj (j = 1, . . . ,6)
are the solutions of the following singular algebraic
problems in which, however, compatibility is satisfied:

w1:
(
K0 − ω2M

)
w1 = −ω

(
Cu −(

uT Cu
)
Mu

)
(48)

w2:
(
K0 − ω2M

)
w2 = −(

K1u −(
uT K1u

)
Mu

)
(49)

w3:
(
K0 − ω2M

)
w3 = −ξω(r − rMu) (50)

w4:
(
K0 − ω2M

)
w4 = −3κ(r − rMu) (51)

w5:
(
K0 − ω2M

)
w5

= −(
n(u,u, ū) − (

uT n(u,u, ū)
)
Mu

)
(52)

w6:
(
K0 − ω2M

)
w6 = −1

2
(f − f Mu) (53)

The solution is made unique by the normalization con-
dition wT

j u = 0.
Moreover, wj (j = 7,8) are the solutions of the fol-

lowing non-singular algebraic:

w7:
(
K0 − 9ω2M

)
w7 = −κr (54)

w8:
(
K0 − 9ω2M

)
w8 = −n(u,u,u) (55)
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