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By using a cocycle generated by the step function ϕ β,γ = 1 [0,β] -1 [0,β] (. + γ) over an irrational rotation x → x + α mod 1, we present examples which illustrate different aspects of the general theory of cylinder maps. In particular, we construct non ergodic cocycles with ergodic compact quotients, cocycles generating an extension T α,ϕ with a small centralizer. The constructions are related to diophantine properties of α, β, γ.

Introduction

Skew maps (also called cylindrical systems) yield an important source of examples of dynamical systems preserving an infinite invariant measure. In particular the class of skew maps over 1-dimensional irrational rotations using a step function as skewing function has been widely studied in the literature. (cf. [START_REF] Oren | Ergodicity of cylinder flows arising from irregularities of distribution[END_REF], [START_REF] Lemanczyk | Ergodic properties of real cocycles and pseudohomogeneous Banach spaces[END_REF], [START_REF] Aaronson | A cut salad of cocycles. Dedicated to the memory of Wieslaw Szlenk[END_REF] and for other references [START_REF] Conze | Recurrence, ergodicity and invariant measures for cocycles over a rotation[END_REF]).

Our main examples here will be the cocycles generated over an irrational rotation T α : x → x + α mod 1 by the step functions1 

ϕ β (x) := 1 [0,β] (x) -β, ϕ β,γ (x) := 1 [0,β] (x) -1 [0,β] (x + γ).
This simple function can be used to answer natural questions about cocycles. In particular, we are interested in the construction of non ergodic cocycles with ergodic compact quotients and cocycles generating an extension T α,ϕ : (x, y) → (x + α, y + ϕ(x)) with a small centralizer. This has the advantage to illustrate the general ergodic theory of dynamical systems in infinite measure through a very elementary and natural object.

After reminders on extensions of dynamical systems, essential values and regularity of cocycles, we discuss some issues on Z 2 -cocycles and centralizer of cylindrical maps. Then we present general results on coboundaries equations over rotations and recall results of M. Guénais and F. Parreau on a multiplicative quasi-coboundary equation. In the case of step functions, we give sufficient conditions for solving in L 2 (T 1 ) the linear coboundary equation for the function

1 [0,β] -T γ 1 [0,β] .
As a result, it follows (Theorem 3.1) that there are real numbers β such that: -on one hand, for almost every γ the cocycle defined by ϕ β,γ is non regular (in particular it is not ergodic, but not a coboundary), but all the compact quotients of the associated skew product are ergodic, -on the other hand, there is an uncountable set of values of γ for which ϕ β,γ is a coboundary.

Then we show different kinds of centralizer for T α,ϕ β : non trivial uncountable (case of unbounded partial quotient), trivial (case of bounded quotients). At the opposite we investigate also a property of "rigidity" for α of bounded type, with an example of cocycle ϕ which generates an extension T α,ϕ with a small centralizer. A last application is the construction of a counter example in a conjugacy problem for a group family. In the appendix, under diophantine conditions on β, γ, we solve the linear coboundary equation for ϕ β,γ .

The authors are grateful to M. Lemańczyk for references and comments on the centralizer, as well as to the referee for his numerous and very helpful suggestions.

Preliminaries on cocycles

1.1. Cocycles and group extension of dynamical systems.

In these preliminaries, we recall some standard facts on skew products and regular cocycles.

Let (X, A, µ, T ) be a dynamical system, i.e., a probability space (X, A, µ) and a measurable invertible transformation T of X which preserves µ. In the sequel we will assume T ergodic. Let ϕ : X → G be a measurable function from X to an abelian locally compact second countable (lcsc) group G, with m or m G denoting the Haar measure on G.

The skew product (or cylinder map) over (X, µ, T ) with the fiber G and the displacement (or skewing) function ϕ is the dynamical system (X × G, µ ⊗ m, T ϕ ), where

T ϕ (x, g) = (T x, g + ϕ(x)).
For n ∈ Z we have T n ϕ (x, g) = (T n x, g + ϕ n (x)), where (ϕ n ) is the associated cocycle generated by ϕ over the dynamical system:

(1)

ϕ n (x) = n-1 j=0 ϕ(T j x), n ≥ 1.
For simplicity, the function ϕ itself will be called a cocycle. We say that a cocycle ϕ :

X → G is ergodic if the transformation T ϕ is ergodic on X × G for the measure µ × m G .
Recall that two cocycles ϕ and ψ over a dynamical system (X, µ, T ) are cohomologous with transfer function η, if there is a measurable map η : X → G such that2 

(2)

ϕ = ψ + T η -η.
ϕ is a µ-coboundary if it is cohomologous to 0.

Recurrence: When G is non compact, to deal with extensions with a non dissipative behavior, it is desirable that a recurrence property holds. A point x ∈ X is recurrent for the cocycle ϕ, if ϕ n (x) → ∞ when n tends to ∞. We say that ϕ is recurrent if a.e. x ∈ X is recurrent. If the cocycle is recurrent, then the map T ϕ is conservative for the invariant σ-finite measure µ × m G .

An integrable cocycle ϕ with values in R is recurrent if and only if ϕ dµ = 0 (cf. [START_REF] Schmidt | Lectures on cocycles of ergodic transformation groups[END_REF]). If ϕ is a recurrent cocycle, than every cocycle cohomologous to ϕ is recurrent.

Essential values, non regular cocycle.

First we recall the notion of essential values of a cocycle (cf. K. Schmidt [START_REF] Schmidt | Lectures on cocycles of ergodic transformation groups[END_REF], see also J. Aaronson [START_REF] Aaronson | An Introduction to Infinite Ergodic Theory[END_REF]).

Let ϕ be a cocycle with values in an abelian lcsc group G. If G is a non compact group, we add to G a point at ∞ with the natural notion of neighborhood.

Definition 1.1. An element a ∈ G∪{∞} is an essential value of the cocycle ϕ (over the system (X, µ, T )) if, for every neighborhood V (a) of a, for every measurable subset B of positive measure,

µ(B ∩ T -n B ∩ {x : ϕ n (x) ∈ V (a)} > 0, for some n ∈ Z. (3) 
We denote by E(ϕ) the set of essential values of the cocycle ϕ and by E(ϕ) = E(ϕ)∩G the set of finite essential values.

The set E(ϕ) is a closed subgroup of G, with E(ϕ) = G if and only if (X × G, µ ⊗ m, T ϕ ) is ergodic.
Two cohomologous cocycles have the same set of essential values. ϕ is a coboundary if and only if E(ϕ) = {0}. Definition 1.2. We say that the cocycle defined by ϕ is regular, if ϕ can be reduced by cohomology to an ergodic cocycle ψ with values in the closed subgroup E(ϕ):

ψ = ϕ + η -T η, (4) 
Let us recall some of the properties of regular cocycles. A cocycle ϕ is regular if and only if ϕ/E(ϕ) is a coboundary. A regular cocycle is recurrent. In the regular case there is a "nice" ergodic decomposition of the measure µ × m G for the skew map T ϕ : any T ϕ -invariant function can be written F (y -η(x)) for a function F which is invariant by translation by elements of E(ϕ), with η given by (4).

If the cocycle is non regular, then the measures µ x on X on which is based the ergodic decomposition of µ⊗m are infinite, singular with respect to the measure µ and there are uncountably many of them pairwise mutually singular (cf. K. Schmidt [START_REF] Schmidt | Lectures on cocycles of ergodic transformation groups[END_REF], see also [START_REF] Conze | On the ergodic decomposition for a cocycle[END_REF] for a complete description of the ergodic decomposition in the general case of non abelian lcsc groups G).

The following lemma is a simple tool which can be used to construct non regular cocycles.

Lemma 1.3. If ϕ is a Z-valued cocycle such that there exists s ∈ Q for which the multiplicative coboundary equation e 2πisϕ = ψ/T ψ has a measurable solution ψ, then E(ϕ) = {0}. If ϕ is not a coboundary, then E(ϕ) = {0, ∞} and the cocycle ϕ is non regular.

Proof. From the hypothesis we have ϕ = s -1 ζ + η -T η, where ζ has values in Z. The cocycle ϕ can be viewed as a real cocycle with values in Z, which is cohomologous to a cocycle with values in the closed subgroup s -1 Z, with s -1 ∈ Q.

In general, if a cocycle ϕ is cohomologous to ϕ 1 and to ϕ 2 , two functions with values respectively in closed subgroups with an intersection reduced to {0}, then

E(ϕ) = E(ϕ 1 ) ∩ E(ϕ 2 ) = {0}.

Cocycles and ergodicity in compact quotients

If G is compact, then there exist a measurable function η : X → G such that, for the cocycle ψ(x) = ϕ(x) + η(x) -η(T x) ∈ E(ϕ), the map T ψ is ergodic on X × E(ϕ). Therefore T ϕ is regular.

Ergodicity implies ergodicity for all compact quotients X × G/G 0 , where G 0 is any cocompact closed subgroup of G. The converse does not hold in general.

A question is to find examples of skew products which are non ergodic on X × G, but ergodic on all compact quotients X × G/G 0 .

There are example of skew products for which all compact quotients are ergodic. For instance, the directional billiard in the plane with periodic rectangular obstacles yields such examples: for almost every direction the compact quotients of the directional billiard are ergodic; nevertheless, due to recent results of K. Frączek and C. Ulcigrai ( [START_REF] Frączek | Non-ergodic Z-periodic billiard and infinite translation surfaces[END_REF]), it is known that the billiard map is non ergodic and even non regular for a.e. parameters. This provides examples, but we would like to construct more elementary explicit examples (see Subsection 3.1).

Remark 1. Let ϕ be a cocycle with values in

G = R d × Z d ′ .
If all of its compact quotients are ergodic, then ϕ is ergodic or non regular. Indeed, if ϕ is regular, then ϕ/E(ϕ) is a coboundary. Hence, if the compact quotients are ergodic for ϕ, the compact quotients of G/E(ϕ) are trivial. This implies E(ϕ) = G and ϕ is ergodic. The construction of skew maps can be extended to group actions generalizing the action of Z generated by iteration of a single automorphism. We consider the case of Z 2 -actions.

Let T 1 , T 2 be two commuting measure preserving invertible transformations on (X, µ). They define a Z 2 -action on (X, µ). A G-valued function ϕ(n 1 , n 2 , x) on Z 2 × X is a cocycle for this action, if it satisfies the cocycle relation:

ϕ(n 1 + n ′ 1 , n 2 + n ′ 2 , x) = ϕ(n 1 , n 2 , x) + ϕ(n ′ 1 , n ′ 2 , T n 1 1 T n 2 2 x), ∀ n 1 , n ′ 1 , n 2 , n ′ 2 ∈ Z.
Let ϕ i , i = 1, 2, be two measurable G-valued functions on X and consider the skew products Ti : (x, y) -→ (T i x, y + ϕ i (x)) on X × R. Do they generate a Z 2 -action which extends the Z 2 -action on (X, µ)?

The maps T1 and T2 commute if and only if the following coboundary equation is satisfied

ϕ 1 -T 2 ϕ 1 = ϕ 2 -T 1 ϕ 2 . (5)
If ( 5) is satisfied, then the composed transformation T n 2

2

T n 1 1 reads:

T n 2 2 T n 1 1 (x, y) = (T n 2 2 T n 1 1 x, y + ϕ(n 1 , n 2 , x)), where ϕ(1, 0, x) = ϕ 1 (x), ϕ(0, 1, x) = ϕ 2 (x), ϕ(n 1 , n 2 , x) satisfies the cocycle relation and (n 1 , n 2 ) → T n 2 2
T n 1 1 defines a measure preserving action of Z 2 on X × G. Therefore it is equivalent to find G-valued Z 2 -cocycles (and the corresponding skew products) or to find pairs (ϕ 1 , ϕ 2 ) satisfying [START_REF] Conze | Equirépartition et ergodicité de transformations cylindriques[END_REF].

Clearly if ϕ 1 = v -T 1 v for some measurable function v, then Equation ( 5) holds with ϕ 2 = v -T 2 v. A question is the construction of a pair (ϕ 1 , ϕ 2 ) which satisfies [START_REF] Conze | Equirépartition et ergodicité de transformations cylindriques[END_REF] but are not of this form. In other words, can we construct solutions of (5) which are not coboundaries?

The answer depends on the choice of the transformations and on the class to which the functions ϕ 1 , ϕ 2 belong. For instance, there is a "rigidity" for the Z 2 -shift on {0, 1} Z 2 endowed with the product measure. When the functions are locally constant, the only solutions in that case are the trivial ones (cf. K. Schmidt [START_REF] Schmidt | The cohomology of higher-dimensional shifts of finite type[END_REF], O. Jenkinson [START_REF] Jenkinson | Strong cocycle triviality for Z 2 -subshifts[END_REF]).

In the case of rotations on T 1 , by using Fourier analysis, we will give below explicit examples of non degenerate solutions of (5) in L 2 (T 1 ) (Theorem 2.2) and apply it to the construction of non trivial centralizers, a notion that we recall now.

Centralizer of the cylinder product.

A problem related to the construction of Z 2 -cocycles is the study of the centralizer.

In what follows3 by centralizer of a cylinder map T1 : (x, y) → (T 1 x, y + ϕ 1 ), we mean the group C( T1 ) of measure preserving automorphisms of (X × G, µ × m G ) which commute with T1 . It contains the powers of the map and the translations on the fibers. The skew products of the form (x, y) → (T 2 x, y + ϕ 2 ) with T 2 commuting with T 1 and (ϕ 1 , ϕ 2 ) satisfying ( 5) are elements of the group C( T1 ).

Case of an irrational rotation.

In this subsection, we take the dynamical system (X, µ, T ) in the class of rotations on T 1 (which could be replaced by a compact abelian group K). For simplicity we take cocycles with values in R. About the centralizer and related questions, see [START_REF] Kwiatkowski | Factors of ergodic group extensions of rotations[END_REF] (for G a compact group), [START_REF] Lemańczyk | Cohomology groups, multipliers and factors in ergodic theory[END_REF], [START_REF] Aaronson | Koksma's inequality and group extensions of Kronecker transformations[END_REF], [START_REF] Aaronson | A cut salad of cocycles. Dedicated to the memory of Wieslaw Szlenk[END_REF], [START_REF] Lemańczyk | Semisimple extensions of irrational rotations[END_REF].

In the sequel α will be an irrational number and T α the ergodic rotation x → x + α mod 1 on X = T 1 . For a measurable function ϕ : X → R, we consider the skew product T α,ϕ : (x, y) → (x + α, y + ϕ(x)).

In this case, according [START_REF] Conze | Equirépartition et ergodicité de transformations cylindriques[END_REF], the automorphisms given by skew products of the form T γ,ψ : (x, y) → (x + γ, y + ψ), for γ ∈ T 1 and a measurable function ψ with (ϕ, ψ) satisfying ϕ -T γ ϕ = ψ -T α ψ are elements of the group C(T α,ϕ ). A problem is to find all elements in C(T α,ϕ ).

The following result is a special case of Proposition 1.1 in [START_REF] Aaronson | Koksma's inequality and group extensions of Kronecker transformations[END_REF].

Theorem 1.4. (cf. [START_REF] Aaronson | Koksma's inequality and group extensions of Kronecker transformations[END_REF]) Suppose that the cocycle generated by ϕ over the rotation T α is ergodic. Then any automorphism of (X × R, µ × dy) commuting with T α,ϕ has the form (x, y) → (x + γ, εy

+ ψ(x)) where γ ∈ T 1 , ε is a constant in ±1 and ψ : X → R is a measurable function such that εϕ -T γ ϕ = ψ -T α ψ. (6)
Proof. We give a sketch of the proof. The measure theoretic details are omitted. Let T2 be an automorphism which commutes with T1 := T α,ϕ . With the notation u(x, y) = e 2πix , we deduce from the commutation T1 T2 = T2 T1 , that T2 u is an eigenfunction for T1 with eigenvalue e 2πiα . By ergodicity of T1 , this implies that u • T2 = λu, where λ is a complex number of modulus 1.

It follows that T2 leaves invariant the rotation factor of T1 and that there are γ ∈ R and a measurable map (x, y) → V (x, y) from X × R to R such that T2 can be represented as (x, y) → T2 (x, y) = (x + γ, V (x, y)).

The commutation of the maps T1 , T2 implies:

V (x + α, y + ϕ(x)) = V (x, y) + ϕ(x + γ). (7) 
Let us define u z (x, y) := V (x, y) -V (x, y + z), for x ∈ X, y, z ∈ R. Using [START_REF] Conze | Recurrence, ergodicity and invariant measures for cocycles over a rotation[END_REF], we obtain:

u z (x + α, y + ϕ(x)) = V (x + α, y + ϕ(x)) -V (x + α, y + z + ϕ(x)) = V (x, y) + ϕ(x + γ) -[V (x, y + z) + ϕ(x + γ)] = V (x, y) -V (x, y + z) = u z (x, y).
Therefore u z is T1 -invariant, hence, by ergodicity of T α,ϕ , for every z, u z (x, y) is a.e. equal to a constant c(z).

Since u z satisfies u z 1 +z 2 (x, y) = u z 1 (x, y)+u z 2 (x, y +z 1 ), the previous relation implies c(z 1 + z 2 ) = c(z 1 ) + c(z 2 ); hence, since c is measurable, c(z) = λz for a constant λ.
So we have for every z, for a.e. (x, y) the relation V (x, y + z) = V (x, y) -λz. By Fubini it follows that for a.e. y, for a.e. (x, z): V (x, y + z) = V (x, y) -λz.

Therefore, for some y 1 ∈ R we have V (x, z + y 1 ) = V (x, y 1 ) -λz; hence, setting ψ(x) = V (x, y 1 ) + λy 1 , we obtain for a.e. (x, z): V (x, z) = ψ(x) -λz. Since the Lebesgue measure is preserved on R by the map T2 , necessarily λ = +1 or λ = -1.

Finally, the transformation T2 has the form (x, y) → (x + γ, y + ψ(x)) or (x, y) → (x + γ, -y + ψ(x)).

Remark that the analogous result with R replaced by Z holds for a cocycle with values in Z which is ergodic for the action on X × Z.

Groups associated to a cocycle >From Equation ( 6) it follows that ϕ -T 2γ ϕ is coboundary:

ϕ -T 2γ ϕ = (εψ + T γ ψ) -T α (εψ + T γ ψ). ( 8 
)
Now we define several groups related to the centralizer of T α,ϕ :

Γ := {γ : for ε = +1 or ε = -1, εϕ -T γ ϕ is a coboundary for T α }, Γ 0 := {γ : ϕ -T γ ϕ is a coboundary ψ γ -T α ψ γ for T α }.
By [START_REF] Conze | On the ergodic decomposition for a cocycle[END_REF] we have 2Γ ⊂ Γ 0 ⊂ Γ. For γ ∈ Γ 0 , ψ γ is unique up to a constant. The family {ψ γ , γ ∈ Γ 0 } satisfies the cocycle property on Γ 0 × X (up to a constant).

For p ∈ [1, ∞] we define Γ p := {γ ∈ Γ 0 : ψ γ ∈ L p (µ)}, C p (T α,ϕ ) = {T γ,ψγ , γ ∈ Γ p }. (9) 
If γ ∈ Γ 1 , we can choose ψ γ with zero mean. The group C 1 (T α,ϕ ) is abelian. The cocycle property is satisfied by {ψ γ , γ ∈ Γ 1 }: for every γ, γ ′ in Γ 1 , we have the relation:

ψ γ ′ +γ = ψ γ + ψ γ ′ (. + γ) = ψ γ ′ + ψ(. + γ ′ ).

A general result on coboundaries for rotations

Now we show that Γ 0 is a small group unless the cocycle ϕ is a coboundary, which is the degenerate case.

Let us consider the general case of rotations on a compact abelian group K. For γ ∈ K, T γ denotes the rotation (translation) by γ on K. Let T α be a given ergodic rotation on K defined by an element α ∈ K.

The following proposition is an easy consequence of Theorem 6.2 in [START_REF] Moore | Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson[END_REF] and of the proposition p. 178 in ( [START_REF] Lesigne | Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales[END_REF]) (Lemma 1.6 below). Proposition 1.5. Let ϕ be a measurable function on K. If for every γ in a set of positive measure in K there exists a measurable function ψ γ such that ϕ -T γ ϕ = ψ γ -T α ψ γ , then ϕ is an additive quasi-coboundary:

ϕ = c + T α h -h,
for a measurable function h and a constant c. If ϕ is integrable, then c = ϕ µ. Lemma 1.6. ( [START_REF] Lesigne | Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales[END_REF]) Let ϕ be a measurable real function on K. If e 2πi(ϕ-Tγ ϕ) is a T α -coboundary for every γ in a subset of positive measure in K, then there are a measurable function ζ s of modulus 1 and λ s of modulus 1 such that: e 2πisϕ = λ s T α ζ s /ζ s .

Coboundary equations for irrational rotations

This section is devoted to the coboundary equations over irrational rotations, either linear equations (with Fourier's series methods) or multiplicative equation (Guenais-Parreau's results). The following step functions are used: Notation Let β be a fixed real number. For any real number γ, with the notation T γ for the translation x → x + γ mod 1, we will consider the cocycles generated over an irrational rotation T α by the step functions

ϕ β = 1 [0,β] -β, ϕ β,γ := 1 [0,β] -1 [0,β] (. + γ) = ϕ β -T γ ϕ β . (10) 2.1. Classical results, expansion in basis q n α.
First of all we recall classical facts on continued fractions and on expansion of a real β in basis "q n α" (Ostrowski expansion).

In the following α ∈]0, 1[ is an irrational number and [0; a 1 , ..., a n , ...] is its continued fraction expansion. Let (p n /q n ) n≥0 be the sequence of its convergents. Recall that p -1 = 1, p 0 = 0, q -1 = 0, q 0 = 1 and, for n ≥ 1 : [START_REF] Guénais | Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escaliers[END_REF] p n = a n p n-1 + p n-2 , q n = a n q n-1 + q n-2 , (-1) n = p n-1 q n -p n q n-1 .

Notations For u ∈ R, put [u] for its integral part and u := inf n∈Z |u -n|.

For n ≥ 0 we have q n α = (-1) n (q n α -p n ) and the following inequalities (cf. [START_REF] Hardy | An introduction to the theory of numbers[END_REF]):

1 = q n q n+1 α + q n+1 q n α , 1 2 1 q n+1 ≤ 1 q n+1 + q n ≤ q n α ≤ 1 q n+1 = 1 a n+1 q n + q n-1 , (12) 
1 2 1 q n+1 ≤ q n α ≤ kα , for 1 ≤ k < q n+1 . ( 13 
)
An irrational number α = [0; a 1 , ..., a n , ...] has bounded partial quotients (abbreviated in "is of bounded type") if the sequence (a n ) is bounded.

Expansion in basis q n α (Ostrowski expansion)

For β ∈ T 1 we consider the following representation introduced by Ostrowski (1921)

β = ∞ 1 b j (β) q j α mod 1, (14) 
where (b j (β)) j≥0 is a sequence in Z.

Any β ∈ T 1 has such an expansion. If j≥1 |b j (β)| a j+1 < ∞, the representation is unique up to a finite number of terms. It is shown in [START_REF] Guénais | Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escaliers[END_REF] that this condition is equivalent to q j β < ∞. For r ≥ 1, we call H r (α) the subgroup

H r (α) := β = ∞ 1 b j (β) q j α mod 1 : j≥1 |b j (β)| r a j+1 < ∞}.
2.2. Linear and multiplicative equations for ϕ β and ϕ β,γ .

2.2.1. Fourier conditions.

For ϕ(x) = n∈Z ϕ n e 2πinx in L 1 (T) with ϕ dµ = 0, if the coboundary equation ϕ = h -T α h has a solution h ∈ L 1 (T), the Fourier coefficients of h are h n = ϕn 1-e 2πinα . Therefore the necessary and sufficient condition for the existence of a L 2 solution,

for ϕ ∈ L 2 (T) is n∈Z\{0} |ϕn| 2 nα 2 < +∞.
As it is well known, under diophantine assumptions on α and regularity of the function ϕ, the coboundary equations can be solved. We recall briefly this fact.

The type of an irrational number

α is η ≥ 1 such that inf k =0 [k η-ε kα ] = 0, inf k =0 [k η+ε kα ] > 0, ∀ε > 0. (15) 
Recall that the type of a.e. α is 1. From a result of V. I. Arnold ([4]) (see also M. Herman ([13])), we have: 1-e 2πinα e 2πinx is a well defined continuous function for every γ and the pairs (α, ϕ), (γ, ϕ γ ) define commuting skew products.

Clearly this is a degenerate coboundary case in accordance with Proposition 1.5, since we have a solution for every γ. This is a motivation to consider step functions like the function ϕ β,γ introduced above.

2.2.2.

The linear coboundary equation, a sufficient condition for ϕ β,γ . Now we give sufficient conditions in case of the step function ϕ β,γ for the existence of a solution of the linear coboundary equation [START_REF] Conze | Equirépartition et ergodicité de transformations cylindriques[END_REF].

Recall that the cocycle ϕ β is not a coboundary for β ∈ Zα + Z. This follows from the fact that e 2πiϕ β = e -2πiβ , hence e -2πiβ is an eigenvalue of the rotation by if ϕ β is a linear coboundary (cf. [START_REF] Petersen | On a series of cosecants related to a problem in ergodic theory[END_REF]). A stronger result is that the cocycle defined by ϕ β over the rotation T α is ergodic if β ∈ Qα + Q (cf. Oren [START_REF] Oren | Ergodicity of cylinder flows arising from irregularities of distribution[END_REF]).

The Fourier coefficients of ϕ

β,γ = 1 [0,β] -1 [γ,β+γ] are 1
2πin (e 2πinβ -1)(e 2πinγ -1). The condition for ϕ β,γ to be a coboundary with a transfer function in L 2 (T 1 ), i.e., such that the functional equation ϕ

β,γ = T α h -h has a solution h in L 2 , is n =0 1 n 2 nβ 2 nγ 2 nα 2 < ∞. ( 16 
)
For the cocycle ϕ β,γ the following result is proved in Appendix:

Theorem 2.2. If β ∈ T 1 is in H 4 (α) then we have n =0 1 n 2 nβ 4 nα 2 < ∞.
If β, γ are in H 4 (α), then ( 16) holds and there is ψ β,γ in L 2 (T 1 ) solution of

1 [0,β] -T γ 1 [0,β] = ψ β,γ -T α ψ β,γ . (17) 
Therefore, if α is not of bounded type (i.e., has unbounded partial quotients), there is an uncountable set of pairs of real numbers β and γ such that ϕ β,γ :

= 1 [0,β] - 1 [0,β] (. + γ) is a coboundary ψ -T α ψ for T α with ψ in L 2 .
Remark that by Shapiro's result (cf. [START_REF] Shapiro | Irregularities of distribution in dynamical systems. Recent advances in topological dynamics[END_REF]) on the difference of two indicators of intervals, ψ is not in L ∞ , unless β and γ are in Zα + Z.

Multiplicative equation: a necessary and sufficient condition.

Now we consider the multiplicative functional equation for ϕ β : [START_REF] Lemanczyk | Ergodic properties of real cocycles and pseudohomogeneous Banach spaces[END_REF] e 2iπsϕ β = e 2iπt T α f f , f is a measurable function which can be assumed of modulus 1.

Equation [START_REF] Lemanczyk | Ergodic properties of real cocycles and pseudohomogeneous Banach spaces[END_REF] was studied by W. Veech [START_REF] Veech | Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2[END_REF], then by K. Merril [START_REF] Merrill | Cohomologie of step functions under irrational rotations[END_REF] who gave a sufficient condition on (β, s, t) for the existence of a solution. M. Guénais and F. Parreau have shown that this condition is sufficient and they have extended it to more general step functions: [START_REF] Guénais | Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escaliers[END_REF], Theorems 1 and 2) a) Equation ( 18) has a measurable solution f for the parameters (β, s, t) if and only if there is a sequence of integers (b n ) such that:

Theorem 2.3. ([
β = n≥0 b n q n α mod 1, with n≥0 |b n | a n+1 < ∞, n≥0 b n s 2 < ∞, t = kα - n≥0 [b n s] q n α mod 1, for an integer k.
b) Let ϕ : T 1 → R be a step function with integral 0 and jumps -s j at distinct points (β j , 0 ≤ j ≤ m), m ≥ 1, and let t ∈ T. Suppose that there is a partition P of {0, .., m} such that for every J ∈ P and β J ∈ {β j , j ∈ J} the following conditions are satisfied:

(i) j∈J s j ∈ Z; (ii) for every j ∈ J, there is a sequence of integers (b j n ) n such that

β j = β J + n≥0 b j n q n α mod 1, with n≥0 |b j n | a n+1 < +∞, n≥0 j∈J b j n s j 2 < +∞;
(iii) t = kα -J∈P t J , with k ∈ Z and

t J = β J j∈J s j + n≥0 j∈J b j n s j q n α mod 1.
Then there is a measurable function f of modulus 1 solution of

(19) e 2iπϕ = e 2iπt T α f /f.
Conversely, when j∈J s j / ∈ Z for every proper non empty subset J of {0, .., m}, these conditions are necessary for the existence of a measurable solution of (19).

Remark 2. In the situation of Theorem 2.2, the multiplicative equation for sϕ β,γ has a solution for every s ∈ R. Observe that the necessary condition of Theorem 2.3 b) does not apply to sϕ β,γ (no condition on s). Indeed the set of discontinuities of ϕ β,γ is J = {0, β, -γ, β -γ} with respective jumps: +1, -1, +1, -1. There is a decomposition of J into J 1 = {0, β}, J 2 = {-γ, β -γ} and the sum of jumps is 0 for each of these subsets.

Applications

Non ergodic cocycles with ergodic compact quotients.

A first application of the results of Section 2 is the construction of simple examples of non regular cocycles with ergodicity of all compact quotients. By using the sufficient condition of Theorem 2.3 a), we construct non regular (hence non ergodic) Z-valued cocycles given by the step cocycles ϕ β,γ defined in [START_REF] Frączek | Non-ergodic Z-periodic billiard and infinite translation surfaces[END_REF] over rotations such that all compact quotients in X × Z/aZ are ergodic (see also [START_REF] Conze | Recurrence, ergodicity and invariant measures for cocycles over a rotation[END_REF], [START_REF] Conze | On multiple ergodicity of affine cocycles over irrational rotations[END_REF]).

Let us recall that for every irrational number α, for almost every (β, γ) the cocycle ϕ β,γ is ergodic 4 . Therefore clearly we are interested here in special, non generic, sets of values of (β, γ). Theorem 3.1. If α is not of bounded type, there is β in H 1 (α) such that for a.e. γ: a) the cocycle ϕ β,γ is non regular; b) all compact quotients T α,ϕ β,γ mod a : (x, y mod a) → (x + α, y + ϕ β,γ (x) mod a) are ergodic.

Proof. a) If α is not of bounded type, by Theorem 2.3 a) there is a non-countable set of values of β such that, for a non-countable set of values of s, there are a number λ of modulus 1 and a measurable function f of modulus 1 such that e 2πisϕ β = λ Tαf f . We can take β ∈ αZ + Z and s ∈ Q. For this choice of β and of s, e 2πis(ϕ β -Tγ ϕ β ) is a multiplicative coboundary for every γ.

On the other hand, if 1 [0,β] -T γ 1 [0,β] is an additive coboundary for every γ in a set of positive measure, then by Proposition 1.5 this implies that 1 [0,β] -β is an additive coboundary which is not the case (cf. 2.2.2). Therefore for a.e. γ ∈ R, ϕ β,γ is not an additive coboundary. For such a value of γ, Lemma 1.3 shows that E(ϕ β,γ ) = {0, ∞} and ϕ β,γ is non regular. b) Now we construct in H 1 (α) a more restricted set of β such that, for a.e. γ, the action of T α,ϕ β,γ on the compact quotients X × Z/aZ are ergodic for all a ∈ Z -{0}.

This done is two steps: if α is of non bounded type, we construct β ∈ H 1 (α) such that {s :

n b n (β)s 2 < ∞} ∩ Q = Z, (20) 
then show that this implies the desired property 1) There exists a strictly increasing sequence of integers (j n ) and a sequence of integers (d n ≥ 1) such that, if one defines the subsequence ) 2 < ∞ insures the existence of an uncountable set of values of s such that n b n s 2 < ∞. In particular, there is s ∈ Q for which this condition holds.

Suppose that

u v , with u, v coprime integers, satisfies n b n u v 2 < ∞.
For n big enough, v divides ub n . As b jn and b j n+1 are mutually coprime (by the choice of initial values and Equation ( 21)), we have v = ±1.

2) Let β such that b n (β) = b n . We have shown above that [START_REF] Merrill | Cohomologie of step functions under irrational rotations[END_REF] holds and the non regularity of ϕ β,γ for almost all γ. Now we prove that, for a.e. γ, all compact quotients of T α,ϕ β,γ are ergodic.

Let us suppose on the contrary that there is a set D of positive measure such that, for every γ ∈ D, there is an integer a such that T α,ϕ β,γ mod a is non ergodic.

Using Fourier series representation of T α,ϕ β,γ -invariant a-periodic functions, this would imply the following: there are integers a and k, with a, k coprime, and a set D a,k of positive measure such that for every γ ∈ D a,k there exists a measurable function f γ satisfying:

(22) e -2iπ k a (ϕ β -Tγ ϕ β )(x) = f γ (x)/f γ (x + α).
Lemma 1.6 implies the existence of t and h such that

e -2iπ k a ϕ β (x) = e 2iπt h(x)/h(x + α).
As the conditions in Theorem 2.3 a) are necessary, this implies that b n k a

2 < ∞, contrary to [START_REF] Merrill | Cohomologie of step functions under irrational rotations[END_REF].

Remark that, by strengthening the conditions in the construction of β, we can also find β ∈ H 4 (α) with the previous properties. For such a β, by Theorem 2.2 there is an uncountable set of values of γ for which ϕ β,γ is a coboundary.

Examples of non trivial and trivial centralizer.

The results of Subsection 1.4 lead to the following questions for a given rotation T α and a function ϕ: -for which γ ∈ T 1 is there a solution to the commutation equation ϕ -

T γ ϕ = ψ -T α ψ?
-what is the centralizer of T α,ϕ ?

In this subsection, from Theorem 2.2 we obtain that the centralizer of T α,ϕ β is non countable for β ∈ H 4 (α). Then we show that the centralizer C(T α,ϕ β ) is also non trivial when β ∈ H 1 (α). In a second part, we investigate a property of "rigidity" for α of bounded type, with an example of a small centralizer.

Case of a non trivial centralizer.

Let α be an irrational number which is not of bounded type and β a real number.

Let us consider ϕ

= ϕ β = 1 [0,β] -β.
If T α,ϕ β is ergodic, by Theorem 1.4 and the commutation relation [START_REF] Conze | On the ergodic decomposition for a cocycle[END_REF], the square of the elements of C(T α,ϕ β ) are of the form T γ,ψ with ψ a measurable function and γ such that

1 [0,β] (.) -1 [0,β] (. + 2γ) = ψ -T α ψ.
By Theorem 2.2, if β is in H 4 (α), the group Γ 2 defined in Subsection 1.3.2 contains the group H 4 (α), which is a non countable group if α is not of bounded type. Now we would like to weaken the condition on β and still get a non trivial centralizer. It is interesting to investigate the properties of the cocycle ϕ β,β or more generally ϕ = a1 [0,β] -1 [0,aβ] with a a positive integer. This is a special situation where one can conclude that the cocycle is a coboundary by using the result of Guénais and Parreau mentioned above.

Proposition 3.2. If a is a positive integer, the cocycle ϕ = a1 [0,β] -1 [0,aβ] is a coboundary if and only if β is in H 1 (α).
Proof. With the notation of Theorem 2.3, the discontinuities of ϕ = a1 [0,β] -1 [0,aβ] are at β 0 = 0, β 1 = β, β 2 = γ = aβ, with jumps respectively a -1, -a, 1, we have m = 2 and the partition P is the trivial partition with the single atom J = {0, 1, 2}. We have β J = 0, j∈J s j = 0.

Suppose that β ∈ H 1 (α) with an expansion in basis (q n α) given by

β = n≥0 b n q n α mod 1, with n≥0 |b n | a n+1 < +∞, b n ∈ Z. (23) 
We can take b

0 n = 0, b 1 n = b n , b 2 n = ab n ,
so that j∈J b j n s j = ab n -ab n = 0. For every real s the multiplicative equation e 2πisϕ = T α f /f has a solution. By using Theorem 6.2 in [START_REF] Moore | Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson[END_REF], we conclude that ϕ is a measurable coboundary (another proof based on the tightness of the cocycle (that is, the tightness of the family (ϕ n , n ≥ 0)) can also be given).

Conversely, if ϕ is a measurable coboundary, then e 2πisϕ = T α f /f has a solution for every real s, and this implies that β has an expansion like in (23) (Theorem 2.3 b), necessary condition).

Under the assumption β ∈ H 1 (α) which is weaker than the assumption of Theorem 2.2, Proposition 3.2 implies:

Corollary 3.3. If β ∈ H 1 (α), the centralizer C(T α,ϕ β ) contains a non trivial element T β,ψ β , where ψ β is a measurable function solution of 1 [0,β] -1 [β,2β] = ψ β -T α ψ β .
Remark 3. We have seen in the previous considerations that, under some assumption on the expansion of β in basis q n α, the cocycle ϕ β,β = 1 [0,β] -T β 1 [0,β] is a coboundary for the rotation by α, with a transfer function in a certain space:

(i) if ϕ β,β is a coboundary in the space of bounded functions, then β ∈ Zα + Z (cf. Shapiro's result); (ii) if b 4 k /a k+1 < ∞, then ϕ β,β is a coboundary with a transfer function in L 2 (see Theorem 2.2); (iii) if |b k |/a k+1 < ∞, then ϕ β,β
is a coboundary with a measurable transfer function. (Proposition 3.2). This is also necessary by Theorem 2.3 b).

Example of trivial centralizer.

Now, for α of bounded type, we show the triviality of the centralizer in the special case β = 1 2 . Theorem 3.4. Let α be of bounded type. For β = 1 2 , the centralizer of T α,ϕ β (acting on X × 1 2 Z) reduces to the translations on the fibers (x, y) → (x, y +λ), for a constant λ ∈ R, the map (x, y) → (x + 1 2 , -y) and the powers of T α,ϕ β .

Proof.

The cocycle ϕ = ϕ 1 2 , 1 2 = 2ϕ 1 2
is known to be ergodic as a cocycle with values in Z, for every irrational rotation ( [START_REF] Conze | Ergodicité d'un flot cylindrique[END_REF]).

According to Theorem 1.4 and the commutation relation [START_REF] Conze | Ergodicité d'un flot cylindrique[END_REF], we consider the cocycle u γ := εϕ -T γ ϕ, where ε is the constant +1 or -1. Suppose that α is of bounded type and γ ∈ Zα + Z.

Assume that γ = 1 2 mod 1, so that u γ has effective discontinuities for x = 0, 1 2 , -γ, 1 2γ.

By Lemma 2.3 and Theorem 3.8 in [START_REF] Conze | On multiple ergodicity of affine cocycles over irrational rotations[END_REF] to which we refer for more details, the cocycle u γ satisfies a property of separation of its discontinuities along a subsequence of denominators of α and therefore its discontinuities belong to the group of its finite essential values. This implies that u γ has a non trivial essential value, hence is not a coboundary.

The case γ = 1 2 mod 1 corresponds to the special map (x, y) → (x + 1 2 , -y) which yields an element in the centralizer due to the relation satisfied here: -ϕ(x) = ϕ(x + 1 2 ). It remains to examine the case γ = pα mod 1, with p = 0 in Z.

Suppose that ε = -1. Then ϕ + T pα ϕ is a T α -coboundary, hence also ϕ, since ϕ -T pα ϕ = (ϕ + ... + T (p-1)α ϕ) -T α (ϕ + ... + T (p-1)α ϕ) is a coboundary. Since ϕ is not a coboundary, necessarily ε = +1.

For ε = +1 and γ = pα + ℓ, we find the powers of the map T α,ϕ β .

Example of a non trivial conjugacy in a group family.

Another application is a conjugacy problem for a family of closed subgroup over a dynamical system.

We consider the following data: a dynamical system (X, µ, T ), a measurable family (H x ) x∈X of closed subgroups of a (non commutative) topological group G and a measurable function Φ : X → G such that the following conjugacy equation holds: [START_REF] Schmidt | Lectures on cocycles of ergodic transformation groups[END_REF] H T x = Φ(x) H x (Φ(x)) -1 , for µ χ -a.e. x ∈ X.

We would like to give a simple example of construction of such a family which is not conjugate to a fixed closed subgroup of G (cf. [START_REF] Conze | On the ergodic decomposition for a cocycle[END_REF]), i.e., such that there is no subgroup H ⊂ G and no measurable function ζ : X → G solution of the equation ( 25)

H x = ζ(x) -1 Hζ(x).
Let θ be a fixed irrational number and let G be the solvable group obtained as the semi-direct product of R and C 2 , with the composition law:

(t, z 1 , z 2 ) * (t ′ , z ′ 1 , z ′ 2 ) = (t + t ′ , z 1 + e 2πit z ′ 1 , z 2 + e 2πθit z ′ 2 ).
The conjugate of (0, z 1 , z 2 ) by a = (s, v 1 , v 2 ) in G is:

(26) (s, v 1 , v 2 )(0, z 1 , z 2 )(s, v 1 , v 2 ) -1 = (0, e 2πis z 1 , e 2πθis z 2 ).
Consider the dynamical system defined by an irrational rotation T : x → x+α mod 1 on X = T 1 . Let Φ : X → G be the cocycle defined by Φ(x) = (ϕ(x), 0, 0), where ϕ has its values in Z.

Let H x := {(0, vz 1 , ve 

θ ϕ(x) + ψ(x) = ψ(T x) mod 1.
Let us take ϕ = ϕ β,γ = 1 [0,β] -1 [0,β] (. + γ). We have seen that, for every α which is not of bounded type, there are real numbers β and γ for which the function ϕ β,γ is not a coboundary and e 2πiθϕ β,γ is a multiplicative coboundary for some irrational values of θ.

It means that for these values of the parameters, there is ψ such that ( 27) is satisfied Proposition 3.5. For these choices of β, θ, ϕ = ϕ β,γ and ψ, there is no subgroup H such that the equation ( 25) has a measurable solution ζ.

Proof. Suppose that there are a fixed subgroup H and a measurable function ζ : X → G solution of [START_REF] Schmidt | The cohomology of higher-dimensional shifts of finite type[END_REF]. According to [START_REF] Shapiro | Irregularities of distribution in dynamical systems. Recent advances in topological dynamics[END_REF], this is equivalent to the existence of a function ρ defined on X such that the set {(0, ve 2πiρ(x) z 1 , ve 2πi(θρ(x)+ψ(x)) z 2 ), v ∈ R} does not depend on x. This implies that ρ and ψ + θρ have a fixed value mod 1. Therefore ρ(x) -ρ(T x) ∈ Z, θ(ϕ(x) -ρ(x) + ρ(T x)) = θϕ(x) + ψ(x) -ψ(T x) and according to [START_REF] Veech | Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2[END_REF] the common value mod 1 is 0.

As ϕ has integral values and θ is irrational, it follows that ϕ = T ρ -ρ, contrary to the fact that ϕ is not a coboundary.

Appendix: proof of Theorem 2.2

For the proof of Theorem 2.2 we need some preliminary results. In what follows, C will denote a generic constant which may change from a line to the other.

Bounds for q

n β Let β ∈ [0, 1] be such that β = ∞ 1 b i q i α mod 1, with ∞ 1 |b i | a i+1 = C 1 < ∞. (28) 
In the following computations, we assume that there is infinitely many i's with b i = 0. We can assume b i ≥ 0.

The quantities q n β and |b n |/a n+1 are of the same order. For all r ≥ 1 such that b r = 0, the following upper bounds hold:

r j=1 b j q j ≤ q r (b r + b r-1 a r + b r-2 a r a r-1 + ... + b 1 a r a r-1 ...a 2 ) ≤ q r (b r + C 1 ) ≤ (C 1 + 1)b r q r , ∞ j=r b j q j α ≤ b r q r+1 + b r+1 q r+2 + ... ≤ 1 q r+1 (b r + b r+1 a r+2 + b r+2 a r+2 a r+3 + ...) ≤ 1 q r+1 (b r + C 1 ) ≤ (C 1 + 1) b r q r+1 .
For n ≥ 1, let ℓ(n) be the greatest index i ≤ n -1 such that b i = 0, and m(n) the smallest index i ≥ n such that b i = 0. For all r, k ≥ 1, we have

kβ = ∞ 1 b i q i kα ≤ min(1, 2 max( kα r-1 1 b i q i , k ∞ r b i q i α )); hence with C = 2(C 1 + 1): kβ ≤ min(1, C max( kα b ℓ(n) q ℓ(n) , k b m(n) q m(n)+1 )), ∀n, k ≥ 1. (29) Observe that since b ℓ(n) is non zero integer, n 1 a ℓ(n)+1 ≤ n |b ℓ(n) | a ℓ(n)+1 < C 1 . (30) 
We will use also that if s is an integer ≥ 1, then

j b s j a j+1 < +∞ ⇒ n b s ℓ(n) q ℓ(n) q ℓ(n)+1 < +∞.
Denjoy-Koksma inequality (cf. [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF])

We denote by V (f ) the variation of a BV (bounded variation) function f on X = R/Z, for instance a step function with a finite number of discontinuities. If p/q is a irreducible fraction such that α -p/q < 1/q 2 , then for every x ∈ X the following inequality holds:

| q-1 ℓ=0 f (x + ℓα) -q f dy| ≤ V (f ). (31) Let S n f = n-1
k=0 T k α f be the Birkhoff sums of f for the rotation T α . Using Inequality (31) implies for the denominators q n of α:

S qn f ∞ ≤ |µ(f )| q n + V (f ), ∀n ∈ N. (32) Lemma 4.1. If f is a nonnegative BV function, we have, ∞ k=qn f (kα) k 2 ≤ 2( µ(f ) q n + V (f ) q 2 n ), ∀n ≥ 1. (33) Proof. The inequality (32) implies ∞ k=qn f (kα) k 2 ≤ ∞ j=1 1 (jq n ) 2 qn-1 p=0 f ((jq n + p)α) ≤ 1 q 2 n ( ∞ j=1 1 j 2 ) (µ(f ) q n + V (f )) = 2( µ(f ) q n + V (f ) q 2 n ).
For all p ≥ 1, by (33) applied with f

(x) = 1 x 2 1 [ 1 p , 1 2 ] (|x|), then applied with f (x) = 1 [-1 p , 1 p ] (x), we get {k≥qn, kα ≥1/p} 1 k 2 1 kα 2 ≤ C( p q n + p 2 q 2 n ), (34) {k≥qn 
, kα ≤1/p} 1 k 2 ≤ C( 1 q n p + 1 q 2 n ). (35) 
On the other hand, we have, from (31): Observe that q n ≥ q ℓ(n)+1 > a ℓ(n)+1 q ℓ(n) , since ℓ(n) + 1 ≤ n. We have from (34) and from (35) applied with p = q ℓ(n) and from (30):

{0<k<qn, kα ≥1/p} 1 kα 2 = {0<k<qn} 1 kα 2 1 [1/p, 1-1/p] ({kα}) ≤ 2p 2 [ p+1 2 ] ℓ=1 1 ℓ 2 {0<k<qn} 1 [ ℓ p , ℓ+1 p [ ({kα}) ≤ 2p 2 ( q n p + 2) ℓ≥1 1 ℓ 2 ; hence: {0<k<qn, kα ≥1/p} 1 kα 2 ≤ Cp(q n + p). (36) 
(A) ≤ C n ( q ℓ(n) q n + q 2 ℓ(n) q 2 n ) ≤ C j ( 1 a ℓ(n)+1 + 1 a 2 ℓ(n)+1 ) < ∞, (B) ≤ C n b 2 ℓ(n) q 2 ℓ(n) ( 1 q n q ℓ(n) + 1 q 2 n ) ≤ C n b 2 ℓ(n) ( q ℓ(n) q n + q 2 ℓ(n) q 2 n ) ≤ j b 2 j a j+1 (1 + 1 a j+1
) < +∞, and from (36), as the sum is taken over indices k ∈ J ′ , i.e. such that kα ≥ 1 4qn : By Lemma 4.2, we have:

(C) ≤ C n b 2 m(n) 4q n (q n+1 + 4q n ) q 2 m(n)+1 ≤ C n b 2 m(n) q n q m(n)+1 ≤ C ′
(E) ≤ C n b 2 ℓ(n+1) q 2 ℓ(n+1) a n+1 q 2 n+1 ≤ C n b 2 ℓ(n+1)
q ℓ(n+1) q ℓ(n+1)+1

< ∞.

To bound (F), we use Lemma 4.2 a): By (29) applied with k = q n , it suffices to prove the convergence of the series

(F ) ≤ C n b 2 m(n+1) 1 q 2 m(n+1)+1 q 2 n+1 ( ∞ ℓ=1 1 ℓ 2 ) ≤ C n b 2 m(n+1) q 2 m(n+1) q 2 m(n+1)+1 ( ∞ ℓ=1 1 ℓ 2 ) ≤ C b 2 j a 2 j+1 < ∞.
(G) := n b 2 ℓ(n) q 2 ℓ(n) 1 q 2 n ( a n+1 s=1 1 s 2 ), (H) := n b 4 m(n) 1 q 4 m(n)+1 ( a n+1 s=1 q 2 n q 2 n+1 ).
Since n ≤ m(n) and ℓ(n) + 1 ≤ n, we have from (42): Recall that the Fourier coefficients of ϕ β,γ are 1 2πin (e 2πinβ -1)(e 2πinγ -1). The condition for ϕ β,γ to be a coboundary with a transfer function in L 2 (T 1 ), i.e., such that the functional equation ϕ β,γ = T α h -h has a solution h in L 2 , is fulfilled by (43).

(G) ≤ C n b 2 ℓ(n) q 2 ℓ(n) q 2 n ≤ C n b 2 ℓ(n) q 2 ℓ(n) q 2 ℓ(n)+1 ≤ C n b 2 ℓ(n) a 2 ℓ(n)+1 ≤ j b 2 j a 2 j+1 ≤ j b 2 j a j+1 < ∞, (H) ≤ C n b 4 m(n) a n+1 q 2 n q 2 n+1 q 4 m(n)+1 ≤ C n b 4 m(n) q n q 3 n+1 q 4 m(n)+1 ≤ C n b 4 m(n) q m(n) q 3 m(n)+1 q 4 m(n)+1 = C n b 4 m(n) q m (n) q m(n)+1 ≤ C n b 4 m(n) a m(n)+1 ≤ j b 4 j a j+1 < ∞.
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 3 Z 2 -actions and centralizer. 1.3.1. Z 2 -actions and skew maps.

Theorem 2 . 1 .

 21 ([4]) If α is of type η and ϕ(x) = n =0 ϕ n e 2πinx with ϕ n = O(n -(η+δ) ) and δ > 0, then ϕ γ (x) := n =0 ϕ n 1-e 2πinγ

  (b jn ) by b 0 = 1, b -1 = 0, b j n+1 = d n b jn + b j n-1 for n ≥ 1, (21) then the conditions ( b jn a jn+1 ) < ∞ and ( b jn b j n+1 ) 2 < ∞ are satisfied. We complete the sequence (b n ) by zeroes. For instance, we can choose d n = n for all n ≥ 1 and then (j n ) such that the series n! a jn+1 converges. The condition ( b jn b j n+1

Lemma 4 . 2 . 4 1k 2 kα 2 ≤∞k 2 kα 2 ≤∞k 2 kα 2 ≤

 424222 a) There is a finite constant C such that, for every n ≥ 1, b) For all s ≥ 1, there exists at most one value of k of the form k = sq n + r, with r ∈ [1, q n [ such that kα < 1 qn , and this value satisfies k ≥ 1 4 q n+1 .Proof. Up to a constant factor, we havek =0,k ∈J kβ 2 k 2 kα 2 = ∞ n=0 k ∈J, qn≤k<q n+1 kβ 2 n=0 qn≤k<q n+1 , kα ≥1/q ℓ(n) kβ 2 k 2 kα 2 + ∞ n=0 k ∈J, qn≤k<q n+1 , kα <1/q ℓ(n) kβ 2 n=0 qn≤k<q n+1 , kα ≥1/q ℓ(n) 1 k 2 kα 2 + ∞ n=0 k ∈J, qn≤k<q n+1 , kα <1/q ℓ(n) kβ 2 (A) + (B) + (C) + (D),with (using (29) for (B) and (C)):(A) := n qn≤k<q n+1 , kα ≥1/q ℓ(n) 1 k 2 kα 2 ,(B) := n qn≤k<q n+1 , kα <1/q ℓ(n)

n b 2 m

 2 (n) a m(n)+1 ≤ C ′ j b 2 j a j+1 < +∞.We are left with the convergence of the series (D). By (29) it suffices to prove the following convergence(E) := n k ∈J,k∈J ′ , qn≤k<q n+1

Proof of Theorem 2 . 2

 22 Let β ∈ H r (α), i.e., b j (β) 4 a j+1 < ∞,(42)Taking into account Lemma 4.3, it remains to show the convergence of n =0 a n+1 s=1 sq n β 4 s 2 q 2 n sq n α 2 .

  2πiψ(x) z 2 ), v ∈ R}, where ψ is a measurable real function defined below and z 1 , z 2 are given real numbers. For every x ∈ X, H x is a closed subgroup of G. Let us consider the function x → H x with values in the set of closed subgroups of G. It satisfies the conjugacy relation[START_REF] Schmidt | Lectures on cocycles of ergodic transformation groups[END_REF] if and only if ϕ has integral values and satisfies

	(27)

  Therefore, if β ∈ H 4 (α), we have n =0 1 n 2 nβ 4 nα 2 < ∞.For the second statement of Theorem 2.2, observe that, if β and γ belong to H 4 (α), by the previous inequality and Cauchy-Schwarz inequality

	(43)	n =0	1 n 2	nβ 2 nγ 2 nα 2	< ∞.

In what follows the arguments of the functions are taken modulo 1.

If f is a function defined on a space X and T a transformation on X, we write simply T f for the composed function f • T . The equalities between functions are understood µ-a.e.

The centralizer, in a wider sense, is the collection of non-singular transformations of X which commute with T1 (see for instance[START_REF] Aaronson | A cut salad of cocycles. Dedicated to the memory of Wieslaw Szlenk[END_REF]).

See Théorème

in[START_REF] Conze | Equirépartition et ergodicité de transformations cylindriques[END_REF], where ergodicity is proved for T α,ϕ ,when ϕ is a step function, under a generic condition on the discontinuity points of ϕ called Condition (A').

Proof. a) If α > pn qn , then each interval [ j qn , j+1 qn ), 1 ≤ j ≤ q n -1 contains exactly one number of the form {kα}, with 1 ≤ k ≤ q n -1. Therefore we have

When α < pn qn , the same is true for j = 1, . . . , q n -2. Furthermore there is an exceptional value k 1 (the value such that k 1 p n = 1 mod q n ) for which 0 < {k 1 α} < 1 qn . By [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] we know that kα ≥ 1 2qn for 1 ≤ |k| < q n . Therefore 1 2qn < {k 1 α} < 1 qn which add a contribution of 4q 2 n in (38). This implies (38). b) For a given integer s ≥ 1, suppose that there are two different values of the form

Then we have, for some r 0 ∈ [1, q n [, r 0 α < 1 2 1 qn , which contradicts that for r 0 ∈ [1, q n [ we have r 0 α ≥ q n-1 α ≥ 1 2qn by ( 12) and [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF].

The proof of Theorem 2.2 relies on the expansion of β in basis q n α mod 1. We suppose that β ∈ [0, 1[ satisfies (28), so that we can apply (29).

We denote by J and J ′ the sets of integers defined by