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Abstract 
 

In this paper we present efficient and intelligent 

strategies for several zero-, one- and two-player 

games. Most of the games have been studied before or 

are related to other well-known games, but we present 

improved algorithmic techniques for playing them 

optimally. The main techniques we employed are 

dynamic programming, the Sprague-Grundy game 

theory and pattern extraction. We also make use of 

elements from computational geometry, like 

orthogonal range searching data structures. 

 

1. Introduction 
 

In computer science, games have constituted a 

major motivation for developing intelligent systems 

and efficient algorithmic techniques. The uprising 

game theory provides the means for analyzing complex 

interactions between rational (and/or economic) agents 

and for implementing strategies which maximize their 

revenues. In this paper we consider impartial games 

where full information is available, for zero-, one- and 

two-player games. The zero-player games do not 

involve the decisions of a player and are used for 

modeling the evolution of natural states. One-player 

games usually ask the player to optimize the usage of 

some resource, based on several constraints regarding 

the actions which can be performed. The two-player 

games we consider can be solved by traditional means, 

but also exhibit some unexpected patterns, which are 

helpful in devising more efficient game strategies. This 

paper is organized as follows. In Section 2 we discuss 

zero-player games. In Sections 3 and 4 we present 

several one- and two-player games. In Section 5 we 

present related work and we conclude. 

 

2. Zero-Player Games 
 

In this section we consider a particular one-

dimensional cellular automaton (which evolves without 

any player’s intervention) for which we provide a 

method which efficiently evaluates its state after any 

given number m of time steps. The cellular automaton 

consists of n cells (numbered from 0 to n-1, from left to 

right) and, at any time moment t, the state of each cell i 

(q(i,t)) can be 0 or 1. At each time step, every pair of 

adjacent cells i�0 and i+1<n, such that q(i,t)=0 and 

q(i+1,t)=1 exchange their states (the 0 and 1 are 

swapped). The final state of such an automaton is 

reached after T=O(n) steps, when all the 0s are to the 

left of all the 1s. A naive algorithm for computing the 

state of the automaton after every number m�T of steps 

would take O(n·m) time. We will now provide an O(n) 

algorithm for this problem. We will assign a number 

from 0 to nz-1 to each zero state of the automaton, in a 

left to right order (nz is the total number of zero states). 

The i
th

 zero is located at the cell c(i). It is obvious that 

all the zeroes “move” to the left and that, in the final 

(stable) state, the i
th
 zero will be located at cell i. It is 

also obvious that the i
th

 zero (i�1) will not reach cell i 

before the (i-1)
th

 zero reaches cell i-1. During every 

time step, a zero state performs an action: it either 

“moves” one cell to the left (if the state of the cell to 

the left is 1) or “waits” (if the state of the cell to the left 

is 0). For each zero state i, we will determine the 

sequence of na(i)�0 actions ai,1, ai,2, …, ai,na(i) 

performed until it reaches its final cell. The sequence 

will be represented in reverse order, i.e. ai,na(i) is the 

action performed during the first time step and ai,1 is 

the last action performed. Based on this sequence of 

actions, we will be able to determine in O(1) time the 

cell where each zero is located after m time steps. For 

the zero state numbered with 0, its sequence of actions 

consists of na(0)=c(0)-0 “moves”: aj=”move” 

(0�j�na(0)). We will determine the sequence of actions 

for each zero state, in increasing order of their assigned 

number. If c(i)=c(i-1)+1, then the sequence of actions 

for the i
th

 zero state is identical to the one for the (i-1)
th

 

zero state, except that the first action performed is a 

“wait”. Thus, we have: na(i)=na(i-1)+1, ai,j=ai-1,j 

(1�j�na(i)-1) and ai,na(i)=”wait”. If c(i)>c(i-1)+1, then 

the first d=c(i)-c(i-1)-1 actions of the i
th
 zero state will 
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be “moves”. We need to find out if the i
th

 zero “catches 

up” with the (i-1)
th

 zero before the (i-1)
th

 zero reaches 

its final cell and if it does, after how many time steps 

this situation occurs. If the (i-1)
th

 cell performs less 

than d “waits”, then the ith zero does not catch up with 

the (i-1)
th

 zero and the actions performed by it will be: 

ai,1=ai,2=…=ai,c(i)-i= ”move”. If the i
th

 zero “catches up” 

with the (i-1)
th

 zero after t time steps (i.e. after t time 

steps, it is located immediately to the right of the (i-1)
th

 

zero), then we have na(i)=na(i-1)+1, ai,na(i)=”move”, …, 

ai,na(i)-(t-1)=”move”, ai,na(i)-t=”wait” and ai,na(i)-j=ai-1,na(i)-j, 

for t+1�j�na(i)-1. In order to determine the value of t 

efficiently, we will also compute two arrays for each 

zero state: totalWaits[i,j]=the number of “wait” actions 

in the set {ai,1, ai,2, …, ai,j} and nextWait[i,j]=the first 

“wait” action ai,j’, j’�j. The algorithm maintains a stack 

a with the sequence of actions corresponding to the (i-

1)
th

 zero state and transforms this stack into the 

sequence of actions of the i
th

 zero state. Similarly, the 

arrays totalWaits and nextWait will also only be 

transformed from the (i-1)
th

 zero to the i
th
 zero. 

 

3. One-Player Games 
 

3.1. 1D Push-* 
 

Push-* [2] is a simplified version of the well-known 

2D game Sokoban. In this section we consider the one-

dimensional version of Push-*, with several additions. 

There are N squares on a linear board, numbered from 

1 to N (from left to right). Some of the squares contain 

blocks, while others are empty. A robot starts in square 

1 and must arrive to square N with minimum 

consumption of energy. In order to achieve this, the 

robot can make the following moves: walk, jump and 

push. A walk consists of moving from the current 

square to the left or to the right if the destination square 

is empty. If the robot’s square is i and square i+1 

contains a block, the robot may push that block one 

square to the right (together with all the blocks located 

between positions i+2 and the first empty square to the 

right of i+1); obviously, an empty square must exist 

somewhere to the right of position i+1. After the push, 

the robot’s position becomes i+1. In a similar manner, 

the robot can push blocks to the left. The robot can also 

jump any number Q (1�Q�K) of squares to the right 

(left) if the previous (K-1)�1 moves consisted of 

walking to the right (left). Each type of move consumes 

a certain amount of energy. We will find the minimum 

energy strategy with a dynamic programming 

algorithm. We compute a table E[i,j]=the minimum 

energy consumed in order to have the robot located at 

square i and having j empty squares to the left (i.e., the 

squares i-1, i-2, …, i-j are empty). Furthermore, the 

robot has not yet reached any square k>i (thus, all these 

squares are in the same state as in the beginning). In 

order to justify this approach, we will consider the 

squares grouped into intervals of consecutive empty 

squares. Let’s number these intervals with consecutive 

numbers, from left to right. If the robot reaches a 

square inside an interval X, then an optimal strategy 

will never contain moves which bring the robot to an 

interval Y<X. Thus, when the robot arrives in a square i 

inside an interval X, all the squares k>i are in the initial 

state. This way, we can consider only sequences of 

moves which are local to the interval of consecutive 

empty squares into which the robot resides. The 

outcome of these moves should be that the player 

reaches another interval Y>X (or another square k>i). 

For each state (i,j), we need to consider only O(N
2
) 

sequences of moves, which will improve the value of 

some states (i’,j’), i’>i. These sequences consist of 

travels (walks+jumps), walks and pushes (to both sides 

of the interval of empty squares). Since there are O(N
2
) 

possible states, the time complexity will be O(N
4
). 

 

3.2. Candy Collector  
 

We have a complete directed graph with N vertices, 

numbered from 1 to N. The player is initially located at 

vertex 1. For each ordered pair of vertices (i,j), the time 

required to travel from i to j, tri,j, is given. At certain 

time moments, boxes of candies may appear in the 

vertices of the graph. There are M boxes overall and 

for each box of candy k, the time moment when it 

appears, tak, the vertex where it appears, vk, and the 

number of candies in the box, ck, are known. All the 

time moments are considered to be integers. At each 

moment t, the player may either stay in its current 

position (vertex) i or may start traveling towards 

another vertex j (which he/she reaches at time moment 

t+tri,j). The candies inside a box k can be collected by 

the player only if the player is located at vertex vk at 

the moment the candy box appears (tak) or if the player 

just arrives at the vertex at that moment. The purpose 

of the game is to collect as many candies as possible. 

An optimal strategy can be found by using dynamic 

programming. We sort the candy boxes in increasing 

order of their moment of appearance. Thus, box k 

appears after (or at exactly the same time as) any box 

p<k. For each candy box k, we compute Cmax[k]=the 

maximum number of candies which the player can 

collect if at time tak he/she arrives (or is located) at 

vertex vk (and, thus, collects the candies in box k). We 

also consider a virtual box k=0 with c0=0 candies, 

appearing at v0=1 at ta0=0. We have Cmax[0]=0 and 
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The maximum number of candies which can be 

gathered is the maximum value in the array Cmax. The 

time complexity of this algorithm is O(M
2
). We will 

now consider the case when M is large: for instance, 

M>N and/or M>Tmax, where Tmax is an upper limit for 

the maximum travel time between any two vertices. We 

will compute the same values as above, but we will 

make the following observation: if vp=vk (p<k), then 

Cmax[p]�Cmax[k]. For each vertex i, we will maintain a 

list with all the candy box numbers which appeared at 

vertex i, sorted in chronological order. Let this list be 

cb(i,1), cb(i,2), …, cb(i,ncb(i)), where ncb(i) is the 

number of candy boxes which appeared at vertex i (so 

far). When computing Cmax[k] for a candy box k, we 

will iterate over all the vertices of the graph. For each 

vertex i, we will find the last candy box cb(i,j), such 

that tri,vk�tak-tacb(i,j) and set Cmax[k]=max{Cmax[k], 

ck+Cmax[cb(i,j)]}. Since the candy boxes cb(i,1), …, 

cb(i,ncb(i)) are sorted such that tacb(i,1)<…< tacb(i,ncb(i)), 

we can perform a binary search in order to find the 

candy box cb(i,j). The time complexity becomes 

O(M·N·log(M)). After computing Cmax[k], we add k at 

the end of the candy box list of the vertex vk. When the 

maximum travel time between any two vertices i and j 

(tri,j) is less than (or equal to) a small value Tmax, we 

can improve the algorithm further. For each vertex i, 

we will maintain a value Tlast[i]=the last time moment 

when a candy box appeared at vertex i. We will also 

maintain a table MaxC[i,t], with 0�t�Tmax, representing 

the maximum number of candies the player can gather 

if at time Tlast[i]-t he/she is located at vertex i. Initially, 

Tlast[i]=0, for all the vertices i, and MaxC[i,t]=-�, 

except for MaxC[1,0], which is 0. With these values, 

we can compute Cmax[k] in O(M·(N+Tmax)). If the 

graph’s vertices are points on the OX axis (each point i 

having a coordinate xi) and the travel time between two 

vertices i and j is the difference between their 

coordinates (tri,j=|xi-xj|), we can consider that the OY 

axis corresponds to time. With this representation, each 

candy box k is a point with coordinates (xvk, tak). When 

computing the value Cmax[k] of the candy box k, we are 

interested in the Cmax values of candy boxes p<k whose 

coordinates have the following property: |xvp-xvk|�tak-

tap. This equation defines a rectangular quarter-plane, 

with the origin in (xvk, tak). By rotating all the points 

associated by 45 degrees around the origin, each candy 

box is assigned some new coordinates (xk’, yk’). With 

the new coordinates, the condition for a candy box p<k 

to be considered when computing Cmax[k] is: xp’�xk’ 

and yp’�yk’. The quarter-plane is now aligned with the 

OX’ and OY’ axes. If we consider the value Cmax[k] of a 

candy box k to be the weight of the point (xk’, yk’), we 

are interested in finding the maximum weight of a point 

located inside a quarter-plane. We can use orthogonal 

range search data structures, like 2D range trees, for 

which range queries and updates take O(log2M) each. 
 

4. Two-Player Games 
 

4.1. K in a Row 
 

There are N empty (unoccupied) squares on a linear 

board, numbered from 1 to N (from left to right). At 

each turn, a player must occupy K�1 consecutive 

unoccupied squares. The first player which cannot 

perform a move when its turn comes loses the game. 

The game can be analyzed using the Sprague-Grundy 

game theory. For every number i (0�i�N), we will 

compute G(i)=the Grundy number of a game state 

consisting of i consecutive empty squares. We have 

G(i)=0, for i<K. For i�K, we will generate the set of all 

the successor states. There are i-K+1 possible moves, 

according to the first occupied square. If the first 

occupied square is j (1�j�i-K+1), then, after occupying 

the squares j, j+1, …, j+K-1, we have j-1 empty 

squares to the left and i-j-K+1 empty squares to the 

right. Thus, we now have a sum of two independent 

games, composed of j-1 and i-j-K+1 squares. The 

Grundy number of the sum of the two games is G(j-1) 

xor G(i-j-K+1). The set of Grundy numbers of all the 

successor states is SG={G(0) xor G(i-K), G(1) xor G(i-

K-1), …, G(i-K) xor G(0)} and G(i)=mex(SG) (mex = 

minimum excluded value). Although the game can be 

analyzed this way, the complexity of computing all the 

Grundy numbers is O(N
2
) overall. Let’s consider now 

the case K=1. It is obvious that the first player (the one 

performing the first move) will win only if N is an odd 

number; otherwise, the second player will win. For 

K�2, we will focus on the losing states (with Grundy 

numbers equal to 0). We will consider the sequence of 

losing states s0, s1, s2, …, starting from s0=K-1 (the 

states with less than K-1 squares are also losing states, 

but they can be trivially handled). Starting from this 

sequence, we consider the sequence of differences 

between two consecutive losing states, i.e. a sequence 

d1, d2, …, where di=si-si-1. For K=2, the sequence of 

differences has a prefix of length 8 (4, 4, 6, 6, 4, 4, 6, 

4) and a period of length 5 afterwards (4, 12, 4, 4, 10). 

Using this information, we can find out in O(1) time 

whether a given state is a winning or losing one. For 

K�4, we noticed another interesting pattern regarding 

the sequence of differences: the first 12 differences are 

always d1=2·K, d2=2·K, d3=4·K-2, d4=4·K-2, d5=4·K, 

d6=4·K-2, d7=8·K-2, d8=4·K-2, d9=8·K, d10=8·K-2, 
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d11=16·K-6, d12=4·K. We could not find any other 

pattern after d12. However, with this pattern, we can 

analyze in O(1) time any state between 1 and 69·K-19. 

 

4.2. Collect an Even/Odd Number of Objects 
 

There is one pile containing N objects (N is odd). 

Two players perform moves alternately. When its turn 

comes, a player may remove from the pile any number 

of objects x between 1 and K (if there are at least x 

objects in the pile). The player keeps the objects he/she 

removed and adds them to the objects removed during 

previous moves. When the pile becomes empty, each 

player counts the number of objects he/she gathered 

from the pile during the game. The winner of the game 

is the player who gathered an even number of objects. 

Here we can use dynamic programming, by computing 

two sets of values: win[0,i] and win[1,i]. win[0,i] is 1, 

if the pile contains i objects, the winner must gather an 

even number of objects and the player whose turn is 

next has a winning strategy (and 0, otherwise); win[1,i] 

is defined similarly, except that the winner must gather 

an odd number of objects. We have win[0,0]=1 and 

win[1,0]=0. For 1�i�N, we have: 
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If win[0,N]=1, then the first player has a winning 

strategy; otherwise, the second player has one. An 

algorithm implementing the equations above has time 

complexity O(N·K) and considers the number of 

objects in the pile in increasing order. The time 

complexity can be improved to O(N), by maintaining a 

table last[x,y,z] (0�x,y,z�1), with the following 

meaning: the last value of i (number of objects in the 

pile) such that: the parity of the number of objects 

gathered by the winner is x (0 for even, 1 for odd), 

y=((the number i of objects in the pile) mod 2) and 

z=win[x,i]. The new equations for win[0,i] and win[1,i] 

and the algorithm are given below: 
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The values win[0,i] and win[1,i] present some 

unexpected patterns. For even K, we have win[0,N]=0, 

only if (N mod (K+2)=1). For odd K, we have 

win[0,N]=0, only if (N mod (2·K+2)=1). We should 

notice that, by computing the win[0,i] and win[1,i] 

values, we also solved the version of the game in which 

the winner has to gather an odd number of objects. The 

values of win[1,N] exhibit similar patterns. For odd K, 

we have win[1,N]=0, only if (N mod (2·K+2)=(K+2)). 

For even K, win[1,N]=0, only if (N mod (K+2)= 

(K+1)). Similar rules can be developed for win[0,N] 

and win[1,N] when N is even, but in this case both 

players may win the game. For even N and odd K, 

win[0,N]=0, only if (N mod (2·K+2)=(K+1)) and 

win[1,N]=0, only if (N mod (2·K+2)=0). For even N 

and even K, win[0,N] is always 1 and win[1,N]=0, 

only if (N mod (K+2)=0). 

 

5. Related Work & Conclusions 
 

Cellular automata were made popular by Conway’s 

Game of Life [1], but have since emerged as an 

important scientific topic [3]. Single-player games are 

very popular; some of them which are closely related to 

the ones studied in this paper are presented in [2,5]. 

The Sprague-Grundy theory [6] for two-player 

impartial games is the best known for analyzing normal 

play games (those where the winner makes the last 

move). In [4], periodicity and arithmetic-periodicity 

aspects of some hexadecimal two-player impartial 

games are considered. In this paper we discussed 

several zero-, one- and two-player games, for which we 

identified new, unexpected patterns and developed new 

techniques for computing optimal strategies. 
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