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In many real applications related with Geostatistics, medical imaging and material science, the real observations have asymmetric, and heavy-tailed multivariate distributions. These observations are spatially correlated and they could be modelled by the skew random fields. However, certain statistical analysis problems require giving analytical expectations of some integral geometric characteristics of these random fields, such as Lipschitz-Killing curvatures, specifically Euler-Poincaré characteristic. This paper considers a class of skew random fields, namely skew student's t random fields. The goal is to give the analytical expressions of the Lipschitz-Killing curvatures of the skew student's t excursion sets on a compact subset S of R 2 . The motivation comes from the need to model the roughness of some engineering surfaces, involved in the total hip replacement application, which is characterized by the Euler-Poincaré characteristic function. The analytical and estimated Euler-Poincaré characteristics are fitted in order to test the skew student's t random field with the surface roughness topography.

I. INTRODUCTION

In a wide range of real applications, there is a great need to model observations that have asymmetric behaviour and heavy-tailed multivariate or univariate distributions. One of the most interesting models, that are developed for this aim, are the skew-normal and skew student's t families [START_REF] Basso | Robust mixture modeling based on scale mixtures of skewnormal distributions[END_REF]- [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF]. In many statistical problems, the random observations are spatially correlated, and the best solution to represent them is by the random field theory [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF]- [START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions: Volume I: Basic Results[END_REF]. In certain applications the distribution of these correlated samples exhibit both skewness and heavy-tailed behaviour. These kind of samples can not be modelled by Gaussian random fields or skew Gaussian random fields [START_REF] Cabral | Multivariate mixture modeling using skew-normal independent distributions[END_REF], [START_REF] Genton | Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality[END_REF], [START_REF] Alodat | Skew-Gaussian random field[END_REF]. Skew student-t random fields arise among the flexible class of stochastic models that could be used for such real problems. They are characterized by the skewness parameter and the degree of freedom, which controls the heavy-tail shape of the probability density function. The motivation to study this class of skew random fields is due to the need to model the roughness of certain engineering surfaces during wear, specifically those who are used for the total hip replacement. The surface topography is represented on a subset S ⊂ R 2 as a 3D height maps. One of the interesting issues to study the roughness of the surface is the evaluation of the number of peak/valleys and their size distribution over certain height level which is related with the maxima of the random field. Many researches have been investigated for approximating the maxima of the random fields in applications related to modelling the brain anomalies and studying its functionality using the integral geometry of the excursion sets [START_REF] Cao | Applications of random fields in human brain mapping[END_REF]- [START_REF] Adler | Applications of random fields and geometry: Foundations and case studies[END_REF]. The integral geometry provides interesting characteristic functions that could be used to evaluate the morphology and the size of these excursion sets, namely Minkowski functionals or their extensions Lipschitz-Killing curvatures [START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF], [START_REF] Adler | Applications of random fields and geometry: Foundations and case studies[END_REF]. They measure the intrinsic volumes, (i.e., k-th dimensional size), of these excursion sets such as the volume, halfsurface area, mean curvature length, in three-dimensional case, and the area, half-boundary length in two-dimensional case. Furthermore, they measure the connectivity of the components inside these sets, namely Euler-Poincaré characteristic. It was proved in [START_REF] Adler | The Geometry of Random Fields[END_REF], [START_REF] Adler | Applications of random fields and geometry: Foundations and case studies[END_REF] that the Euler-Poincaré characteristic function is a good approximation of the the maxima of the random field at the high thresholds, which make this characteristic function be considered as a useful technique for the statistical analysis-based problems, surface roughness characterization, and for model testing problems. This paper considers a class of skew random fields, called skew student's t random field with ν degrees of freedom, section IV. The interest of this work is to present these random fields on a subset S ⊂ R 2 and to give the analytical expressions of the Lipschitz-Killing Curvatures of its excursion sets, specifically Euler-Poincaré characteristic, section V. A simulation is reported to validate the estimated characteristic functions computed from the simulated random field with the analytical ones for many realizations, in section VI. The skew student's t random field has been tested on the real 3D surfaces roughness topography by fitting the analytical Euler-Poincaré characteristic function of the skew student's t excursion sets with the estimated one computed from the real surface, section VII.

II. PRELIMINARIES

A real-valued random field, denoted Y = Y (x), (x ∈ S), will be defined on a compact subset S ⊂ R 2 , with a mean µ Y and variance σ 2 Y . Y will be supposed stationary, but not necessarily isotropic. The probability density function of Y will be denoted by p Y . III. THE SKEW STUDENT'S t DISTRIBUTION This section will consider one of the most interesting skew student-t distribution's family defined in [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF] in order to introduce the skew student-t random field.

A. Univariate skew student-t distribution

Consider a skew student-t random variable Y with ν degrees of freedom, skewness index α, mean value µ Y and variance σ 2 Y , then, the probability density function of Y is expressed as follows:

p Y (h; α, ν) = 2t ν (h; µ Y , σ Y )T αs ν + 1 ν + s 2 ; ν + 1 (1) where s = (h -µ Y )/σ Y , t ν is the student's t distribution,
and T is the student-t cumulative distribution function with ν + 1 degrees of freedom. The parameter α controls the skewness, α > 0 (α < 0) the distribution has positive (negative) skewness. When α = 0 the distribution is symmetric and it turns back to the known student's t distribution. The stochastic representation of the skew student-t random variable Y that has the probability density function defined in 1 is given in [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF] by:

Y = µ Y + σ Y V -1/2 Z ( 2 
)
where V is the chi-squared random variable, and Z is the known skew-normal random variable [START_REF] Basso | Robust mixture modeling based on scale mixtures of skewnormal distributions[END_REF], [START_REF] Lachos | Multivariate measurement error models based on scale mixtures of the skewnormal distribution[END_REF], [START_REF] Cabral | Multivariate mixture modeling using skew-normal independent distributions[END_REF]- [START_REF] Genton | Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality[END_REF] which is defined as follows:

Z = δ |U | + 1 -δ 2 G (3) 
where U, G ∼ N (0, 1) are independent normal random variables, and δ = α/ (1 + α 2 ).

B. Multivariate skew student-t distribution

The p-variate skew student's t distribution with ν degrees of freedom has been defined in [START_REF] Basso | Robust mixture modeling based on scale mixtures of skewnormal distributions[END_REF], [START_REF] Jones | The t family and their close and distant relations[END_REF], [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF] for a random vector Y = (Y 1 , ..., Y p ) t as follows:

p Y (h; µ Y , α, Ω, ν) = 2t p (h; µ Y , Ω, ν)T α t Ω -1/2 (h -µ Y ) ν + p ν + d h ; ν + p where d h = (h -µ) t Ω -1 (h -µ). t p (.; µ Y , Ω, ν)
is the density of the p-variate student's t distribution with the p-dimensional mean vector µ Y , (p × p) covariance matrix Ω, ν degrees of freedom, and α refereed to the p-dimensional skewness vector. T (.; ν + p) is the scalar cumulative distribution function of the standard student's t distribution with ν + p degrees of freedom.

The stochastic representation of the skew student's t random vector, Y , is defined as:

Y = µ Y + V -1/2 (δ |z| + 1 -δ 2 G) (4) 
where G ∼ N ormal p (0, Ω) is the multivariate Gaussian random vector with p × p covariance matrix Ω, V ∼ χ 2 ν /ν independent of G, and z ∼ N ormal(0, 1) is a standard normal random variable independent of both G and V .

IV. SKEW STUDENT'S t RANDOM FIELD

The skew student's t random field introduced, in this paper, is based on the definitions given in [START_REF] Basso | Robust mixture modeling based on scale mixtures of skewnormal distributions[END_REF]- [START_REF] Jones | The t family and their close and distant relations[END_REF], [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF]. We will focus on the geometric properties of this random field using the integral geometry framework. Let us first briefly review the student's t random field defined in [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , f and t fields[END_REF]:

Definition IV.1. Let Z(x), G 1 (x), ...., G ν (x), x ∈ R d
be independent, identically distributed, homogenous, realvalued Gaussian random fields with zero mean, unit variance, and with the (d × d) matrix, denoted Λ, such that Λ = V ar(∂Z/∂x) = V ar(∂G i /∂x), i = 1, ..., ν. Then, the student's t random field with ν degrees of freedom, denoted T ν , is defined, at any fixed point x, as:

T ν (x) = √ νZ(x) ν k=1 G 2 k (x) (5) 
Definition IV.2 (Skew student's t random field). Let U be a stationary student's t random fields defined as above. Let U 0 be defined as follows:

U 0 = √ νz ν k=1 G 2 k (x) (6) 
where z ∼ N ormal(0, 1) is a standard normal random variable independent of G i , i = 1, ..., ν. Let δ be a real value such that |δ| < 1. Then, the random field, Y , defined as:

Y (x) = δ |U 0 (x)| + 1 -δ 2 U (x) (7) 
is called a skew student's t random field with ν degrees of freedom and skewness index δ.

The marginal distribution of Y at any fixed point x is the standard skew student's t probability density function p Y with µ Y = 0 and σ 2 Y = 1.

V. LIPSCHITZ-KILLING CURVATURES OF THE SKEW STUDENT'S t EXCURSION SETS A. Theory

The direct way to study the geometry of the skew student's t excursion sets is by Minkowski functionals, for the isotropic random fields, or their extensions Lipschitz-Killing curvatures, for the non-isotropic random fields [START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF]. An excursion set, denoted E h , of a random field Y , on a subset S ⊂ R d , d ≥ 1, is the result of thresholding the random field at h. It is defined, [START_REF] Adler | The Geometry of Random Fields[END_REF], [START_REF] Adler | Random Fields and Geometry[END_REF], as:

E h ≡ E h (Y, S) = {x ∈ S, Y (x) ≥ h} (8) 
The explicit formulae of the j-th dimensional Lipschitz-Killing curvatures of the excursion set for a non-isotropic and twice differentiable random field, defined as a function in terms of (i.i.d.) stationary Gaussian random fields is expressed as follows, [START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF]: 

E[L j (E h (Y, S))] = d-j k=0 L k (S)ρ k (h) (9 
λ kl = E ∂G ∂x l ∂G ∂x k ( 10 
)
where k, l = 1, ..., d, and

Y = f (G) is a function in terms of G.
Then, the d-th dimensional LKC L d (S) of the subset S is defined as:

L d (S) = S det(Λ) 1/2 (11) 
and the (d -1)-th dimensional LKC of S is:

L d-1 (S) = 1 2 ∂S det(Λ x ) 1/2 dx ( 12 
)
where Λ x is the local version of Λ, [START_REF] Adler | Applications of random fields and geometry: Foundations and case studies[END_REF].

The functions ρ k (h), in the equation ( 9), are the Euler characteristic (EC) densities of the excursion set above the threshold h. They depends on the type of the random field, and not on the geometry of S.

B. Notation

In this paper, the skew student's t random field is considered stationary on the 2-dimensional space, where the subset S is defined as a rectangle [0, a] × [0, b] in R 2 . Then, the LKCs, of S become:

L 0 (S) = 1, L 1 (S) = 1 2 (aλ 1/2 11 + bλ 1/2 22 ), L 2 (S) = ab × det(Λ) 1/2 (13)
where L 0 (S) is the Euler-Poincaré characteristic of S, L 1 (S) is half the boundary length of S, and L 2 (S) is the two dimensional area of S.

In the following, we will concern on giving the analytical formulae of the k-th dimensional EC densities for the twodimensional stationary skew student's t random field defined in IV.2.

C. Expectations

The expected j-th dimensional Lipschitz-Killing curvatures, E[L j (E h (Y, S))], of the skew student's t excursion sets, E h , on R 2 measure the area, the half-boundary length, and the Euler-Poincaré characteristic of the excursion set E h above the threshold h. They will be denoted by A(E h ), C(E h ), and χ(E h ) respectively. The k-th dimensional EC density functions of the skew student's t random field, Y (x), could be calculated using Morse theory [START_REF] Morse | Critical point theory in global analysis and differential topology[END_REF]. They are expressed for any twicedifferentiable and isotropic random field, [START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF], [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , f and t fields[END_REF], [START_REF] Adler | Applications of random fields and geometry: Foundations and case studies[END_REF], as follows:

ρ k (h) = E 1 (Y ≥h) det(-Ÿ|k )| Ẏ|k = 0 P( Ẏ|k = 0) = E Ẏ + k det(-Ÿ|k-1 )| Ẏ|k-1 = 0, Y = h p |k-1 (0, h) (14) 
where Ẏ|k-1 and Ÿ|k-1 are the first and second order partial derivatives of the first (k -1)-th elements of Y (x) at any point x ∈ S, (i.e., the (k -1) × (k -1) sub matrix of Ẏ and Ÿ , respectively). p |k-1 (0, h) is the joint probability density function of Ẏ|k-1 at zero and Y , whereas Ẏ + j = max(0, Ẏj )

Proposition V.1. The k-th dimensional EC density functions, ρ k (.), j = 0, 1, 2, of a stationary skew student-t random field, Y , with ν degrees of freedom, and skewness index α ∈ R, on R 2 for a given level h are expressed as:

(i) ρ 0 (h) = 2 Γ ν+1 2 √ νπΓ ν 2 ∞ h 1 + y 2 ν -ν+1 2 × T αy ν + 1 y 2 + ν ; ν + 1 dy (ii) ρ 1 (h) = 2 2π 1 -δ 2 1 + h 2 ν(1 -δ 2 ) 1 + h 2 ν -ν+1 2 T αh ν + 1 ν + h 2 ; ν + 1 1 + 4α √ π(ν -1) Γ ν+1 2 Γ ν 2 × 1 + h 2 ν(1 -δ 2 ) -1    1 ν -1 Γ ν+1 2 Γ ν 2 2 - h √ ν √ 1 -δ 2    + 2πα 2 (ν -2) √ 1 -δ 2 1 + h 2 ν(1 -δ 2 ) -1 (iii) ρ 2 (h) = 2 (2π) 3/2 Γ ν+1 2 ν/2Γ ν 2 h 1 + h 2 ν(1 -δ 2 ) × h 2 ν -ν+1 2 T αh ν + 1 h 2 + ν ; ν + 1 1 - 2δ √ ν h(ν -1) × Γ ν+1 2 √ πΓ ν 2 3h 2 + ν(1 -δ 2 ) h 2 + ν(1 -δ 2 ) + ν(ν -1)δ 2 h(ν -2) 2 3h(ν-1) ν-2 + ν(1 -δ 2 ) h 2 + ν(1 -δ 2 ) - νδα 2 h(ν -2)(ν -4) × 1 + h 2 ν(1 -δ 2 ) -1 (15)
Proof: The proof of the proposition is based on the theorems and the lemmas reported in [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , f and t fields[END_REF], [START_REF] Adler | Random Fields and Geometry[END_REF], [START_REF] Adler | Topological complexity of smooth random functions[END_REF]. Let consider the random field Y as defined in equation [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF], Y satisfies the regularity conditions, (i.e., Y is twice differentiable inside S and on the boundaries of S), with the restriction to the condition that Y has the degree of freedom ν > 4.

For simplicity, Y will be assumed centred, µ Y = 0, with unit variance, σ 2 Y = 1, and skewness index δ > 0. However, in the case that Y has a negative skewness, δ < 0, one can transform Y to have a positive skewness dealing with -Y . Using the conditional expectations and the formulae in equation ( 9), the EC densities can be obtained, conditioning on U 0 , as follows:

ρ k (h) = E ρ T ν k h -δu √ 1 -δ 2 ||U 0 | = u = 2 Γ( ν+1 2 ) √ πνΓ( ν 2 ) ∞ 0 ρ T ν k h -δu √ 1 -δ 2 1 + u 2 ν -ν+1 2 du (16) 
where ρ T ν k (h; u) is the k-th EC density of the student's t random field, T ν , of ν degrees of freedom at (hδu)/ √ 1 -δ 2 , (see [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , f and t fields[END_REF]). Doing the integration over |U 0 |, we get the formulae in equation ( 15), for k = 1 and k = 2.

For k = 0, ρ 0 (h) is simply equal to P[Y ≥ h].
The interesting result of the Libchetz-Killing curvatures is the expected value of Euler-Poincaré characteristic of the skew student's t excursion sets, E[χ(E h (Y, S))], which is approximately equal to the maxima of Y at very high thresholds (h → ∞), which is expressed as: 

E[χ(E h (Y, S))] ∼ = 2ab det(Λ)Γ ν+1 2 (2π) 3/2 ( ν/2)Γ ν 2 h× 1 + h 2 ν(1 -δ 2 ) 1 + h 2 ν -ν+1 2 T αh ν + 1 h 2 + ν ; ν + 1 (17) 

VII. APPLICATION

The stochastic model has been tested on a real 3D microstructured rough surface of a UHMWPE (Ultra High Molecular Weight Polyethylene) component, [START_REF] Geringer | Understanding the dual mobility concept for total hip arthroplasty. investigations on a multiscale analysis-highlighting the role of arthrofibrosis[END_REF]. The surface has been measured by a non-contact white light interferometry, (Bruker nanoscope Wyko R NT 9100), on a lattice of 480 × 640 points with a spatial resolution equal to 1.8µm in both x and y directions, see figure 3(a). There are two main reasons for using the expected Euler-Poincaré characteristic, in such applications: firstly, at high threshold, it counts the number of connected components which approximate the number of the local maxima and minima of Y such that [START_REF] Hasofer | Upcrossings of random fields[END_REF], [START_REF] Adler | The Geometry of Random Fields[END_REF]:

P[Y max > h] ∼ = E[χ(E h (Y, S))] P[Y min < h] ∼ = E[χ(E -h (-Y, S))] = -E[χ(E h (Y, S))] (18) 
when (h → ∞).

Thus it can describe its roughness. Secondly, its explicit formulae enable estimating the random field's parameters, or estimating, for a specific test of significance, the threshold h the can detect if some materials of the surface are lost.

The results presented in this paper concerns on fitting the surface roughness stochastic model with the real 3D heights map using the Euler-Poincaré characteristic function. Figure 3(b) shows the analytical and the numerical Euler-Poincaré characteristic of the skew student's t excursion sets and the real surface upcrossings, respectively, for 10 degrees of freedom and skewness index δ = 0.7.

The results show the ability to use this stochastic model for studying the morphology and the size distribution of the excursion sets at certain significant thresholds in order to describe the functionality of the surface and to determine its performance before and maybe after involving it in the hip replacement surgery.

VIII. CONCLUSION

A special class of skew student's t random fields with ν degrees of freedom has been introduced, and studied geometrically. We derived, in this paper, the analytical formulae of the Euler characteristic densities of the skew student's t excursion sets in order to expect their Lipschitz-Killing Curvatures on a rectangular subset S ⊂ R d , (d = 2), and they can be extended to higher dimensions d > 2. Simulation results have been performed to validate the analytical formulae. Then, an application of modelling the roughness topography of a worn engineering surface has been investigated. The results are promising and show the ability of using the skew student's t random field for describing the surface roughness changes between the different spatial samples and/or during a specific temporal process, which is the aim of our future work. 

  ) where L k (S) are the Lipschitz-Killing curvatures (LKC) of S. They measure the k-th dimensional volume of S in the Riemannian metric defined by the variogram. This means, replacing the local Euclidean distance between any two points of S by the (d × d) matrix Λ, of the second spectral moments of the Gaussian component, G. It's elements are defined as:

  VI. SIMULATION RESULTSn this section, simulation examples of the skew student's t random fields are illustrated for positive (resp. negative) values of the skewness index δ. An illustration of the analytical expressions of the j-th dimensional Lipschitz-Killing curvatures are given comparing with the numerical ones that are computed from the simulations for validation. For this aim, 50 realizations of the skew student's t random field have been generated for two different examples. The simulations are investigated on a lattice of 500 × 500 points in both x and y directions within the unit square[0, 1]×[0, 1]. Figures 1(a) and 2(a) illustrate two examples of stationary skew student's t random fields with 5 degrees of freedom and with skewness indexes δ = -0.9 and δ = 0.4, respectively. Their analytical and numerical Lipschitz-Killing curvatures are represented in figures 1(b) and 2(b), respectively.
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 123 Figure 1. First simulation example. (a) Anisotropic skew student's t random field with 5 degrees of freedom and skewness index δ = -0.9 realized on a lattice of 500 × 500 points in [0, 1] 2 . (b) The numerical and the analytical Lipschitz-Killing Curvatures, A, C and χ, respectively.