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Airfoil Shape Optimization for Transonic Flows
of Bethe—Zel’dovich-Thompson Fluids

P. M. Congedo*
University of Lecce, 73100 Lecce, Italy
C. Corret
Ecole Nationale Supérieure d’Arts et Métiers, 75013 Paris, France

and

P. Cinnella#
University of Lecce, 73100 Lecce, Italy

High-performance airfoils for transonic flows of Bethe-Zel’dovich-Thompson fluids are constructed using a
robust and efficient Euler flow solver coupled with a multi-objective genetic algorithm. Bethe-Zel’dovich—
Thompson fluids are characterized by negative values of the fundamental derivative of gasdynamics for a range of
temperatures and pressures in the vapor phase, which leads to nonclassical gasdynamic behaviors such as the
disintegration of compression shocks. Using Bethe-Zel’dovich-Thompson gases as working fluids may result in low
drag exerted on airfoils operating at high transonic speeds, due to a substantial increase in the airfoil critical Mach
number. This advantage can be further improved by a proper design of the airfoil shape, also leading to the
enlargement of the airfoil operation range within which Bethe-Zel’dovich—-Thompson effects are significant. Such a
resultis of particular interest in view of the exploitation of Bethe-Zel’dovich-Thompson fluids for the development of

high-efficiency turbomachinery.

L

ENSE gases (DGs) are defined as single-phase vapors

operating at temperatures and pressures of the order of
magnitude of those of their thermodynamic critical point. At these
conditions, real gas effects play a crucial role in the gasdynamic
behavior of the fluid. The study of the complicated dynamics of
compressible flows of dense gases is strongly motivated by their
potential technological advantages as working fluids in energy-
conversion cycles and, specifically, in organic Rankine cycles
(ORCs).

Specific interest has developed in a particular class of dense gases,
known as the Bethe-Zel’dovich-Thompson (BZT) fluids [1], which
exhibit nonclassical gasdynamic behaviors in a range of
thermodynamic conditions above the liquid/vapor coexistence
curve, such that the fundamental derivative of gasdynamics

p (da

a (3p)s
where p is the fluid density, a is the sound speed, and s is the entropy,
which becomes negative. At these conditions, the well-known
compression shocks of the perfect-gas (PFG) theory violate the
entropy inequality over a certain range of temperatures and pressures
in the vapor phase and are therefore inadmissible [1-3]. The
thermodynamic region characterized by negative values of I' is
usually called the inversion zone, and the I' = 0 contour is called the
transition curve. BZT properties are generally encountered in fluids
possessing large heat capacities and formed by complex, heavy
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molecules, such as some commercially available heat transfer fluids.
The nonclassical phenomena typical of BZT fluids have several
practical outcomes: prominent among them is an active research
effort to reduce losses caused by wave drag and shock/boundary-
layer interactions in turbomachines and nozzles [4-7], with
particular application to ORCs.

ORCs are used to generate electric energy in low-power
applications. They work in the same way as classical steam Rankine
cycles, but due to the use of low-boiling compounds as working
fluids, they can use low-temperature heat sources such as geothermal
and solar sources or waste heat from industrial applications. ORCs
typically use a single expansion stage, which operates in the
transonic/supersonic regime. One of the major loss mechanisms in
transonic and supersonic turbomachinery is related to the generation
of shock waves. Past research efforts toward demonstrating the
existence of BZT fluids [§-10] indicate that some heavy compounds
employed for heat transfer applications and as ORC working fluids
possess BZT properties. Therefore, shock formation and the
consequent losses could be ideally avoided if turbine expansion
could happen entirely within or very close to the inversion zone.
Previous works on BZT transonic flows past airfoils [5] and on BZT
flows through turbine cascades [6,7] generally considered operation
conditions in the very neighborhood of the I" = 0 curve, just above
the upper saturation curve. In such conditions, the flowfield evolves
almost entirely within the inversion zone and no compressive shock
waves are formed, leading to an almost isentropic expansion through
the entire cascade. Unfortunately, the inversion zone has a quite
limited extent; thus, a reduction in the temperature jump between the
heater and condenser stages is generally required to completely
operate the turbine cascade in the BZT regime. As a consequence, the
risk is to enhance turbine efficiency at the cost of alower global cycle
power output and overall cycle efficiency. This important drawback
has been the stumbling block to the development of real-world BZT
organic Rankine cycles.

Recently, an alternative approach was explored by two of the
present authors [11]. To enlarge the system operating range, the flow
is allowed to evolve, in part, outside the inversion zone. With this
choice, compression shocks and mixed waves can occur, causing
losses; however, such waves are expected to be relatively weak if
they have jump conditions in the vicinity of the transition curve [2].
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Fig. 1 Typical evolution of the NACA0012 aerodynamic performances
at M, = 0.85 and ¢ = 1deg for a dense-gas flow: a) results for a dense-
gas flow of BZT VDW gas, taken from [11] and b) results for PP10
fluorocarbon under the MAH thermodynamic model, taken from [12];
perfect-gas results are also shown for comparison.

This means that the associated losses will be lower than normal,
leading to high turbine efficiency; in turn, operating the turbine
cascade partially outside the inversion zone allows an increase in the
temperature jump of the power cycle. The feasibility of such an
approach was studied for a simplified configuration, represented by
an isolated NACAOQO012 airfoil in the transonic regime, using the van
der Waals (VDW) equation of state for polytropic gases, which is the
simplest thermodynamic model accounting for BZT effects.
Figure 1a summarizes the results obtained in [11] when computing
the inviscid flow of a polytropic BZT van der Waals gas at Mach 0.85
and 1-deg angle of attack over the NACAOO012 airfoil for various
freestream thermodynamic conditions, corresponding to a series of
operation points selected along isentropes crossing the inversion
zone. For each operation point, the lift coefficient and lift-to-drag
ratio are plotted as a function of the freestream value taken by the
fundamental derivative of gasdynamics I'y,. Please note that the
fundamental derivative does not vary monotonically along an
isentrope: it decreases when approaching the inversion zone from the
low-pressure side, reaches a minimum within it, and then increases
again. Nevertheless, as the operating region of interest for ORCs is
located at the high-pressure side of the inversion zone, only the left-
hand branch of the isentrope is considered, such that I',
monotonically increases with increasing pressure. The parametric
study allowed us to identify three flow regimes depending on the

value of I' . For small values of I", in the subcritical regime, the lift-
to-drag ratio tends to infinity (for inviscid flows), because the flow
remains subsonic everywhere, thus avoiding the occurrence of wave
drag. When I, is in the range of 2-3, a significant growth in both lift
and drag is observed. The increase in lift is produced by the formation
of an expansion shock close to the leading edge that strongly
enhances the suction peak at the airfoil upper surface. The increase in
drag is due to the occurrence of shocks on the airfoil surface. In this
regime, called the low-pressure (LP) transonic BZT regime, the lift-
to-drag ratio remains one order of magnitude greater than in the PFG
case. Finally, when I',, reaches higher values in the so-called high-
pressure (HP) transonic BZT regime, the flow becomes qualitatively
similar to that of a PFG, with even poorer aerodynamic
performances. Similar qualitative conclusions were drawn in
[12,13], in which the parametric study was repeated using the more
realistic Martin—Hou (MAH) equation of state (EOS). As indicated in
Fig. 1b, the difference introduced by the change of EOS lies in the
extent of the intermediate LP transonic BZT regime, now taking
place for values of I'y, in the range of 1-1.5. Viscous effects taken
into account in [13-15] do not alter this qualitative behavior. An
important conclusion that can be drawn from the studies performed
in [11-15] is that the choice of upstream conditions within or very
close to the I' =0 line is not optimal in terms of aerodynamic
performance. A better choice is to work in the LP transonic BZT
regime, which offers the best compromise between high lift and low
drag.

Note, however, that these results were obtained for a specific
airfoil; it may be possible to find an airfoil with the same thickness-to-
chord ratio that offers higher levels of lift in the subcritical regime (in
particular, higher than the level obtained for a PFG flow), while
preserving lift-to-drag ratios in the LP transonic BZT flow regime (in
which the BZT effects are less strong) that are one order of magnitude
larger than the ratio associated with PFG flow. In practice, it is
specially important to ensure high aerodynamic performances in
both regimes, because the freestream pressure is likely to change
according to the turbine operating conditions.

The present paper is devoted to finding such optimal airfoil
geometries for transonic DG flows by making use of evolutionary
optimization strategies, namely, multi-objective genetic algorithms
(MOGA?). Shape optimization for DG flows has rarely been treated
in the past. To the authors’ best knowledge, the only previous works
on the subject are provided by [16,17], which consider the
construction of low-drag shapes for nonlifting inviscid flows of DGs
through the transonic small-disturbance theory. In [16], similarity
solutions of a nonlinear small-disturbance equation are studied,
describing a two-dimensional near-sonic potential flow of DGs. The
solutions are applied to the problem of a near-sonic small-
disturbance flow of DGs in the surrounding of two-dimensional,
slender, semi-infinite bodies with x" generators, in which 2/7 <
n <1 and x is the distance along the body axis. In the case when
n = 2/7, the body constitutes a surface over which the flow is sonic
at every point and the pressure distribution is constant. The analysis
indicates that such a shape is optimal for near-sonic flows of DGs, in
the sense that it offers the minimal pressure drag. In [17], low-drag
airfoils are constructed through a nonlinear small-disturbance theory.
These airfoils exhibit a higher critical Mach number (i.e., the
freestream Mach number at which sonic flow first appears on the
airfoil) with respect to nonoptimized shapes. Consequently, they
yield zero wave drag over a larger range of incoming flow velocities.
Specifically, the analytical study presented in [17] derives two airfoil
geometries with a 12% thickness-to-chord ratio that show lower
wave drag than the NACAO0012 airfoil at zero incidence for specific
freestream thermodynamic conditions (I'y, = 0). The first airfoil
geometry is formed by an arc along which the flow is always sonic;
the second one is a modified airfoil obtained by smoothly connecting
the head of the previous sonic arc with a sharp tail, to prevent
boundary-layer separation for viscous flows. Reference [17] has the
merit of facing, for the first time, optimization problems for DG flows
past airfoils, even though an optimization procedure in the proper
sense is not undertaken. In practice, such an approach is incomplete,
because it does not take into account the effect of the optimization on
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the airfoil lift. Moreover, the small-disturbance approximation does
not accurately model the important flow variations at the airfoil
leading and trailing edges, which have a crucial influence on the
airfoil performance, especially for high-I" incoming-flow conditions.

In the present work, we consider two optimization problems: the
first one, as in Rusak and Wang’s work [17], aims at finding a
minimal-drag airfoil shape for a nonlifting flow in the BZT regime.
The flowfield is computed by solving the complete Euler equations,
thus fully taking into account all of the nonlinear effects. This
symmetric problem is relatively simple to treat, because the flow
symmetry reduces the computational expense, whereas a single
objective function to minimize (namely, the drag) implies lower
optimization complexity. It will be shown that if the optimal airfoil
shape derived in [17] does exhibit lower drag than a reference airfoil
with the same thickness-to-chord ratio (viz, the NACA0012 airfoil),
the present approach allows us to obtain even higher performances
by combining an efficient Euler solver to a genetic algorithm (GA).
The second application deals with the optimization of a lifting airfoil.
The following optimization strategy is adopted: find an airfoil shape
that allows us to obtain high lift at BZT subcritical conditions (in
which the wave drag is in any way expected to be zero) and to
minimize wave drag while maximizing lift for supercritical BZT flow
conditions.

The paper is organized as follows: in Sec. II, some of the peculiar
properties of DG flows are briefly recalled and the thermodynamic
models used for the present study are presented, with some
comments about their main advantages and drawbacks; Sec. III is
devoted to the description and validation of the flow solver and
provides details of the present optimization strategy; finally,
optimization results are discussed in Sec. IV for both the symmetric
airfoil drag reduction problem and for the lifting-airfoil problem, and
comparisons are made with the optimized results obtained for a PFG
flowing at the same conditions.

II. Dense-Gas Modeling

A. Governing Equations

Dense-gas flows are governed by the equations for equilibrium,
nonreacting flows. In the present study, we consider the Euler
equations, written in integral form for a control volume 2 with
boundary 0€2:

i/wdQ—i—/ f-ndS=0 2)
dr Ja Q

In Eq. (2), w is the conservative variable vector, where
w = (p, pv, pE)’

n is the outer normal to 92 and f is the flux density:

f = (pv. pI + pvv, poH)"

where v is the velocity vector, E is the specific total energy, H =

E + p/pis the specific total enthalpy, p is the pressure, and I is the
unit tensor. The preceding equations are completed by a thermal and
a caloric equation of state:

p = plp(w), T(w)] 3)

e =e[p(w), T(w)] @

where e is the specific internal energy and 7 the absolute
temperature.

B. Dense-Gas Properties

The dynamic behavior of dense gases is governed by the
fundamental derivative of gasdynamics (1) which, using standard
thermodynamic manipulations, can be rewritten as follows:

v (3%p
F=3z (a_) ©)

where v=1/p is the fluid specific volume, and I" represents a
measure of the rate of change of the sound speed
a=[—v¥dp/dv),}. If T <1, the flow exhibits an uncommon
sound-speed variation in isentropic perturbations: a grows in
isentropic expansions and drops in isentropic compressions, contrary
to what happens in “common” fluids. For heavy gases, composed of
sufficiently complex molecules and characterized by high ¢,/R
ratios (where c,, is the constant volume specific heat and R is the gas
constant), I" is smaller than one, or even smaller than zero, for
extended ranges of densities and pressures and recovers its perfect-
gas value in the low-density limit. The sign of I' is univocally
determined by the sign of the second derivative (3% p/dv?),, that is,
the concavity of the isentrope lines in the p—v plane. It is possible to
show [2] that the entropy change across a weak shock can be written
as

T (Av)?
As = —“])—3 o+ Ol(Av)] (6)

where A represents a change in a given fluid property through the
shock. As aresult, if I" > 0, a negative change in the specific volume
(i.e., a compression) is required to satisfy the second law of
thermodynamics, whereas a positive change (i.e., an expansion) is
the only physically admissible solution when I < 0. BZT fluids are
precisely defined as fluids that exhibit a region of negative I" in the
vapor phase. An important property of BZT fluids is that the shock
strength is reduced up to one order of magnitude from that predicted
by Eq. (6) for thermodynamic conditions for which I' ~ 0. Cramer
and Kluwick [2] showed, in fact, that I' = O(Av) for small volume
changes in the vicinity of the transition curve. Thus, shock waves
having jump conditions in the thermodynamic region near the I' = 0
contour are expected to be much weaker than normal.

C. Thermodynamic Models

In the present work, two gas models are considered. The VDW
equation of state is the earliest attempt to correct the perfect-gas law
to take into account covolume effects and attractive intermolecular
forces; it only satisfies two thermodynamic constraints: the
horizontal slope and the inflection of the critical isotherm at the
critical point. However, these are sufficient conditions to allow the
VDW equation to model BZT fluid behavior. In fact, in the limit
¢,/R — oo, the isentropes and isotherms coincide. Therefore, a van
der Waals gas with sufficiently high ¢, /R ratio is expected to exhibit
reversed isentrope concavity above the upper saturation curve;
hence, it possesses BZT properties. It is possible to show [3] that by
taking the specific heat ratio y in the range of 1 < y < 1.06, aregion
of negative values of the fundamental derivative appears. The VDW
thermodynamic model is computationally inexpensive and has been
often used to provide a qualitative description of BZT fluid flows
[4,16-20]. However, it is not very accurate, and it has been proven
[9] that it largely overestimates the extent of the inversion zone.
Nevertheless, if this inaccuracy affects quantitative results obtained
for a given gas, it does not affect the qualitative behavior
significantly; the results obtained are roughly representative of the
thermodynamic response of a real-world BZT gas with higher
specific heats.

The second gas model considered here is the comprehensive
equation of state of Martin and Hou [21], involving five virial terms
and satisfying ten thermodynamic constraints. This equation is one
of the best available gas models to manageably compute dense-gas
effects [22,23] and provides an accurate description of the gas
behavior close to the saturation curve by using just a few input
thermodynamic data. However, it is considered to somewhat
underestimate the extent of the inversion zone; for this reason, results
provided by the MAH model are likely to be conservative.

Figure 2 shows the p—v diagram and the inversion zone for a
polytropic VDW gas, computed using an input value for the specific
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Fig. 2 Amagat diagrams for a) VDW BZT gas with y = 1.0125 and b)
heavy fluorocarbon PP10 modeled through the MAH EOS; the shaded
region represents the inversion zone.

heat ratio corresponding to the limiting perfect-gas value for heavy
fluorocarbons (y ~ 1.0125) and for the heavy fluorocarbon PP10,
under the MAH thermodynamic model. Note the different shape of
the saturation curve and the different shape and size of the inversion
zone obtained with the two gas models.

III. Flow Solvers and Genetic-Based
Optimization Tool
A. Flow Solvers

Two DG flow solvers are used in the present study: a newly
developed unstructured-grid solver (UGS) is retained for the genetic-
based optimization stage (for reasons detailed later), and an existing
structured-grid solver (SGS) used in previous DG studies [11-15] is
applied for cross-validation purposes and a posteriori analysis of
optimal geometries. For the SGS, the governing equations are
discretized using a cell-centered finite volume scheme of third-order
accuracy, which allows computing flows governed by an arbitrary
equation of state [15]. The scheme is constructed by correcting the
dispersive error term of the second-order-accurate Jameson’s scheme
[24]. The use of a scalar dissipation term simplifies the scheme
implementation with highly complex equations of state and greatly
reduces computational costs. To preserve the high accuracy of the
scheme on non-Cartesian grids, the numerical fluxes are evaluated
using weighted discretization formulas, which take into account the
stretching and the skewness of the mesh; this ensures true third-order
accuracy on moderately deformed meshes and at least second-order
accuracy on highly distorted meshes (see [25] for details). The
equations are then integrated in time using a four-stage Runge—Kutta
scheme [24]. Local time-stepping, implicit residual smoothing, and a
multigrid are used to efficiently drive the solution to the steady state.

For external flows, nonreflecting boundary conditions based on a
multidimensional method of characteristics are applied at far-field
boundaries; an adiabatic wall condition is imposed at solid
boundaries.

The UGS is also based on a cell-centered finite volume
discretization of Eq. (2), but formulated on a general unstructured
grid dividing the spatial domain into a finite number of triangles or
quadrangles. The time rate of change of the cell-averaged state vector
w is balanced with the area-averaged (inviscid) fluxes across the cell
faces. The fluxes are computed across each cell face using the HLL
scheme [26]. Second-order spatial accuracy is ensured by means of a
MUSCL-type reconstruction process on the conserved variables
[27], in which the gradient estimates required at each cell center are
obtained through a least-squares formula. Because the solver will be
applied to the computation of flows containing discontinuities, the
reconstruction formula includes a limitation step based on the now
standard approach proposed in [28] and revisited in [29], which
ensures oscillation-free shock-capturing. Fast convergence to steady
state is provided by making the scheme implicit, following a
procedure inspired from [30], in which a simple first-order Rusanov-
type implicit stage allows the use of large CFL numbers and is solved
by an inexpensive point-relaxation technique. The numerical flux
through the boundary edges is computed using an inflow/outflow
characteristic-based condition to define the ghost-cell states at the
far-field boundary and a mirror boundary condition to define the
ghost-cell states at the wall.

With the accuracy properties of the SGS used in this work having
been previously demonstrated [11,23], the validation study will
focus on the results provided by the UGS, which will be compared
with the reference results obtained from the SGS. As a first validation
test, both solvers are applied to the computation of inviscid flows
over a NACAO0012 airfoil at zero angle of attack for different values
of the Mach number. A series of calculations is run with the UGS for
a half-profile on a grid made of 6400 quadrilateral cells with a grid
size of 5 x 1073 ¢ at the wall, where ¢ denotes the airfoil chord, 120
points along the airfoil surface, and an outer boundary about 10
chords away from the airfoil. The analysis provided in [11] showed
that such a flow is accurately computed using the SGS in a 136 x 40
grid with a mean height of the first cell closest to the wall of about
5% 1073¢ and outer boundary located 20 chords away. The
evolution of the drag coefficient is computed with both solvers in the
case of a PFG flow (y = 1.4) and in the case of a DG flow. In the latter
case, following [17], the freestream pressure and specific volume
normalized by their critical values are taken equal to p./p. =
1.0696 and p.,/p. = 0.73502, and the working fluid is a VDW gas
with y=1.02. As is well known from previous studies
increase of the critical Mach number. From the present
computations, it is found that the flow becomes sonic at the wall

02 ——8—— Structured-grid solver/ PFG
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Fig. 3 Drag coefficient of the NACA0012 airfoil at zero incidence as a
function of Mach number for a perfect and dense-gas flow; UGS and SGS
results.
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for a freestream Mach number of about 0.83 for the PFG flow and
above 0.90 for the DG flow. Consequently, the drag divergence
resulting from the occurrence of shock waves on the airfoil surface is
much delayed when using a BZT gas instead of a perfect diatomic
gas, as shown in Fig. 3. The drag coefficient prediction provided by
the UGS for both PFG and DG flow remains close to that of the SGS
for the whole range of freestream Mach number. For the DG case,
numerical results from [17] are also reported for further comparison
and validation, showing good agreement with the present results.
The possibility of further increasing the critical Mach number,
further reducing the drag, through a proper shaping of the airfoil will
be investigated in the next section.

A second validation of the UGS is provided by the computation of
the DG flow over the same NACAO0012 airfoil at M, = 0.85 and
o = 1 deg; the dense gas is modeled using the MAH equation of state
with coefficients corresponding to PP10. Two operation points of
interest are selected: the freestream thermodynamic conditions
Poo/Pe = 1.008, po/p. =0.676, and I', = 0.168, denoted here-
after as OP 1, yield significant BZT effects, whereas the choice of
Poo/Pe = 1.079, pso/ p. = 0.882,and I',, = 1.312, denoted as OP 2
from now on, leads to higher values of the fundamental derivative
throughout the flow and, thus, to much reduced BZT effects.
Numerical solutions corresponding to these operation points are
computed using the SGS on a256 x 44 O-grid and the UGS on a grid
made of 14,374 triangular elements. In both cases, the mean height of
the closest cell to the wall is about 5 x 1073¢, and the far-field
boundary is located 10 chords away from the airfoil. Here again, the
results obtained with the SGS scheme in [11] are considered as the
reference to which the UGS scheme results will be compared. The
wall pressure and Mach number distributions computed by both
solvers are displayed in Fig. 4, along with PFG flow (y =1.4)

Pressure coefficient

Structured-grid solver DG flow OP#2 E
Structured-grid solver PFG flow
Unstructured-grid solver DG flow OP#1

Unstructured-grid solver DG flow OP#2

oD
¢
o
05 :—g ——— Structured-grid solver DG flow OP#1

I < Unstructured-grid solver PFG flow
ey oy vy
0 0.2 04 0.6 0.8 1

Wall Mach number

i Structured-grid solver DG flow OP#1 i
| Structured-grid solver DG flow OP#2
l{}
&
L4

““““““““““““““““““ Structured-grid solver PFG flow

Unstructured-grid solver DG flow OP#1

Unstructured-grid solver DG flow OP#2

Unstructured-grid solver PFG flow

| IR RTRTIRTN ST NN S ST NS

0 0.2 0.4 0.6 0.8 1
xlc

Fig. 4 Wall distributions of the pressure coefficient and Mach number
for perfect and dense-gas flows over a NACA0012 airfoil at M, = 0.85
and « = 1deg.

distributions; the UGS results are in excellent agreement with the
SGS ones. The DG flow for OP 1 remains subcritical with a
computed lift coefficient C; = 0.2265 for the SGS and C; = 0.2244
for the UGS and a drag coefficient very close to zero. For OP 2, the
DG flow becomes supercritical with C; = 0.4467 and Cp, = 0.0510
for the SGS and with C; = 0.4489 and C;, = 0.0496 for the UGS.
The difference between the SGS and UGS on lift prediction therefore
remains within 1% and that on drag prediction does not exceed 3%.
Note the PFG flow is such that C; = 0.373 and C;, = 0.0574; thus,
as already explained in the Introduction, though the dense gas allows
achieving an extremely high lift-to-drag ratio in the subcritical OP 1
conditions, the corresponding lift level remains below that of the
PFG flow, whereas the DG aerodynamic performance in the
supercritical OP 2 conditions tends to come close to that of the perfect
gas. The possibility to simultaneously achieve higher lift values for
operating conditions in which BZT effects are important and to
improve the lift-to-drag ratio when these effects become less
significant is addressed in the next section.

B. Pareto-Based Genetic Algorithm

Both the reduction of drag for a nonlifting airfoil and the
multipoint performance improvement of a lifting airfoil in a dense-
gas stream can be expressed as shape-optimization problems. These
problems are solved in an automatic way by coupling a DG flow
solver and a mesh generator with an optimizer. The flow solver used
in the optimization process is the UGS: its accuracy properties have
proved satisfactory when compared with the SGS, it offers fast
convergence to steady state (due to its implicit formulation), and it
can be readily coupled with an unstructured grid generator. As for the
optimization tool, it was decided to make use of a MOGA. Genetic
algorithms were successfully applied for some time now to shape
optimization in aeronautics [32-35]. In spite of their cost, GAs have
proved their usefulness with respect to gradient-based methods,
because of their high flexibility [stemming from the fact that they
only require values of the objective function(s) to efficiently explore
the parameter space in search of an optimum] and also because of
their ability to find global optima of multimodal problems.

Moreover, so-called Pareto-type genetic algorithms are of
particular interest for multi-objective optimization, because they
provide a set of nondominated solutions after only a few generations.
On the contrary, a conventional gradient-based method needs several
independent runs to achieve similar results [35,36]. In the present
work, the flexibility offered by the genetic algorithm will allow an
immediate switch from VDW to MAH equations of state and leaves
the door open for the future use of the SGS as the flow solver; the
MOGA is also well suited to the solution of multi-objective problems
such as multipoint performance improvement for a lifting airfoil. The
MOGA applied in this study is the nondominated sorting genetic
algorithm proposed by Srinivas and Deb [37]. At a given generation
number, all individuals in the population are ranked according to
nondomination criteria that allow taking into account a set of
objective functions in a simultaneous way.

The set of individuals that dominate all of the other members of the
population without dominating each other is designated as the front
of rank 1, the set of dominant individuals in the population deprived
from the members of rank 1 form the front of rank 2, and so forth,
until the whole population is classified into a series of dominance
fronts. The individuals scattered along the front of rank 1 are
assigned the same pseudofitness function, arbitrarily fixed to unity,
because they are equally well-adapted and therefore should be given
the same potential of reproduction. However, to favor the population
diversity along the front, the pseudofitness value is decreased for
individuals located in crowded areas of the front: practically, the
initial uniform value of the pseudofitness function is divided by a
number strictly larger than unity for individuals with neighbors
within a prescribed distance. Next, the smallest value of the modified
pseudofitness function obtained for individuals belonging to the
front of rank 1 is decreased from a small number ¢ and assigned to all
members of the front of rank 2; this uniform value is next itself
modified, as previously explained, to promote the selection of
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isolated individuals along the front and thus to ensure a maximum of
diversity. Once each individual has been given a pseudofitness value,
itis selected for reproduction using a proportional selection operator;
finally, the individuals retained in the mating pool are submitted to
crossover and mutation, to explore the research space and yield a
front of rank 1 increasingly close to the global Pareto front of the
problem.

The main tuning parameters of the algorithm are the population
size, the number of generations, the crossover and mutation
probabilities p. and p,,, and the so-called sharing parameter o (used
to take into account the relative isolation of an individual along a
dominance front). Typical values for p,. and p,, are, respectively, 0.9
and 0.1; values of o are retained following a formula given in [35],
which takes into account the population size and the number of
objectives. Theoretically, the population size and the number of
generations should be chosen according to the number of parameters
and objectives of the optimization problem under study; in practice,
however, the population size and number of generations are fixed by
the global amount of CPU time devoted to the computation: taking
too small of a population may rapidly lead to a local optimum and
make useless the iteration process on the generation number;
conversely, a large population will impose a limited number of
generations, which could not allow the population to evolve
sufficiently toward the optimum. Because each inviscid flow
computation performed in the present study takes between 5 and
10 min on a PC equipped with a Pentium Pro processor, requesting a
whole optimization run to be completed in less than a week means
that about 900 individuals can be computed; a typical choice is to
retain 36 individuals in the population and to let this population
evolve for 24 generations.

IV. Shape Optimization for Airfoils in Transonic
Flows of Dense Gases
A. Drag Minimization for a Symmetric Airfoil

The problem is to find the minimal value of the drag coefficient
Cp(X), where X denotes an airfoil symmetric shape. In the present
case, this shape is constrained to satisfy the following conditions:
1) the coordinates of the leading edge and trailing edge normalized
by the airfoil chord are, respectively, (0, 0) and (1, 0) and 2) the
thickness-to-chord ratio is 12%. The upper airfoil surface is
represented by a Bézier curve that is determined in the present study
by the coordinates of eight Bézier points: the fixed leading edge P,
and trailing edge P;; five control points P;_,¢(x;,y;), regularly
spaced along the chord, with the x; coordinates varying in distinct
subintervals of 0 and 1; and a control point P, (0, y,), which ensures
that the upper surface of the profile is tangent to the y axis at the
leading edge. A fixed 12% thickness-to-chord ratio is obtained by ad
hoc normalization of the airfoil maximum thickness. The family of
airfoil shapes considered in the present study is therefore entirely

0.06

004

yic
o
T

Sonic arc (Rusak & Wang, Ref. 18)
1 Rusak and Wang [18] modif. airfoil .7~
00z p K mmm: NACA0012 aitfol A

004 [

-006

x/c
Fig. 6 Geometry of optimized, sonic arc, Rusak—Wang low-drag, and
NACA0012 airfoils.

described by 11 parameters that vary continuously between
prescribed limiting values; the shape representation is such that it
allows recovering the NACAO0O012 airfoil and the low-drag airfoil
proposed in [16].

The minimization of Cp(X) is first performed for three different
values of the freestream Mach number, successively taken equal to
M., =0.94,0.95, and 0.98. In each case, the flow over a population
of evolving (half)-airfoil shapes is computed using the UGS on the
grid described in Sec. IIl.A. The VDW equation of state is used with
y = 1.02, and the freestream thermodynamic conditions previously
given in Sec. III.A to allow a comparison with the results obtained in
[17]. For each run, the GA-driven population appears to have reached
a stabilized optimal (minimal) value of the drag coefficient after the
prescribed number of generations, as can be deduced from Fig. 5. The
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maximum and mean value of the drag coefficient in the final
population of airfoil shapes are almost the same in each case, which
means that the algorithm has converged to a population of almost
identical geometries. The optimized airfoil shape for each freestream
Mach number is plotted in Fig. 6, along with the NACAO0012 airfoil,
the modified low-drag airfoil, and the sonic arc airfoil derived by
Rusak and Wang in [17]. It is noteworthy to observe that the optimal
shape for M, = 0.94 (indicated in the following as OA(094) turns
out to be almost superimposed with the Rusak and Wang low-drag
airfoil; consequently, the latter shape will be retained in the following
analysis as the shape producing minimal drag at M, = 0.94.
Reducing the drag for higher values of the freestream Mach number
leads to airfoil shapes that are getting closer to the limiting case of the
sonic arc, as far as allowed by the airfoil shape representation
retained in this study. Because, ideally, a consistent drag reduction is
expected for the whole range of freestream Mach numbers, the wave
drag produced by these modified shapes, which are optimized for a
specific value of M, are next checked for different values of M,
taken in the interval between 0.9 and 0.995; this a posteriori analysis
is performed using both the SGS and the UGS for cross-validation
purposes. The computed evolutions of the drag coefficient with
increasing values of the freestream Mach number are plotted in
Fig. 7. The optimal shape at M, = 0.95 (OA095) allows obtaining
lower drag levels than the OA094 airfoil for the whole range of
freestream Mach numbers, both shapes being far superior to the
original NACAO0012 airfoil. On the contrary, the optimal shape at
M., = 0.98 (OA098) displays a very poor performance for lower
values of the freestream Mach number. All of the drag curves fall
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Fig. 8 Distributions at M, = 0.95 for a) wall pressure and b) Mach
number; SGS results.

within the envelope corresponding to the sonic arc performance,
which indeed represents the optimal shape for inviscid flow at
transonic speeds and zero angle of attack. The MOGA strategy offers
the possibility of looking for an airfoil that would simultaneously
minimize the drag coefficient at M, = 0.95 and M, = 0.98. Such
an airfoil should provide a good drag performance over a larger range
of freestream Mach numbers. To obtain such an airfoil, a bi-objective
optimization run was computed using the same GA parameters as in
the previous mono-objective runs; among the set of optimal shapes
provided by the MOGA, a typical tradeoff solution was retained
(denoted as OAB to recall its results from a bi-objective
optimization), which is plotted in Fig. 6. The associated drag
evolution is displayed in Fig. 7; the OAB airfoil turns to yield lower
drag levels than the previous single operation point optima for the
whole range of freestream Mach number, because its geometry is
actually closer to that of the sonic arc. The wall pressure and Mach
number distributions at M, = 0.95 and M, = 0.98 are plotted in
Figs. 8 and 9, respectively, for the various geometries under study. At
M, = 0.95, all of the airfoils, except the sonic arc, are beyond their
respective critical Mach number; precisely, the NACA0012, Rusak—
Wang, and OA098 airfoils are also beyond the drag divergence Mach
number, whereas the OA095 and OAB airfoils still yield almost
isentropic flow. Note that the OA098 airfoil displays a shock in the
leading-edge region down to M, = 0.90. At M, = 0.98, all of the
airfoils, including the sonic arc, are subjected to the transonic drag
rise: the OA095 and OAB wall distributions are similar to those
associated with the sonic arc up to 70% of chord, in which the shapes
of the three airfoils start to strongly differ (see Fig. 6).
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A similar optimization process was carried out for a flow of perfect
gas with y = 1.4 and for a DG flow with p./p. = 1.0696 and
Poo/ Pe = 0.73502, modeled using the more realistic MAH equation
of state. Although the VDW equation of state was retained up to now
to allow a comparison with the results obtained in [17], the analysis
performed with MAH and PFG indicates the improvement in terms
of drag reduction that can be expected (for inviscid flows) when
switching from air to PP10 with airfoil shapes optimized according to
the nature of the fluid. Various optimization strategies were applied
to the PFG case: single-point drag minimization for different
freestream Mach numbers in the transonic drag rise region and
simultaneous minimization of drag for two values of M, above the
drag divergence Mach number of the baseline NACAO0012 airfoil.
The overall best performance for the shape representation described
at the start of this section is plotted in Fig. 10; the optimal airfoil,
denoted as OA083, is specifically targeted to achieve minimal (zero)
drag at M, = 0.83, and so it suffers from a slight increase in wave
drag at M, = 0.82, due to the appearance of a weak shock wave. For
the MAH case, the best performance was obtained with an airfoil
(OAB) designed to minimize drag at M, = 0.925 and M, = 0.95.
As shown in Fig. 10, the optimal airfoil increases the drag divergence
number from M, = 0.91 for the NACAO0O012 airfoil, up to almost
M, = 0.93. Figure 11 displays the strong discontinuities produced
by the baseline NACAQ0012 airfoil in the drag divergence region
associated with each gas model (PFG, VDW, and MAH) and
presents the pressure contours of the corresponding shock-free
airfoils (just before the drag divergence Mach number is attained).

As already shown, the optimization procedure leads to minimal-
drag airfoils with increasingly better performance as their shape
tends to become closer to the sonic arc. Unfortunately, the sonic arc
shape is not optimal if the flow of a viscous fluid is considered,
because of its blunt trailing edge that can lead to flow separation. For
this reason, the Rusak—Wang low-drag airfoil is essentially obtained
by modifying the trailing edge of the optimal sonic arc shape,
replacing it with a sharp tail similar to that of the NACAO0012 airfoil.
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Fig. 10 Effect of the equation of state on optimization results a) optimal
geometries for the drag minimization problem solved in the case of a PFG
flow and a DG flow with VDW or MAH EOS and b) associated pressure
drag as a function of the freestream Mach number.

To check the viscous performance of the optimal shapes derived
from the present MOGA optimization procedure, a numerical
investigation of viscous turbulent flows past such optimal airfoils is
undertaken. In particular, viscous flows past the OA095 and OAB
airfoils, which were found to provide the best inviscid performance
in the previous study of Rusak’s optimization problem, are computed
and compared with results obtained for the reference NACA0012
and Rusak—Wang airfoils in the same conditions. The numerical
methodology adopted for the study is presented in [15]. The SGS
scheme described in Sec. III is extended to viscous flow
computations using a centered second-order approximation of the
viscous fluxes. Ad hoc thermophysical models [38] are used to
describe the variation of the dynamic viscosity and thermal
conductivity of dense gases with temperature. Turbulence effects are
taken into account using the very simple Baldwin—Lomax model: the
underlying working hypothesis is that, to a first approximation, the
turbulence structure is not affected by dense-gas effects for
thermodynamic conditions sufficiently far from the liquid/vapor
critical point. The computations are performed using half-O-grids of
100 x 64 cells, with a mean first cell height of about 6 x 10°,
representing a reasonable tradeoff between accuracy and computa-
tional cost. The gas thermodynamic response is modeled using the
MAH equation of state. The thermodynamic freestream conditions
are taken equal to p,/p, = 0.985 and p.,/p. = 0.622, the Mach
number is varied in the interval between 0.85 and 0.99, and the flow
Reynolds number based on freestream conditions and the airfoil
chord is 107. The flow past the NACAQ012 and Rusak—Wang airfoils
is attached for freestream values of Mach number less than about
0.97. In both cases, the flow at M, = 0.98 becomes separated close
to the trailing edge, and the flow at M, = 0.99 is massively
separated. Conversely, the flowfield around the OAB airfoil already
exhibits a recirculation region close to the trailing edge for the lowest
values of M. In fact, this airfoil shape is the closest to the sonic arc,
which greatly enhances its inviscid performance, but represents a
serious drawback for viscous flows. An intermediate behavior is
found for OA095, because the flow becomes separated at about
M, = 0.95 for that shape. Figure 12 shows the flowfields (Mach
number contours and streamlines) for the four airfoils at M, = 0.96;
the flow past OAB is characterized by significant separation at the
trailing edge, the flow past OA095 is just slightly separated, and the
flows past the NACA0012 and Rusak—Wang airfoils are completely
attached. Figure 13 shows the drag coefficient vs the Mach number
for the four airfoils analyzed. For the lowest values of M, the
thicker trailing edges of OA(095 and OAB lead to poorer
performances in comparison with the more slender NACA0012 and
Rusak—Wang airfoils. On the other hand, for higher values of M,
the flow becomes supercritical and wave drag appears; in these
conditions, the adapted design of the OA095 and OAB airfoils
becomes advantageous, and both airfoils represent a true
improvement over the two reference shapes. Globally, the best
overall performance over the explored range of Mach numbers is
offered by the OAQ95 airfoil.

B. Performance Optimization for a Lifting Airfoil

The shape representation retained for the complete airfoil derives
from that adopted in the study of a half-profile. The upper part of the
airfoil is represented as described in the previous subsection; the
lower part is described in a similar way using a Bézier curve based on
eight control points, including the fixed leading and trailing edges, as
well as a point on the negative part of the y axis that ensures the airfoil
leading edge is tangent to the y axis. Once the whole airfoil is
generated, the thickness distribution is normalized to yield a 12%
thickness-to-chord ratio.

The lift coefficient in the OP 1 conditions, C; (X; OP 1), and the
lift-to-drag ratio in the OP 2 conditions, (C;/Cp)(%; OP 2), are
simultaneously maximized by applying the MOGA with a
population of 36 individuals during 24 generations. A partial view
of the computed individuals is shown in Fig. 14, along with the set of
nondominated solutions eventually obtained. Figure 14 clearly
illustrates that the initial NACAQ0012 airfoil aerodynamic perform-



CONGEDO, CORRE, AND CINNELLA 1311

ances in DG flow were substantially improved through the
optimization process. In particular, almost all of the Pareto-optimal
individuals now have a lift coefficient at OP 1 and a lift-to-drag ratio
at OP 2 greater than the lift coefficient and the lift-to-drag ratio
generated by the NACAQ012 airfoil for a DG flow. To draw a fair
comparison with PFG flow, a shape optimization is also performed
for the perfect-gas (y =1.4) flow at M, =0.85 and 1 deg of
incidence over an airfoil of 12% thickness-to-chord ratio, with a
geometry based on the Bézier curves previously described. With
unique thermodynamic conditions for this PFG flow, the problem is
expressed as the simultaneous maximization of the lift and
minimization of the drag. The optimal solutions obtained are plotted
in Fig. 14 in the lift/lift-to-drag plane: they remain well below the
optimal solutions associated with the DG flow. Figure 15 displays
one of the optimal solutions selected along the final Pareto front; the
OAB shape was retained because, among the set of nondominated
solutions, it displays the thickness distribution in the trailing-edge
region that is the most likely to preserve good aerodynamic
performances in the viscous case. The wall pressure and Mach
number distributions computed on the NACAQ0012 airfoil and OAB
for subcritical (OP 1) and supercritical (OP 2) conditions are plotted
in Figs. 16 and 17. For subcritical conditions, both airfoils display
zero drag, but OAB yields a much higher lift coefficient
(C;. =0.794) than the NACAO012 airfoil (C, = 0.226), due to a
much stronger expansion of the flow around the upper leading edge.
For supercritical conditions, the OAB yields more than twice the drag
of the NACAO0012 airfoil (Cp =0.116 vs Cp, = 0.051), but also

R A

generates almost three times the lift of the NACAQ0012 airfoil
(C, = 1.3vsC; = 0.45),and so its lift-to-drag ratio of 11.2 is indeed
better than the value of 8.8 obtained with the NACAO0012 airfoil, as
expected from the optimization process. An overview of the
optimized airfoil performance is provided in Fig. 18, in which the lift
coefficient and the lift-to-drag ratio are plotted for dense-gas flow
around both the baseline NACAQO0?2 airfoil and the optimized airfoil
for different freestream thermodynamic conditions covering the
subcritical as well as the low- and high-pressure transonic BZT flow
regimes. As expected from the two-point optimization, the modified
airfoil systematically ensures a level of lift for DG flow in the
subcritical regime that is at least equivalent to the highest level
achievable with a PFG flow, while preserving a high lift-to-drag ratio
in the subcritical and low-pressure supercritical regimes.

The airfoil viscous performance has also been checked for this
lifting case, using the methodology of [15]. The viscous
computations were performed on an O-grid of 200 x 64 cells, with
a mean first cell height in the direction normal to the wall equal to
about 6 x 1073¢, and on a finer grid of 200 x 128 cells, with a mean
first cell height equal to 5 x 10~%c. The outer boundary is located
about 12 chords away from the airfoil. The freestream conditions are
successively taken equal to OP 1 and OP 2. The corresponding fine-
grid values of the lift and drag coefficients (respectively, C; and Cp)
and of the lift-to-drag ratio are reported in Table 1. For comparison,
viscous solutions for DG flows past the NACAQO012 airfoil at the
same thermodynamic conditions are also presented. The optimized
airfoil conserves a superior aerodynamic performance over the

a) Perfect-gas flow: M, = 83.0

Al

b) Dense-gas flow, VDW equation of state: M, = 0.95

c) Dense-gas flow, MAH equation of state: M, = 0.925

Fig. 11 Pressure contours around the baseline NACA 0012 airfoil and optimal airfoils for perfect and dense-gas flows with freestream conditions leading

to an equivalent amount of wave drag for the baseline airfoil.



1312 CONGEDO, CORRE, AND CINNELLA

Fig. 12 Mach number contours and streamlines for turbulent flows past four airfoils and close-up of the streamlines at the trailing edge (grid aspect
ratio not preserved): a) OAB, b) 0A095, ¢) NACA0012, and d) Rusak-Wang; M, = 0.96 and Re 2 10’.

NACAO0012, even when viscous effects are relevant. It should be
noticed, however, that the viscous performance of both DG and PFG
flows significantly differs from inviscid results. At flow conditions
OP 1, the flowfield is entirely subsonic and the boundary layer is
attached, both for the NACAO0012 and for the OAB airfoils.
However, because of the high total pressure of the incoming stream,
the flow strongly accelerates downstream of the stagnation point, and
a deep suction peak appears at the upper surface downstream of the

leading edge. In fact, the strong suction exerted on the upper surface
is the main reason for the dramatic improvement of the lift over the
perfect gas for an inviscid flow. However, when viscous effects are
taken into account, the very strong adverse pressure gradient
downstream of the suction peak leads to a significant growth of the
boundary layer and to enhanced friction in the leading-edge region.
Consequently, the peak itself is noticeably smoothed out, and the
airfoil lift drops below the inviscid value. Figure 19 shows the wall
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pressure coefficient and skin friction distribution for this case. For
flow condition OP 2, the relevant differences with respect to inviscid
flow are due to strong shock/boundary-layer interactions, leading to
postshock separation and reattachment, both in the flow over the
NACAO0012, and over OAB, with subsequent blowup of the subsonic
part of the boundary layer (see the wall pressure and skin friction
distributions in Fig. 20). Paradoxically, in this case, the shock/
boundary-layer interaction leads to a reduction in both lift and drag
coefficients with respect to inviscid flow, due to the considerably

25
= = = = NACAO0012/lower surface
o 2F — — — — OAB/ lower surface
& NACA0012 / upper surface
§ 15 F OAB / upper surface
@
8 aF
e
2
@ -05f
o
= of
©
s 05
1F
1 1 1 1 1 1
I 0.2 0.4 0.6 0.8 1
xlc
.
0.8
I
2
5
2 o6
S = = = = NACA0012/lower surface
s — — — — OAB/ lower surface
= 04r s NACA0012 / upper surface
2 OAB / upper surface
02
ok
1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1
xlc

Fig. 16 Lifting-airfoil two-point performance optimization; wall
distributions at OP 1 for the NACA0012 airfoil and an optimal airfoil
for DG flow.

decreased strength of the shock waves. For completeness, the PFG
viscous aerodynamic performance of the NACAO0012 is also
included in Table 1. In the PFG case, the lift coefficient is negative,
because of massive postshock separation at the upper surface, caused
by severe shock/boundary-layer interaction (see [14]).
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Fig. 17 Lifting-airfoil two-point performance optimization; wall
distributions at OP 2 for the NACA0012 airfoil and an optimal airfoil
for DG flow.
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V. Conclusions

A shape optimization was performed for inviscid transonic flows
of dense gases over airfoils. Though computationally intensive, the
use of a genetic algorithm to solve this optimization has the following
advantages:

1) Because the GA is fully decoupled from the solver providing the
values of the objective functions to be optimized, it allows an easy
switch from the simple Van der Waals equation of state to the more
advanced Martin—Hou equation of state.

2) A GA is well adapted to the solution of multipoint optimization
problems that arise naturally in aerodynamics (simultaneous drag
minimization for near-critical and supercritical Mach numbers or
performance improvement for a lifting airfoil in both the subcritical
and supercritical regimes).

When solved for inviscid flow, the drag minimization problem of a
symmetric airfoil with fixed thickness-to-chord ratio indeed yields
shock-free shapes for an extended range of freestream Mach number.
However, the optimal airfoils display a thick trailing edge that is
bound to induce premature flow separation; hence, an increase in
form drag when taking into account the viscous effects in the flow
analysis. This point was actually checked by a posteriori numerical
experiments using an available version of the SGS solver extended to
the Reynolds-Averaged Navier—Stokes (RANS) equations for
dense-gas flows. The multipoint performance optimization for a
lifting airfoil in subcritical and supercritical flow conditions allowed
determining an airfoil shape that provides an overall improvement of
the lift coefficient while preserving the high lift-to-drag ratio typical
from BZT flows. However, in the case of inviscid flow optimization,
it was again necessary to select an optimum shape within the optimal
Pareto set that might also ensure good performances for viscous
flows, thanks to a thinner trailing edge, less prone to boundary-layer
separation. Further developments of the study will aim at taking into
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Fig. 19 Lifting-airfoil two-point performance optimization; wall
distributions of the pressure and skin friction coefficients for viscous
flow at OP 1 past the NACA0012 airfoil and an optimal airfoil for DG
flow.

account viscous effects directly within the optimization process,
rather than by an a posteriori analysis. A substantial reduction of
computational costs is necessary to carry out such a RANS-based
optimization, which can be achieved by reducing the number of
evaluations of the objective function via the Navier—Stokes solver by
the use of properly calibrated artificial neural networks [33]; on the
other hand, genetic algorithms are naturally well adapted to parallel
computing. Moreover, significant improvement may be expected
from the use of hybrid optimization algorithms, combining the
flexibility of genetic strategies with the accuracy and efficiency of
gradient-based methods. As a final remark, note that the isolated
airfoils considered in the present study merely represent a useful
simplified configuration to perform preliminary feasibility studies.
The actual interest lies instead in the application of the present results
to ORC turbine cascades. Preliminary studies about inviscid and
viscous dense-gas flows through turbine cascades [39,40] have
shown that the use of a BZT working fluid allows an efficiency
improvement of about 3% over air, and even greater benefits with

Table 1 Aerodynamic performance of viscous flows over the
NACAO0012 airfoil and an optimized airfoil stemming from

the MOGA strategy
Case Cp CL C./Cp
Optimized airfoil, 1.416 x 1072 0.6077 42.92
condition OP 1
Optimized airfoil, 6.648 x 1072 0.9693 14.58

condition OP 2
NACAO0012, condition OP 1 1.275 x 1072 0.1833 14.38
NACAO0012, condition OP 2 3.448 x 1072 0.2529 7.335
NACAO0012, perfect-gas flow  5.456 x 1072 —4.086 x 1072 —0.7489
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respect to steam, for a given cascade pressure ratio. The preceding
advantages were simply due to the special nature of the working
fluids, because the blade shapes considered for the study were typical
gas turbine blade sections, not specifically adapted for dense-gas
flows. The present encouraging results make one reasonably believe
that a proper multipoint shape optimization could further improve the
system efficiency over a sufficiently wide range of operating
conditions, while conserving the same cascade pressure ratio of the
baseline flow, that is, without significantly affecting the system
power output. This would be a fundamental breakthrough for the
development of real-world BZT ORC turbogenerators.

References

[1] Thompson, P. A., “A Fundamental Derivative in Gas Dynamics,”
Physics of Fluids, Vol. 14, No. 9, 1971, pp. 1843-1849.

[2] Cramer, M. S., and Kluwick, A., “On the Propagation of Waves
Exhibiting Both Positive and Negative Nonlinearity,” Journal of Fluid
Mechanics, Vol. 142, May 1984, pp. 9-37.

[3] Cramer, M. S., “Shock Splitting in Single-Phase Gases,” Journal of

Fluid Mechanics, Vol. 199, 1989, pp. 281-296.

[4] Cramer, M. S., and Best, L. M., “Steady, Isentropic flows of Dense
Gases in Cascade Configurations,” Physics of Fluids A, Vol. 3, No. 1,
1991, pp. 219-226.

[5] Cramer, M. S., and Tarkenton, G. M., “Transonic Flows of Bethe-
Zel’dovich-Thompson Fluids,” Journal of Fluid Mechanics, Vol. 240,
July 1992, pp. 197-228.

[6] Monaco, J. F., Cramer, M. S., and Watson, L. T., “Supersonic Flows of
Dense Gases in Cascade Configurations,” Journal of Fluid Mechanics,
Vol. 330, Jan. 1997, pp. 31-59.

[7] Brown, B. P., and Argrow, B. M., “Application of Bethe-Zel’dovich-
Thompson Fluids in Organic Rankine Cycles,” Journal of Propulsion
and Power, Vol. 16, No. 6, 2000, pp. 1118-1124.

[8] Lambrakis, K. C., and Thompson, P. A., “Existence of Real Fluids with

a Negative Fundamental Derivative I',” Physics of Fluids, Vol. 15,
No. 5, 1972, pp. 933-935.

[9] Thompson, P. A., and Lambrakis, K. C., “Negative Shock Waves,”
Journal of Fluid Mechanics, Vol. 60, Aug. 1973, pp. 187-208.

[10] Cramer, M. S., “Negative Nonlinearity in Selected Fluorocarbons,”
Physics of Fluids A, Vol. 1, No. 11, 1989, pp. 1894-1897.

[11] Cinnella, P., and Congedo, P. M., “Aerodynamic Performance of
Transonic Bethe-Zel’ Dovich-Thompson Flows Past an Airfoil,” AIAA
Journal, Vol. 43, No. 2, 2005, pp. 370-378.

[12] Cinnella, P., Congedo, P. M., and Laforgia, D., “Investigation of BZT
Transonic Flows Past an Airfoil Using a 5th Power Virial Equation of
State,” Proceedings of the 4th European Congress on Computational
Methods in Applied Sciences and Engineering [CD-ROM], Vol. 1,
Univ. of Jyvaskyla, Jyvaskyla, Finland, 2004.

[13] Cinnella, P., and Congedo, P. M., “Inviscid and Viscous Behavior of
Dense Gas Flows Past an Airfoil” (to be published).

[14] Cinnella, P., “Viscous Performance of Transonic Dense Gas Flows,”
35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Canada,
ATAA Paper 2005-5284, 2005.

[15] Cinnella, P., and Congedo, P. M., “Numerical Solver for Dense Gas
flows,” AIAA Journal, Vol. 43, No. 11, 2005, pp. 2458-2461.

[16] Wang, C. W., and Rusak, Z., “Similarity Solutions of ¢3¢xx = ¢5y7
with Applications to Transonic Aerodynamics of Dense Gases,” SIAM
Journal on Applied Mathematics, Vol. 59, No. 2, 1998, pp. 514-528.

[17] Rusak,Z.,and Wang, C. W., “Low-Drag Airfoils in Transonic Flows of
Dense Gases,” Zeitschrift fiir angewandte Mathematik und Physik
(ZAMP), Vol. 51, No. 3, 2000, pp. 467-480.

[18] Argrow, B. M., “Computational Analysis of Dense Gas Shock Tube
Flow,” Shock Waves, Vol. 6, No. 4, 1996, pp. 241-248.

[19] Brown, B. P., and Argrow, B. M., “Nonclassical Dense Gas Flows for
Simple Geometries,” AIAA Journal, Vol. 36, No. 10, 1998, pp. 1842—
1847.

[20] Wang, C. W., and Rusak, Z., “Numerical Studies of Transonic BZT gas
Flows Around a Thin Airfoil,” Journal of Fluid Mechanics, Vol. 396,
Oct. 1999, pp. 109-141.

[21] Martin, J.J., and Hou, Y. C., “Development of an Equation of State for
Gases,” AIChE Journal, Vol. 1, No. 2, 1955, pp. 142—-151.

[22] Emanuel, G., “Assessment of the Martin—Hou Equation for Modelling a
Nonclassical Fluid,” Journal of Fluids Engineering, Vol. 116, No. 4,
1994, pp. 883-884.

[23] Guardone, A., Vigevano, L., and Argrow, B. A., “Assessment of
Thermodynamic Models for Dense Gas Dynamics,” Physics of Fluids,
Vol. 16, No. 1, 2004, pp. 3878-3887.

[24] Jameson, A., Schmidt, W., and Turkel, E., “Solutions of the Euler
Equations by Finite Volume Methods Using Runge-Kutta Time-
Stepping Schemes,” AIAA Paper 81-1259, June 1981.

[25] Rezgui, A., Cinnella, P., and Lerat, A., “Third-Order Finite Volume
Schemes for Euler Computations on Curvilinear Meshes,” Computers
and Fluids, Vol. 30, Nos. 7-8, 2001, pp. 875-901.

[26] Harten, A., Lax, P. D., and van Leer, B., “On Upstream Differencing
and Godunov-Type Schemes for Hyperbolic Conservation Laws,”
SIAM Review, Vol. 25, No. 1, 1983, pp. 35-61.

[27] Van Leer, B., “toward the Ultimate Conservative Difference Scheme, 5:
A Second-Order Sequel to Godunov’s Method,” Journal of
Computational Physics, Vol. 32, No. 2, 1979, pp. 101-136.

[28] Barth, T. J., and Jespersen, D. C., “The Design and Application of
Upwind Schemes on Unstructured Meshes,” AIAA Paper 89-0366,
1989.

[29] Venkatakrishnan, V., “Convergence to Steady-State Solutions of the
Euler Equations on Unstructured Grids with Limiters,” Journal of
Computational Physics, Vol. 118, No. 1, 1995, pp. 120-130.

[30] Luo, H., Baum, J., and Lohner, R., “A Fast, Matrix-Free Implicit
Method for Compressible Flows on Unstructured Grids,” Journal of
Computational Physics, Vol. 146, No. 2, 1998, pp. 664—690.

[31] Rusak,Z.,and Wang, C. W., “Transonic Flows of Dense Gases Around
an Airfoil with a Parabolic Nose,” Journal of Fluid Mechanics,
Vol. 346, Jan. 1997, pp. 1-21.

[32] Wang, J. F., Periaux, J., and Sefrioui, M., “Parallel Evolutionary
Algorithms for Optimization Problems in Aerospace Engineering,”
Journal of Computational and Applied Mathematics, Vol. 149, No. 1,
2002, pp. 155-169.

[33] Giannakoglou, K. C., “Design of Optimal Aerodynamic Shapes Using
Stochastic Optimization Methods and Computational Intelligence,”
Progress in Aerospace Sciences, Vol. 38, No. 1, 2002, pp. 43-76.

[34] Peigin, S., and Epstein, B., “Robust Optimization of 2D Airfoils Driven
by Full Navier—Stokes Computations,” Computers and Fluids, Vol. 33,
No. 9, 2004, pp. 1175-1200.

[35] Pulliam, T. H., Nemec, N., Holst, T., and Zingg, D. W., “Comparison of
Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-



1316 CONGEDO, CORRE, AND CINNELLA

Objective Viscous Airfoil Optimization,” 41st Aerospace Sciences
Meeting, Reno, NV, AIAA Paper 2003-0298, 2003.

[36] Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley, New York, 2001.

[37] Srinivas, N., and Deb, K., “Multiobjective Function Optimization
Using Nondominated Sorting Genetic Algorithms,” Evolutionary
Computation, Vol. 2, No. 3, 1995, pp. 221-248.

[38] Chung, T. H., Ajlan, M., Lee, L. L., and Starling, K. E., “Generalized
Multiparameter Correlation of Nonpolar and Polar Fluid Transport
Properties,” Industrial and Engineering Chemistry Research, Vol. 27,
No. 4, 1988, pp. 671-679.

[39] Cinnella, P., Congedo, P. M., and Laforgia, D., “Transonic Flows of
BZT Fluids Through Turbine Cascades,” Computational Fluid
Dynamics 2004, edited by D. Zingg, Springer—Verlag, Berlin, 2004,
pp- 227-232.

[40] Cinnella, P., “Numerical Simulations of Dense Gas Flows in
Turbomachinery,” Proceedings of the TCN-CAE Conference 2005
[CD-ROM], Paper 68, Consorzio TCN, Pula, Italy, 2005.

H. Chelliah
Associate Editor



