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On the visualization of high-dimensional data

Pierrick Bruneau *

CRP - Gabriel Lippmann, Department of Informatics
41, rue du Brill, 1.-4422 Belvaux (Luxembourg)

Abstract

Computing distances in high-dimensional spaces is deemed with the
empty space phenomenon, which may harm distance-based algorithms for
data visualization. We focus on transforming high-dimensional numeric
data for their visualization using the kernel PCA 2D projection. Gaussian
and p-Gaussian kernels are often advocated when confronted to such data;
we propose to give some insight of their properties and behaviour in the
context of a 2D projection for visualization. Also, such projections induce
some artifacts, which, if not handled, should not be ignored.

1 Distribution of distances in high-dimensional
spaces

In high-dimensional spaces, normalized pairwise Euclidian distances tend to be-
come all equal to 1 (see [3, section 1.4] for a justification). This is a corollary of
the well-known curse of dimensionality, or empty space phenomenon. To illus-
trate this, we consider an artificial dataset of 3000 elements and 500 dimensions,
each value being drawn independently from a uniform law in [0,1]. The dataset
thus lies in the 500-dimensional unit hypercube. The histogram of pairwise dis-
tances between elements in the dataset (figure 1) clearly illustrates the claim of
their being excessively biased towards 1.

This means that distance-based visulization methods (e.g. graph embedding
that would use distances to discover a topology) would complicate the interpre-
tation of the data by a user, all elements being equally dissimilar.

2 Kernel PCA projection for visualizing
high dimensional data

The kernel PCA is the kernelized version of the PCA, a popular projection
method. It operates on a kernel matrix (i.e. positive semi-definite similarity
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Figure 1: Distribution of pairwise Euclidian distances in the artificial dataset.

matrix), and extracts non-linear principal manifolds underlying the similarity
matrix (see appendix A for details). The method maps these manifolds on a
vector space: thus, we can build approximate, non-linear, 2D projections of
high-dimensional data, by selecting the 2 dominant eigen-dimensions, and the
values taken by the data elements on these.

Our intuition is that, with an adequate kernel function and matrix, this
projection will lead to meaningful representations of a data set, from the distance
distribution point of view.

3 Choice of a kernel function

As stated in the previous section, we aim at finding a suitable kernel for high-
dimensional numeric data, i.e. that is little sensitive to the curse of dimension-
ality. A properly parametrized gaussian kernel function was successfully used
in such situations [5]:

diax x)* ) (1)

k(x,x') = exp(— .
o

Where x,x’ € RY, d5(.,.) denotes the Euclidian distance, and o = sup dzz(., .).
If x and x’ are members of a data set X, the bound may empirically be set with
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Figure 2: Example of kernel PCA major eigen-dimensions, with a Gaussian
kernel applied to a synthetic data set in two dimensions. The contour lines and
colour luminance indicate how values in the original data space are mapped in
the eigen-dimensions (quoted from [2])

maxy x'ex dr2(x,x’). This kernel function can be interpreted as a smoothed
neighborhood detector. As can be seen in figure 2, values in the mapped vector
space indicate the closeness to some local dense pattern in the original data.

Using the kernel function (1), and the kernel PCA projection method, the
artificial dataset of the previous section was mapped to a 2 dimensional pro-
jection. It is shown on figure 3a, and the associated histogram of pairwise
distances, taken in the transformed 2D space, is given in figure 4a. It exhibits a
much wider distribution, which emphasizes the interest of the method in order
to represent the data.

The Gaussian kernel has a single drawback: the distribution of its values is
dimensionality dependent. For our 500-dimensional example, it is given in figure
5a. In fact, even if we are able to perform the kernel PCA projection for this
example, the Gaussian kernel is actually not completely insensitive to the curse
of dimensionality : the higher the dimensionality, the sharper it is peaked just
above its lower bound, exp(—1). In extreme cases, this might lead to numeric
issues, such as unstable eigen-decompositions.

This is what motivated the p-Gaussian kernel function, a variant that ex-
plicitly takes account of the space dimensionality and original distance distri-
bution [4]:
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Figure 3: 2D projections of the artificial dataset with the kernel PCA method,
using either the Gaussian (a) or the p-Gaussian (b) kernel function. For the
sake of clarity, a subset of 200 elements, extracted from the collection of 3000
elements, is solely displayed.
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Figure 4: Distribution of pairwise Euclidian distances in the artificial dataset
when represented in the kernel PCA transformed-2D space, using either the
Gaussian (a) or p-Gaussian (b) kernel function.
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Figure 5: Distribution of values returned by the Gaussian (a) and p-Gaussian
(b) functions for our artificial dataset.

(2)

This function was adjoined by empirical formulas for setting p and o, de-
signed to ensure that the kernel values match the cumulative distribution of the
distances in the original space, irrespective of its dimensionality:

bl x) = exp (- 2226201,
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with d3% (resp. d3%°) the 5% (resp. 95%) percentile of the cumulative dis-
tribution of dy '. This latter kernel function was also used to apply the kernel
PCA 2D projection to our synthetic 500-dimensional dataset. This led to the
projection in figure 3b, with the associated distance distribution shown in figure
4b. We see that, up to a scale factor, it does not significantly differ from the
classical Gaussian kernel with this respect.

Examples of eigenvalue profiles are given in figure 6 for the Gaussian and
p-Gaussian kernels. We first notice that, apart from the scale factor mentionned
above, the profile of the 20% leading eigenvalues of both kernels is very simi-
lar. However, the remaining eigenvalues are negative for the p-Gaussian kernel,

n the referenced paper, di(g’ and d%52% have been mistakenly swaped in the expressions

for . A corrected version is reported here.
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Figure 6: Eigenvalues, in decreasing order, for the Gaussian and p-Gaussian
kernel evaluated on our artificial 500-dimensional dataset. For legibility, the
first eigenvalue, 100 times higher in magnitude than any other eigenvalue in
both cases, was omitted.

which states its non-positive semi-definiteness.

The kernel PCA 2D projection only requires the 2 major eigenpairs, which,
provided the data is sufficiently plentiful, and non-degenerate, will always be
associated to positive eigenvalues. This is reflected by the similar projections,
and associated distance profiles, given above.

In figure 5b, we see that the p-Gaussian kernel values are almost evenly
distributed in [0,1]. Then, practitionners may choose according to their tar-
getted application: if the positive semi-definiteness is mandatory, the Gaussian
kernel function is the only acceptable choice. If numerical stability is the most
important, the p-Gaussian seems preferable.

4 Stress properties of a kernel PCA projection

When projecting d-dimensional data to a 2-dimensional space (d > 2), there
is necessarily some projection artifacts, i.e. some distortion induced by the
transformed 2D space with respect to the distribution of pairwise distances
(see [1] for details on this matter).

In figure 7, we show the average compression and stretching artifacts pro-
duced by the application of the kernel PCA 2D projection to our dataset with
the p-Gaussian kernel function. In brief, each element is matched with its ten-
dency to have lower (compression) or higher (stretching) pairwise distances to
other elements, in comparison to the distances in the original data space.
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Figure 7: Compressing and stretching artifacts, represented for a subset of 200
randomly chosen elements. The distortion values are represented on a heat map
scale, and their average for each element is mapped on its Voronoi cell.

Figure 7 illustrates how the 2D projection method compensates the peaked
distribution of pairwise distances in the original space, by compressing the ele-
ments in the center of the projection, and stretching the elements close to the
projection boundaries. The information loss implied by the process is somehow
materialized by the obtained vaguely “Gaussian shaped” distribution, whereas
our knowledge of the ground truth generating process would lead us to expect
a uniform distribution.

5 Software implementations

The toy experiments, and graphics shown in this paper were implemented with
R. The kernel PCA projections were performed with the semisupKernelPCA
package. The graphics mostly relied on the patchPlot and deldir packages. irlba
was used for the fast extraction of the two major eigenpairs.
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A Kernel PCA theory

Let us consider a set of elements X = {x; };¢c1...n, with values in some domain X
(referred to as original space hereafter), and a nonlinear, unknown yet, transfor-
mation ¢ that projects any element x; onto a point ¢(x;) € RM (called feature
space in the remainder).

Assuming vazl ¢(x;) = 0, the sample covariance matrix of the image of X
in the feature space is given as:

N
1
C=y z; p(xi)p(xi)",
i—
with the associated eigenvector equation:

Cvy, = AV, m=1... M.

Considering the kernel function k(x,x’) = ¢(x)7¢(x’), and following works
by [6] and [2], this eigenvector problem can be transformed to:

Ka,, = \,,Na,,, m=1... M, (4)

with K the N x N matrix such that K;; = k(x;,x;), and a,, a vector in RV,
Let us note that the mapping ¢ does generally not have to be explicitly defined:
indeed, any positive semi-definite matrix K was proven to be the dot product
in some feature space, may it be infinite dimensional [2]. Thus, practitioners
preferably design kernel functions directly, only caring about the positive semi-
definiteness of the induced kernel matrices.

After solving (4) for its eigenvectors and eigenvalues, a set of M projection
functions can be defined as follows:

N
ym(x) = Z amik(x7 Xi)-
=1

Assuming eigenvalues in decreasing order, the 2D projection that captures
the maximal variance in the feature space is then built with y; and ys. The



assumption Zfil ¢(x;) = 0 can be released with the following modified kernel
expression [2]:

K=K-1yK-Kly+1yKly,

with 1x the N x N matrix in which every cell has the value %



