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We prove that the class of discrete time stationary max-stable process satisfying the Markov property is equal, up to time reversal, to the class of stationary max-autoregressive processes of order 1. A similar statement is also proved for continuous time processes.

Introduction

Given a class of stochastic processes, a natural and important question is to determine conditions ensuring the Markov property. For example, a zero mean Gaussian process X on T = Z or R satisfies the Markov property if and only if

E[X(t 2 ) | X(t), t ≤ t 1 ] = E[X(t 2 ) | X(t 1 )] for all t 1 , t 2 ∈ T, t 1 ≤ t 2 .
It is also well known that if X is a stationary zero mean Gaussian process on T satisfying the Markov property, then X must be the Ornstein-Uhlenbeck process with covariance function

E[X(t 1 )X(t 2 )] = E[X(0) 2 ]e -λ|t 2 -t 1 |
for some λ ∈ [0, +∞]. The case λ = 0 corresponds to a constant process, the case λ = +∞ to a Gaussian white noise.

Within the class of symmetric α-stable (SαS) processes, the situation is much more complicated (see Adler et al. [START_REF] Adler | On stable Markov processes[END_REF]). No complete characterization of SαS Markov processes is known but only necessary or sufficient conditions. One can construct at least two classes of stationary Markov SαS processes, the right and the left SαS Ornstein-Uhlenbeck processes.

The purpose of this paper is to study the Markov property within the class of max-stable random processes. Without loss of generality, we shall consider only simple max-stable processes defined as follows.

Definition 1. A random process η = (η(t)) t∈T is said to be simple max-stable if it has 1-Fréchet marginals P[η(t) ≤ y] = exp(-1/y), for all t ∈ T, y > 0, and satisfies the following max-stability property:

n -1 n i=1 η i d = η, for all n ≥ 1,
where (η i ) i≥1 are independent copies of η and denotes pointwise maximum and d = denotes the equality of distributions.

Our main result is a complete characterization of the class of stationary simple max-stable Markov processes on T = Z or R. Our analysis relies on a recent paper [START_REF] Dombry | Regular conditional distributions of max infinitely divisible processes[END_REF] where explicit formulas for the conditional distributions of max-stable processes are proved. This helps clarifying the notion of (Markovian) dependence for max-stable processes.

Related works by Tavares [START_REF] Tavares | An exponential Markovian stationary process[END_REF], Alpuim [START_REF] Alpuim | An extremal Markovian sequence[END_REF], Alpuim et al. [START_REF] Alpuim | On the stationary distribution of some extremal Markovian sequences[END_REF] characterized stationary max-AR(1) processes, and Alpuim et al. [START_REF] Alpuim | Extremes and clustering of nonstationary max-AR(1) sequences[END_REF] study maxautoregressive processes and the Markov property in extreme value theory. Extremes of Markov chains have been considered by Perfekt [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF] and Smith [START_REF] Smith | The extremal index for a Markov chain[END_REF], while Smith et al. [START_REF] Smith | Markov chain models for threshold exceedances[END_REF] consider Markov chain models for threshold exceedances (see the monograph by Beirlant et al. section 10.4 for further discussion on extremes and Markov chains).

Well known examples of discrete time simple max-stable processes satisfying the Markov property are maximum-autoregressive processes of order 1. The max-AR(1) process with parameter a ∈ [0, 1] is defined as follows: consider (F n ) n∈Z , a sequence of i.i.d. random variables with standard 1-Fréchet distribution, and set

X a (t) = n≤t (1 -a)a t-n F n if a ∈ [0, 1) X 1 (t) ≡ F 0 if a = 1 , t ∈ Z. (1) 
The max-AR(1) process X a is a stationary simple max-stable process satisfying X a (t + 1) = max(aX a (t), (1 -a)F t+1 ), t ∈ Z.

This relation explains the term max-autoregressive and implies that X a satisfies the Markov property. The associated Markov kernel

K a (x, •) is defined by K a (x, dy) = P[X a (t + 1) ∈ dy | X a (t) = x]
and is easily computed: denoting by δ z the Dirac measure at point z, it holds

K a (x, dy) = e -(1-a)/(ax) δ ax (dy) + (1 -a)y -2 e -(1-a)/y 1 {y>ax} dy.
Note that the parameter a ∈ [0, 1] tunes the strength of the dependence, ranging from independence when a = 0 to complete dependence when a = 1.

It can be retrieved from the support of the law of X a (t + 1)/X a (t) since

supp(X a (t + 1)/X a (t)) = [a, +∞) if a ∈ [0, 1),
and the support is reduced to {1} in the case a = 1.

It is well known that if X = (X(t)) t∈Z is a stationary Markov chain, then the time reversed process X = (X(-t)) t∈Z is also a stationary Markov chain. Hence, time reversed max-autoregressive processes are further examples of stationary max-stable Markov processes. More precisely, if X a is the max-AR(1) process (1), the associated time reversed process Xa is given by

Xa (t) = n≥t (1 -a)a n-t Fn , t ∈ Z, (2) 
where ( Fn ) n∈Z = (F -n ) n∈Z are i.i.d. random variables with standard 1-Fréchet distribution. Clearly, Xa satisfies the backward max-autoregressive relation Xa (t -1) = max(a Xa (t), (1 -a) Ft-1 ), t ∈ Z.

The Markov kernel associated to Xa is given by

Ǩa (y, dx) = P[ Xa (t + 1) ∈ dx | Xa (t) = y] = aδ y/a (dx) + (1 -a)
x -2 e -1/x+a/y 1 {x<y/a} dx.

Note that the Markov kernels K a and Ǩa are related by the equilibrium relation π(dx)K a (x, dy) = π(dy) Ǩa (y, dx)

where π(dx) = x -2 e -1/x 1 {x>0} dx is the stationary distribution. It is easily seen that for a = 0 or a = 1, X a and Xa have the same distribution. This means that the max-AR(1) process X a is reversible if a = 0 or a = 1. This is no longer the case when a ∈ (0, 1) since supp( Xa (t + 1)/ Xa (t)) = [0, 1/a] if a ∈ (0, 1).

The purpose of the present paper is the characterization of all stationary simple max-stable processes satisfying the Markov property.

Theorem 1. Any stationary simple max-stable process η = (η(t)) t∈Z satisfying the Markov property is equal in distribution to a max-AR(1) process [START_REF] Adler | On stable Markov processes[END_REF] or to a time-reversed max-AR(1) process (2).

The structure of the paper is the following. In section 2, we gather some preliminaries on max-stable processes and their representations that will be useful in our approach. Section 3 is devoted to the proof of Theorem 1. An extension to continuous time processes is considered in section 4.

2 Preliminaries on max-stable processes

Representations of max-stable processes

Our approach relies on the following representation of simple max-stable process due to de Haan [START_REF] De Haan | A spectral representation for max-stable processes[END_REF], see also Penrose [START_REF] Mathew | Semi-min-stable processes[END_REF] and Schlather [START_REF] Schlather | Models for stationary max-stable random fields[END_REF]. The symbol d = stands for equality in distribution.

Theorem 2. Let η = (η(t)) t∈Z be a simple max-stable process on Z. Then, there exists a nonnegative random process Y such that

E[Y (t)] = 1 for all t ∈ Z, (3) 
and η(t)

t∈Z d = i≥1 U i Y i (t) t∈Z , (4) 
where (Y i ) i≥1 are i.i.d. copies of Y and {U i , i ≥ 1} is a Poisson point process on (0, +∞) with intensity u -2 du and independent of (Y i ) i≥1 .

The random process Y is called a spectral process associated to η. Conversely, we call η the max-stable process associated to Y .

Consider the function space F = [0, +∞) Z endowed with the product sigma-algebra and F 0 = F \ {0}. The exponent measure of η is defined by

µ(A) = ∞ 0 P[uY ∈ A]u -2 dy, A ∈ F 0 measurable. ( 5 
)
It does not depend on the choice of the spectral process Y but only on the distribution of η. It satisfies the homogeneity property

µ(uA) = u -1 µ(A), u > 0, A ∈ F 0 measurable,
and is related to η by the relations

P[η(t 1 ) ≤ z 1 , . . . , η(t k ) ≤ z k ] = exp -µ{f ∈ F ; f (t i ) > z i for some 1 ≤ i ≤ k} for all k ≥ 1, t 1 , . . . , t k ∈ Z, z 1 , . . . , z k ≥ 0.
Note that there is no uniqueness for the representation (4). We introduce therefore the following notion of equivalent spectral processes.

Definition 2. Let Y and Y ′ be nonnegative stochastic processes satisfying

E[Y (t)] = E[Y ′ (t)] = 1, t ∈ Z. (6) 
We say that Y and Y ′ are equivalent if and only if the associated max-stable processes have the same distribution.

The following property will be useful. A subset

C ⊂ F is called a cone if and only if f ∈ C implies uf ∈ C for all u ≥ 0. Proposition 1. Let Y and Y ′ be equivalent processes as in Definition 2. Let C ⊂ F be a measurable cone such that P[Y ∈ C] = 1. Then, P[Y ′ ∈ C] = 1.
Proof. Let µ (resp. µ ′ ) be the exponent measure of the max-stable process associated to Y (resp. Y ′ ) by Equation [START_REF] Billingsley | Convergence of probability measures[END_REF]. Clearly, Y and Y ′ are equivalent if and only the exponent measures µ and µ ′ are equal. On the other hand, Equation [START_REF] Billingsley | Convergence of probability measures[END_REF] 

implies clearly that P[Y ∈ C] = 1 if and only if µ is supported by C, i.e. µ[F \ C] = 0. Similarly P[Y ′ ∈ C] = 1 if and only if µ ′ [F \ C] = 0.
Using this, we deduce easily that if Y and Y ′ are equivalent processes with

P[Y ∈ C] = 1, then µ = µ ′ is supported by C and P[Y ′ ∈ C] = 1.

Brown-Resnick stationary processes

In the following we focus on stationary max-stable processes. A random process X = (X(t)) t∈Z is called stationary if X and X(• + s) have the same distribution for all s ∈ Z. We use the following terminology, due to Kabluchko et al. 

[Y ∈ C] = 1. Then, for all s ∈ Z, P[Y (• + s) ∈ C] = 1. Furthermore, noting θ s : F → F the shift operator defined by θ s (f ) = f (• + s), it holds P Y ∈ s∈Z θ s (C) = 1.
Proof. As we noticed, if Y is Brown-Resnick stationary, then Y and Y (• + s) are equivalent for all s ∈ Z. The result follows then directly from Proposition 1 by setting

Y ′ = Y (• + s). For the last statement, if P[Y ∈ C] = 1, then P[Y ∈ θ s (C)] = 1 for all s ∈ Z, whence we deduce P Y ∈ ∩ s∈Z θ s (C) = 1.
The following lemma will also be useful in order to prove equivalence of processes. For

f 0 ∈ F , we note C inv (f 0 ) = {uf 0 (• + s); u ≥ 0, s ∈ Z} the smallest shift-invariant cone containing f 0 .
Lemma 1. Let Y and Y ′ be Brown-Resnick stationary processes satisfying [START_REF] De Haan | A spectral representation for max-stable processes[END_REF] and such that

P[Y ∈ C inv (f 0 )] = P[Y ′ ∈ C inv (f 0 )] = 1 for some f 0 ∈ F .
Then Y and Y ′ are equivalent.

This lemma can be related to the notion of stationary indecomposable max-stable process (see Wang et al. [START_REF] Wang | Decomposability for stable processes[END_REF]). The fact that the cone C inv (f 0 ) cannot be written as a disjoint union of shift-invariant smaller cones implies that the associated stationary max-stable process is indecomposable.

Proof. We denote by µ and µ ′ the exponent measure of the max-stable processes associated to Y and Y ′ respectively. Clearly the measure µ (and also µ ′ ) satisfies the following four properties:

i) µ is -1-homogeneous; ii) µ({f ∈ F ; f (0) ≥ 1}) = 1; iii) µ is shift-invariant; iv) µ is supported by C inv (f 0 ).
Recall indeed that properties i) and ii) are satisfied for all exponent measures, that iii) holds if and only if the spectral process Y is Brown-Resnick stationary and that iv) is equivalent to

P[Y ∈ C inv (f 0 )] = 1.
We will prove below that there exists at most one measure µ on F 0 satisfying the four properties i)-iv). Since µ ′ satisfies the same properties, we deduce that µ = µ ′ , whence Y and Y ′ are equivalent.

For g ∈ F , we denote by

C(g) = {ug; u ≥ 0} the smallest cone containing g. Clearly, C inv (f 0 ) = ∪ s∈Z C(f s ) with f s = θ s f 0 .
The different cones in the union may have non trivial intersections and two cases occur.

• First case: there is

s 0 ≥ 1 such that C(f s 0 ) ∩ C(f 0 ) = {0}.
Without loss of generality, we can suppose that s 0 is minimal with this property. Then,

C inv (f ) = ∪ 0≤s≤s 0 -1 C(f s ) and C(f s ) ∩ C(f s ′ ) = {0}, 0 ≤ s = s ′ ≤ s 0 -1. • Second case: for all s ≥ 1, C(f s ) ∩ C(f ) = {0}. Then C inv (f ) = ∪ s∈Z C(f s ) and C(f s ) ∩ C(f s ′ ) = {0}, s = s ′ .
We give the proof in the first case only, the second case follows from straightforward modifications. The support property iv) implies that µ = s 0 -1 s=0 µ s where µ s is the restriction of µ to C(f s ). The homogeneity property i) entails that the restriction µ s is completely determined by the real parameter

α s = µ({uf s ; u ≥ 1}). It holds indeed µ s ({uf s ; u ≥ v}) = v -1 µ s ({uf s ; u ≥ 1}) = α s v -1 , v > 0.
Furthermore, the shift invariance property iii) implies that α s ≡ α does not depend on s. Finally, the real parameter α is determined by the normalization property ii): we have indeed

µ({f ∈ F ; f (0) ≥ 1}) = s 0 -1 s=0 µ s ({f ∈ F ; f (0) ≥ 1}) = α s 0 -1 s=0 f 0 (s)
whence property ii) yields α = ( s 0 -1 s=0 f 0 (s)) -1 . This proves that µ is completely determined by properties i)-iv) and completes the proof of the lemma.

Conditional distributions

Our study of the Markov property for max-stable process relies on explicit formulas for the regular conditional distributions of max-stable process established in Dombry and Eyi-Minko [START_REF] Dombry | Regular conditional distributions of max infinitely divisible processes[END_REF]. The following expression for the conditional distribution function will be useful (see Proposition 4.1 in [START_REF] Dombry | Regular conditional distributions of max infinitely divisible processes[END_REF]). Proposition 3. Let η be a simple max-stable process with representation (4). For every t, t 1 , . . . , t k ∈ Z and z, z 1 , . . . , z k > 0

P[η(t 1 ) ≤ z 1 , . . . , η(t k ) ≤ z k | η(t) = z] = E 1 {∨ k i=1 Y (t i ) z i ≤ Y (t) z } Y (t) exp -E k i=1 Y (t i ) z i - Y (t) z + , with (x) + = max(x, 0).
The following well known result on independence for max-stable process will also be useful (cf. de Haan [START_REF] De Haan | A spectral representation for max-stable processes[END_REF]). Proposition 4. Let η be a simple max-stable process with representation (4) and consider t 1 , t 2 ∈ Z. Then η(t 1 ) and η(t 2 ) are independent if and only if

P[Y (t 1 ) = 0 or Y (t 2 ) = 0] = 1.
3 Proof of Theorem 1

A property of max-stable Markov processes

The following result is the central tool in our proof of Theorem 1. Note that no stationarity assumption is required at this stage. Proposition 5. Let η = (η(t)) t∈Z be a simple max-stable process with representation (4). For t, t ′ ∈ Z, we denote by α t,t ′ the essential infimum of the random variable

Y (t ′ )/Y (t) conditionally on Y (t) > 0, i.e. α t,t ′ = inf{c > 0; P[Y (t ′ )/Y (t) ≤ c | Y (t) > 0] > 0}. ( 7 
)
If η satisfies the Markov property, then, for all t 1 < t < t 2 ,

P[Y (t 1 ) = α t,t 1 Y (t) | Y (t) > 0] = 1 or P[Y (t 2 ) = α t,t 2 Y (t) | Y (t) > 0] = 1.
Proof of Proposition 5. First note that the definition [START_REF] Dombry | Regular conditional distributions of max infinitely divisible processes[END_REF] entails

P[Y (t ′ ) ≥ α t,t ′ Y (t) | Y (t) > 0] = 1.
Hence, in order to prove Proposition 5, it is enough to prove

P[Y (t 1 ) ≤ α t,t 1 Y (t) | Y (t) > 0] = 1 or P[Y (t 2 ) ≤ α t,t 2 Y (t) | Y (t) > 0] = 1,
or equivalently that, for all c 1 > α t,t 1 and all c 2 > α t,t 2 ,

P[Y (t 1 ) ≤ c 1 Y (t) | Y (t) > 0] = 1 or P[Y (t 2 ) ≤ c 2 Y (t) | Y (t) > 0] = 1. ( 8 
)
We now prove Equation [START_REF] Kabluchko | Stationary maxstable fields associated to negative definite functions[END_REF]. We use the fact that the past and the future of a Markov chain are independent conditionally on the present. More formally, for all t 1 < t < t 2 and z, z 1 , z 2 > 0,

P[η(t 1 ) ≤ z 1 , η(t 2 ) ≤ z 2 | η(t) = z] = P[η(t 1 ) ≤ z 1 | η(t) = z] P[η(t 2 ) ≤ z 2 | η(t) = z].
Using the explicit expression for the conditional cumulative distribution function given in Proposition 3, this is equivalent to

E 1 { Y (t 1 ) z 1 ∨ Y (t 2 ) z 2 ≤ Y (t) z } Y (t) exp -E Y (t 1 ) z 1 ∨ Y (t 2 ) z 2 - Y (t) z + = E 1 { Y (t 1 ) z 1 ≤ Y (t) z } Y (t) exp -E Y (t 1 ) z 1 - Y (t) z + × E 1 { Y (t 2 ) z 2 ≤ Y (t) z } Y (t) exp -E Y (t 2 ) z 2 - Y (t) z + . Using the identity (a ∨ b -c) + -(a -c) + -(b -c) + = (a ∧ b -c) + , this last equation simplifies into E 1 { Y (t 1 ) z 1 ∨ Y (t 2 ) z 2 ≤ Y (t) z } Y (t) exp E Y (t 1 ) z 1 ∧ Y (t 2 ) z 2 - Y (t) z + = E 1 { Y (t 1 ) z 1 ≤ Y (t) z } Y (t) E 1 { Y (t 2 ) z 2 ≤ Y (t) z } Y (t) . Finally, setting z 1 = c 1 z and z 2 = c 2 z with c 1 , c 2 , z > 0, we obtain E 1 { Y (t 1 ) c 1 ∨ Y (t 2 ) c 2 ≤Y (t)} Y (t) exp E 1 z Y (t 1 ) c 1 ∧ Y (t 2 ) c 2 -Y (t) + = E 1 { Y (t 1 ) c 1 ≤Y (t)} Y (t) E 1 { Y (t 2 ) c 2 ≤Y (t)} Y (t) .
Note that the right hand side of this equality does not depend on z > 0 and is positive as soon as c 1 > α t,t 1 and c 2 > α t,t 2 (this is a simple consequence of the definition ( 7)). Then, the exponential factor in the left hand side must be constant and equal to 1. We deduce that, for all

c 1 > α t,t 1 , c 2 > α t,t 2 , E 1 { Y (t 1 ) c 1 ∨ Y (t 2 ) c 2 ≤Y (t)} Y (t) = E 1 { Y (t 1 ) c 1 ≤Y (t)} Y (t) E 1 { Y (t 2 ) c 2 ≤Y (t)} Y (t) (9) 
and also

P Y (t 1 ) c 1 ∧ Y (t 2 ) c 2 ≤ Y (t) = 1. ( 10 
)
Let us introduce the probability measure

Pt (•) = E[1 {•} Y (t)
] and the events

A 1 = Y (t 1 ) c 1 ≤ Y (t) and A 2 = Y (t 2 ) c 2 ≤ Y (t) .
With these notations, Equation ( 9) becomes

Pt [A 1 ∩ A 2 ] = Pt [A 1 ] Pt [A 2 ]
and states that the events A 1 and A 2 are Pt -independent. On the other hand, Equation [START_REF] Mathew | Semi-min-stable processes[END_REF] yields

P[A 1 ∪ A 2 ] = 1 which clearly implies Pt [A 1 ∪ A 2 ] = 1.
Taking the complementary set, we obtain

Pt [A c 1 ∩ A c 2 ] = 0 and, from the independence of A 1 and A 2 , Pt [A c 1 ] Pt [A c 2 ] = 0. Thus, we have Pt [A c 1 ] = 0 or Pt [A c
1 ] = 0. Finally, the probability measures Pt [ • ] and P[ • | Y (t) > 0] are equivalent in the sense that they have the same null sets. Hence, it holds

P[A c 1 | Y (t) > 0] = 0 or P[A c 2 | Y (t) > 0] = 0.
This is equivalent to Equation ( 8) and this concludes the proof of Proposition 5.

A characterization of max-AR(1) processes

We provide a simple characterization of max-autoregressive processes that will be useful for the proof of Theorem 1. We consider the cone of constant functions

D 1 = {f ∈ F ; ∀t ∈ Z, f (t) = f (0)},
the cone of Dirac functions

D 0 = {f ∈ F ; ∃t 0 ∈ Z, ∀t ∈ Z, f (t) = f (t 0 )1 {t=t 0 } },
and also, for a ∈ (0, 1), the cone

D a = {f ∈ F ; ∃t 0 ∈ Z, ∀t ∈ Z, f (t) = f (t 0 )a t-t 0 1 {t≥t 0 } }.
Proposition 6. Let η be a simple max-stable process with representation (4) and assume that η is stationary. Then, the following statements are equivalent:

i) η has the same distribution as the max-AR(1) process X a defined by (1),

ii) P[Y ∈ D a ] = 1.
Proof. We denote by µ ′ the exponent measure of X a . For a ∈ [0, 1), Equation (1) implies that

X a = ∨ n∈Z F n f a (• -n) with f a (t) = (1 -a)a t 1 {t≥0}
, whence we deduce that µ ′ is given by

µ ′ [A] = n∈Z ∞ 0 1 {ufa(•-n)∈A} u -2 du, A ⊂ F 0 measurable. For a = 1, it holds X a = F 0 f 1 with f 1 (t) ≡ 1, so that µ ′ [A] = ∞ 0 1 {uf 1 ∈A} u -2 du, A ⊂ F 0 measurable.
In both cases, µ ′ is clearly supported by the cone of functions D a . This implies that if Y ′ is a spectral process associated to X a , then P[Y ′ ∈ D a ] = 1. We now prove the implication i) ⇒ ii). If η has the same distribution as the max-AR(1) process X a , then the spectral processes Y and Y ′ are equivalent and Proposition 2 implies P[Y ∈ D a ] = 1.

We finally prove the converse implication ii) ⇒ i). We assume that P[Y ∈ D a ] = 1 and we apply Lemma 1. Note that D a is equal to the smallest shift invariant cone containing f a and denoted by C inv (f a ). The spectral processes Y and Y ′ are Brown-Resnick stationary processes such that

P[Y ∈ C inv (f a )] = P[Y ′ ∈ C inv (f a )] = 1.
Lemma 1 entails that Y and Y ′ are equivalent, which means that η and X a have the same distribution.

Proof of Theorem 1

Let η be a simple max-stable process with representation (4). We assume that η is stationary and satisfies the Markov property. According to Proposition 5 with t = 0, t 1 = -1 and t 2 = 1, it holds

P[Y (-1) = α 0,-1 Y (0) | Y (0) > 0] = 1 or P[Y (1) = α 0,1 Y (0) | Y (0) > 0] = 1.
Two cases naturally appear:

• Case 1: P[Y (1) = α 0,1 Y (0) | Y (0) > 0] = 1.
We will prove below that, in this case, η is a max-AR(1) process ( 1) with parameter a = α 0,1 . To this aim, we use the characterization of max-AR(1) processes given by Proposition 6 so that it is enough to prove

P[Y ∈ D a ] = 1. Note that a ∈ [0, 1] since a = α 0,1 = E[Y (1)1 {Y (0)>0} ]. • Case 2: P[Y (-1) = α 0,-1 Y (0) | Y (0) > 0] = 1.
We prove that, in this case, η is a time reversed max-AR(1) process ( 2) with parameter a = α 0,-1 . This is easily deduced from case 1 since the time reversed process η = (η(-t)) t∈Z is a stationary simple maxstable process satisfying the Markov property. The associated spectral process Y = (Y (-t))

t∈Z satisfies P[ Y (1) = α 0,-1 Y (0) | Y (0) > 0] = 1,
so that η is a max-AR(1) process with parameter a = α 0,-1 .

Thanks to the discussion above, the proof of Theorem 1 is reduced to the proof of the following statement:

If P[Y (1) = aY (0) | Y (0) > 0] = 1, then P[Y ∈ D a ] = 1. (11) 
We consider three different cases: a ∈ (0, 1), a = 0 and a = 1.

Proof of [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF] in the case a ∈ (0, 1):

We define the cone C ⊂ F by 

C = {f ∈ F ; f (0) > 0 ⇒ f (1) = af (0)}.
P Y ∈ s∈Z θ s (C) = 1. (12) 
Clearly, s∈Z θ s (C) is equal to the set of functions

f ∈ F ; ∀s ∈ Z, f (s) > 0 ⇒ f (s + 1) = af (s) .
For such a function f , we easily prove by induction that f (t 0 ) > 0 implies f (t) = f (t 0 )a t-t 0 for all t > t 0 . Then, if

t 0 = min{t ∈ Z; f (t) > 0} > -∞, f (t) = f (t 0 )a t-t 0 1 {t≥t 0 } for all t ∈ Z, and f ∈ D a . Otherwise, if t 0 = min{t ∈ Z; f (t) > 0} = -∞, f (t) = f ( 
0)a t for all t ∈ Z and f belongs to the cone D ′ a generated by the power function t → a t . This proves

s∈Z θ s (C) = D a ∪ D ′ a .
So Equation ( 12) is equivalent to

P[Y ∈ D a ∪ D ′ a ] = 1. In order to prove P[Y ∈ D a ] = 1, it remains to prove that P[Y ∈ D ′ a \ D a ] = 0. Note that all function f ∈ D ′
a \ D a is of the form f (t) = ua t , u > 0 and satisfies lim t→-∞ f (t) = +∞. Hence,

P[Y ∈ D ′ a \ D a ] ≤ P[ lim t→-∞ Y (t) = +∞].
Equation ( 3) together with Fatou's lemma yields

E[lim inf t→-∞ Y (t)] ≤ lim inf t→-∞ E[Y (t)] = 1.
We deduce that lim inf t→-∞ Y (t) is almost surely finite so that

P[ lim t→-∞ Y (t) = +∞] = 0.
Hence P[Y ∈ D ′ a \ D a ] = 0 and P[Y ∈ D a ] = 1, which proves Equation [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF].

Proof of [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF] in the case a = 1: First we prove that

P[Y (1) = Y (0) | Y (0) > 0] = 1 implies P[Y (-1) = Y (0) | Y (0) > 0] = 1.
To see this, we note that P[Y We deduce E Y (0)1 {Y (-1) =Y (0)} = 0 which implies

P[Y (-1) = Y (0) | Y (0) > 0] = 1.
Consider the cone

C = {f ∈ F ; f (0) > 0 ⇒ f (1) = f (-1) = f (0)}.
The conditions

P[Y (1) = Y (0) | Y (0) > 0] = P[Y (-1) = Y (0) | Y (0) > 0] = 1 implies P[Y ∈ C] = 1, whence Proposition 2 yields P Y ∈ s∈Z θ s (C) = 1.
Clearly, s∈Z θ s (C) is equal to the cone of functions

f ∈ F ; ∀s ∈ Z, f (s) > 0 ⇒ f (s + 1) = f (s -1) = f (s) .
One can easily prove by induction that this is the cone D 1 of constant functions. This proves Equation [START_REF] Perfekt | Extremal behaviour of stationary Markov chains with applications[END_REF].

Proof of (11) in the case a = 0: 

According to Proposition 4, P[Y (1) = 0 | Y (0) > 0] = 1 if
P[Y (t ′ ) = 0 | Y (t) > 0] = 1 for all t = t ′ ,
and also

P ∀t ′ = t, Y (t ′ ) = 0 | Y (t) > 0] = 1.
This implies that the set where Y is non zero has almost surely at most one point. Equivalently, P[Y ∈ D 0 ] = 1 and Equation ( 11) is proved.

Continuous time setting

We consider in this section an extension of Theorem 1 to the continuous time framework.

For a ∈ (0, 1), we denote by g a (t) = -log(a)a t 1 {t≥0} the power function. The constant -log(a) ensures the normalization R g a (t)dt = 1. We consider the moving maximum process

Z a (t) = i≥1 U i g a (t -T i ), t ∈ R, (13) 
where {(U i , T i ); i ≥ 1} is a Poisson point process on (0, +∞) × R with intensity u -2 dudt. The time reversed process Ža is defined similarly by

Ža (t) = i≥1 U i ǧa (t -T i ), t ∈ R, (14) 
with ǧa (t) = -log(a)a -t 1 {t<0} = g a (-t -). We use here a slightly different notion of time reversal so that the function ǧa is càd-làg. For a = 1, we define Z 1 = Ž1 a process with constant path and such Z 1 (0) has a standard 1-Fréchet distribution.

Lemma 2. The processes Z a and Ža are stationary simple max-stable processes satisfying the Markov property and with càd-làg sample paths.

Proof of Lemma 2. The result is straightforward when a = 1. For a ∈ (0, 1), the process Z a is a moving maximum process with shape function g a satisfying R g a (t)dt = 1 and is hence a stationary simple max-stable process. Straightforward computations yield that for any t ∈ R Z a (t + s) = a s Z a (t) F a (t, s), s ≥ 0,

with

F a (t, s) = i≥1 U i g a (t + s -T i )1 {T i >t} . (16) 
Note that for t ′ ≤ t, Z a (t ′ ) depends only on the points (U i , T i ) such that T i ≤ t while F a (t, s) depends only on the points (U i , T i ) such that t + s ≥ T i > t. This implies that (Z a (t ′ )) t ′ ≤t and (F a (t, s)) s≥0 are independent processes. This together with Equation ( 15) implies that the process Z a satisfies the Markov property. We now prove that Z a has càd-làg sample paths. Note that the shape function g a is càd-làg and satisfies R sup |z|≤M g a (z -t)dt < ∞ for all M > 0. This implies that the number of points (U i , T i ) such that sup |z|≤M U i g a (z -T i ) > ε is finite since it has a Poisson distribution with mean We deduce that only finitely many functions U i g a (• -T i ) contribute to the exceedances of Z a (•) = i≥1 U i g a (• -T i ) above ε on [-M, M]. The function Z a ∨ ε is thus càd-làg as a maximum of finitely many càd-làg functions. Finally, as ε → 0, Z a ∨ ε converges uniformly to Z a and Z a is hence càd-làg as a uniform limit of càd-làg functions. The similar statements for the time reversed process Ža are proved in the same way and we omit the details.

Theorem 1 extends to continuous time processes as follows.

Theorem 3. Any stationary simple max-stable process η = (η(t)) t∈R with cád-làd sample paths and satisfying the Markov property is equal in distribution to Z a or Ža for some a ∈ (0, 1].

Equality in distribution is meant in the sense of equality of laws in the Skohorod space D(R, R) with the J 1 -topology. If the max-stable Markov process is η is not supposed càd-làg but only continuous in probability, the result still holds in the sense of equality of the finite dimensional distributions.

For the proof of Theorem 3, the following Lemma will be useful.

  [START_REF] Kabluchko | Stationary maxstable fields associated to negative definite functions[END_REF]. Definition 3. A nonnegative random process Y satisfying (3) is called Brown-Resnick stationary if the associated max-stable process η defined by (4) is stationary. It follows from the definition that Y is Brown-Resnick stationary if and only if Y and Y (• + s) are equivalent (in the sense of Definition 2) for all s ∈ Z. Proposition 1 implies then the following result. Proposition 2. Let Y be a Brown-Resnick stationary process and let C ⊂ F be a measurable cone such that P

  The propertyP[Y (1) = aY (0) | Y (0) > 0] = 1 implies P[Y ∈ C] = 1. Since η isstationary, Y is Brown-Resnick stationary and Proposition 2 implies

  1) = Y (0) | Y (0) > 0] = 1 if and only if P[Y ∈ C] = 1 with C = {f ∈ F ; f (0) > 0 ⇒ f (1) = f (0)}. Since Y is Brown-Resnick stationary, Proposition 2 implies P[Y (• -1) ∈ C] = 1, which yields P[Y (0) = Y (-1) | Y (-1) > 0] = 1. Then, Equation (3) entails E Y (-1)1 {Y (-1)=Y (0)} = E Y (0)1 {Y (-1)=Y (0)} = 1.

1

  {sup |z|≤M uga(z-t)>ε} u -2 dudt = ε -1 R sup |z|≤M g a (z -t)dt < ∞.

  and only if η(0) and η(1) are independent. Let t ≥ 2. By the Markov property, η(0) and η(t) are independent conditionally on η(1). But since η(0) and η(1) are independent, this implies that η(0) and η(t) are independent. Hence η(0) and η(t) are independent for all t ≥ 1 and by the stationarity of η, η(t) and η(t ′ ) are independent for all t = t ′ . Using Proposition 4 again, we deduce

Lemma 3. For all ε > 0, the discrete time process Z ε a = (Z a (εt)) t∈Z is a max-AR(1) process with parameter a ε .

Proof of Lemma 3. The random variable F a (t, s) given by ( 16) has a 1-Fréchet distribution with scale parameter 1 -a s since

Using this, one proves easily that the random variables F t = F a (εt, ε)/(1-a ε ), t ∈ Z, are i.i.d. with standard Fréchet distribution. Equation ( 15) entails

process with parameter a ε . Proof of Theorem 3. The discrete time process η 1 = (η(t)) t∈Z extracted from the continuous time process η is a stationary simple max-stable process on Z satisfying the Markov property. By Theorem 1, it is equal in distribution either to a max-AR(1) process X a with a ∈ [0, 1] or a time reversed max-AR(1) process Xa with a ∈ (0, 1).

• In the case η 1 d = X a with a ∈ (0, 1], we prove that η d = Z a . The process η 1/n = (η(t/n)) t∈Z is stationary simple max-stable and Markov. Theorem 1 entails that η 1/n is either a max-AR(1) process X an with a n ∈ [0, 1] or a time reversed max-AR(1) process Xan with a n ∈ (0, 1). Using the relation (η 1 (t)) t∈Z = (η 1/n (nt)) t∈Z , we prove easily that η 1/n must be a max-AR(1) process with parameter a n = a 1/n . Indeed, in all other cases, the process (η 1/n (nt)) t∈Z is not a max-AR(1) process with parameter a. By Lemma 3, the process Z 1/n a is also a max-AR(1) process with parameter a 1/n so that the processes (η(t/n)) t∈Z and (Z a (t/n)) t∈Z have the same distribution. Since this holds true for all n ≥ 1, we easily see that, for all rational numbers t 1 , . . . , t p ∈ Q, the random vectors (η(t 1 ), . . . , η(t p )) and (Z a (t 1 ), . . . , Z a (t p )) have the same distribution. Together with the property that both η and Z a have càd-làg sample paths, this implies that η and Z a have the same distribution in the Skohorod space D(R, R)(see Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF] theorem 14.5).

• We show that the case η 1 d = X 0 can not occur. Indeed, if η 1 d = X 0 , it holds also η 1/n d = X 0 for all n ≥ 1. This proves that the random variables η(t), t ∈ Q are independent with standard Fréchet distribution. This contradicts the fact that η has cád-làg sample paths since the difference η(1/n) -η(0) should converge in law to zero as n → +∞.

• In the case η 1 d = Xa with a ∈ (0, 1), we prove that η d = Ža . Indeed, the time reversed process η = (η(-t -)) t∈Z is then stationary simple max-stable and Markov and such that (η(t)) t∈Z is a max-AR(1) process with parameter a. Hence η and Z a have the same distribution, whence η and Ža have the same distribution.