
HAL Id: hal-00787457
https://hal.science/hal-00787457

Submitted on 12 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent Strategies for Several Zero-, One- and
Two-Player Games

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Intelligent Strategies for Several Zero-, One- and Two-Player
Games. 4th IEEE International Conference on Intelligent Computer Communication and Processing
(ICCP), Aug 2009, Cluj-Napoca, Romania. pp.253-256, �10.1109/ICCP.2008.4648380�. �hal-00787457�

https://hal.science/hal-00787457
https://hal.archives-ouvertes.fr

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

Intelligent Strategies for Several Zero-, One- and Two-Player Games

Mugurel Ionut Andreica, Nicolae Tapus

Politehnica University of Bucharest, Computer Science Department, Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract

In this paper we present efficient and intelligent

strategies for several zero-, one- and two-player

games. Most of the games have been studied before or

are related to other well-known games, but we present

improved algorithmic techniques for playing them

optimally. The main techniques we employed are

dynamic programming, the Sprague-Grundy game

theory and pattern extraction. We also make use of

elements from computational geometry, like

orthogonal range searching data structures.

1. Introduction

In computer science, games have constituted a

major motivation for developing intelligent systems

and efficient algorithmic techniques. The uprising

game theory provides the means for analyzing complex

interactions between rational (and/or economic) agents

and for implementing strategies which maximize their

revenues. In this paper we consider impartial games

where full information is available, for zero-, one- and

two-player games. The zero-player games do not

involve the decisions of a player and are used for

modeling the evolution of natural states. One-player

games usually ask the player to optimize the usage of

some resource, based on several constraints regarding

the actions which can be performed. The two-player

games we consider can be solved by traditional means,

but also exhibit some unexpected patterns, which are

helpful in devising more efficient game strategies. This

paper is organized as follows. In Section 2 we discuss

zero-player games. In Sections 3 and 4 we present

several one- and two-player games. In Section 5 we

present related work and we conclude.

2. Zero-Player Games

In this section we consider a particular one-

dimensional cellular automaton (which evolves without

any player’s intervention) for which we provide a

method which efficiently evaluates its state after any

given number m of time steps. The cellular automaton

consists of n cells (numbered from 0 to n-1, from left to

right) and, at any time moment t, the state of each cell i

(q(i,t)) can be 0 or 1. At each time step, every pair of

adjacent cells i�0 and i+1<n, such that q(i,t)=0 and

q(i+1,t)=1 exchange their states (the 0 and 1 are

swapped). The final state of such an automaton is

reached after T=O(n) steps, when all the 0s are to the

left of all the 1s. A naive algorithm for computing the

state of the automaton after every number m�T of steps

would take O(n·m) time. We will now provide an O(n)

algorithm for this problem. We will assign a number

from 0 to nz-1 to each zero state of the automaton, in a

left to right order (nz is the total number of zero states).

The i
th

 zero is located at the cell c(i). It is obvious that

all the zeroes “move” to the left and that, in the final

(stable) state, the i
th
 zero will be located at cell i. It is

also obvious that the i
th

 zero (i�1) will not reach cell i

before the (i-1)
th

 zero reaches cell i-1. During every

time step, a zero state performs an action: it either

“moves” one cell to the left (if the state of the cell to

the left is 1) or “waits” (if the state of the cell to the left

is 0). For each zero state i, we will determine the

sequence of na(i)�0 actions ai,1, ai,2, …, ai,na(i)

performed until it reaches its final cell. The sequence

will be represented in reverse order, i.e. ai,na(i) is the

action performed during the first time step and ai,1 is

the last action performed. Based on this sequence of

actions, we will be able to determine in O(1) time the

cell where each zero is located after m time steps. For

the zero state numbered with 0, its sequence of actions

consists of na(0)=c(0)-0 “moves”: aj=”move”

(0�j�na(0)). We will determine the sequence of actions

for each zero state, in increasing order of their assigned

number. If c(i)=c(i-1)+1, then the sequence of actions

for the i
th

 zero state is identical to the one for the (i-1)
th

zero state, except that the first action performed is a

“wait”. Thus, we have: na(i)=na(i-1)+1, ai,j=ai-1,j

(1�j�na(i)-1) and ai,na(i)=”wait”. If c(i)>c(i-1)+1, then

the first d=c(i)-c(i-1)-1 actions of the i
th
 zero state will

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

be “moves”. We need to find out if the i
th

 zero “catches

up” with the (i-1)
th

 zero before the (i-1)
th

 zero reaches

its final cell and if it does, after how many time steps

this situation occurs. If the (i-1)
th

 cell performs less

than d “waits”, then the ith zero does not catch up with

the (i-1)
th

 zero and the actions performed by it will be:

ai,1=ai,2=…=ai,c(i)-i= ”move”. If the i
th

 zero “catches up”

with the (i-1)
th

 zero after t time steps (i.e. after t time

steps, it is located immediately to the right of the (i-1)
th

zero), then we have na(i)=na(i-1)+1, ai,na(i)=”move”, …,

ai,na(i)-(t-1)=”move”, ai,na(i)-t=”wait” and ai,na(i)-j=ai-1,na(i)-j,

for t+1�j�na(i)-1. In order to determine the value of t

efficiently, we will also compute two arrays for each

zero state: totalWaits[i,j]=the number of “wait” actions

in the set {ai,1, ai,2, …, ai,j} and nextWait[i,j]=the first

“wait” action ai,j’, j’�j. The algorithm maintains a stack

a with the sequence of actions corresponding to the (i-

1)
th

 zero state and transforms this stack into the

sequence of actions of the i
th

 zero state. Similarly, the

arrays totalWaits and nextWait will also only be

transformed from the (i-1)
th

 zero to the i
th
 zero.

3. One-Player Games

3.1. 1D Push-*

Push-* [2] is a simplified version of the well-known

2D game Sokoban. In this section we consider the one-

dimensional version of Push-*, with several additions.

There are N squares on a linear board, numbered from

1 to N (from left to right). Some of the squares contain

blocks, while others are empty. A robot starts in square

1 and must arrive to square N with minimum

consumption of energy. In order to achieve this, the

robot can make the following moves: walk, jump and

push. A walk consists of moving from the current

square to the left or to the right if the destination square

is empty. If the robot’s square is i and square i+1

contains a block, the robot may push that block one

square to the right (together with all the blocks located

between positions i+2 and the first empty square to the

right of i+1); obviously, an empty square must exist

somewhere to the right of position i+1. After the push,

the robot’s position becomes i+1. In a similar manner,

the robot can push blocks to the left. The robot can also

jump any number Q (1�Q�K) of squares to the right

(left) if the previous (K-1)�1 moves consisted of

walking to the right (left). Each type of move consumes

a certain amount of energy. We will find the minimum

energy strategy with a dynamic programming

algorithm. We compute a table E[i,j]=the minimum

energy consumed in order to have the robot located at

square i and having j empty squares to the left (i.e., the

squares i-1, i-2, …, i-j are empty). Furthermore, the

robot has not yet reached any square k>i (thus, all these

squares are in the same state as in the beginning). In

order to justify this approach, we will consider the

squares grouped into intervals of consecutive empty

squares. Let’s number these intervals with consecutive

numbers, from left to right. If the robot reaches a

square inside an interval X, then an optimal strategy

will never contain moves which bring the robot to an

interval Y<X. Thus, when the robot arrives in a square i

inside an interval X, all the squares k>i are in the initial

state. This way, we can consider only sequences of

moves which are local to the interval of consecutive

empty squares into which the robot resides. The

outcome of these moves should be that the player

reaches another interval Y>X (or another square k>i).

For each state (i,j), we need to consider only O(N
2
)

sequences of moves, which will improve the value of

some states (i’,j’), i’>i. These sequences consist of

travels (walks+jumps), walks and pushes (to both sides

of the interval of empty squares). Since there are O(N
2
)

possible states, the time complexity will be O(N
4
).

3.2. Candy Collector

We have a complete directed graph with N vertices,

numbered from 1 to N. The player is initially located at

vertex 1. For each ordered pair of vertices (i,j), the time

required to travel from i to j, tri,j, is given. At certain

time moments, boxes of candies may appear in the

vertices of the graph. There are M boxes overall and

for each box of candy k, the time moment when it

appears, tak, the vertex where it appears, vk, and the

number of candies in the box, ck, are known. All the

time moments are considered to be integers. At each

moment t, the player may either stay in its current

position (vertex) i or may start traveling towards

another vertex j (which he/she reaches at time moment

t+tri,j). The candies inside a box k can be collected by

the player only if the player is located at vertex vk at

the moment the candy box appears (tak) or if the player

just arrives at the vertex at that moment. The purpose

of the game is to collect as many candies as possible.

An optimal strategy can be found by using dynamic

programming. We sort the candy boxes in increasing

order of their moment of appearance. Thus, box k

appears after (or at exactly the same time as) any box

p<k. For each candy box k, we compute Cmax[k]=the

maximum number of candies which the player can

collect if at time tak he/she arrives (or is located) at

vertex vk (and, thus, collects the candies in box k). We

also consider a virtual box k=0 with c0=0 candies,

appearing at v0=1 at ta0=0. We have Cmax[0]=0 and

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

�
�
�

�
�
�

∞−

−≤<
+=

pkv,v

kmax

tata trandk p if Cmax[p],
maxc[k]C kp (1)

The maximum number of candies which can be

gathered is the maximum value in the array Cmax. The

time complexity of this algorithm is O(M
2
). We will

now consider the case when M is large: for instance,

M>N and/or M>Tmax, where Tmax is an upper limit for

the maximum travel time between any two vertices. We

will compute the same values as above, but we will

make the following observation: if vp=vk (p<k), then

Cmax[p]�Cmax[k]. For each vertex i, we will maintain a

list with all the candy box numbers which appeared at

vertex i, sorted in chronological order. Let this list be

cb(i,1), cb(i,2), …, cb(i,ncb(i)), where ncb(i) is the

number of candy boxes which appeared at vertex i (so

far). When computing Cmax[k] for a candy box k, we

will iterate over all the vertices of the graph. For each

vertex i, we will find the last candy box cb(i,j), such

that tri,vk�tak-tacb(i,j) and set Cmax[k]=max{Cmax[k],

ck+Cmax[cb(i,j)]}. Since the candy boxes cb(i,1), …,

cb(i,ncb(i)) are sorted such that tacb(i,1)<…< tacb(i,ncb(i)),

we can perform a binary search in order to find the

candy box cb(i,j). The time complexity becomes

O(M·N·log(M)). After computing Cmax[k], we add k at

the end of the candy box list of the vertex vk. When the

maximum travel time between any two vertices i and j

(tri,j) is less than (or equal to) a small value Tmax, we

can improve the algorithm further. For each vertex i,

we will maintain a value Tlast[i]=the last time moment

when a candy box appeared at vertex i. We will also

maintain a table MaxC[i,t], with 0�t�Tmax, representing

the maximum number of candies the player can gather

if at time Tlast[i]-t he/she is located at vertex i. Initially,

Tlast[i]=0, for all the vertices i, and MaxC[i,t]=-�,

except for MaxC[1,0], which is 0. With these values,

we can compute Cmax[k] in O(M·(N+Tmax)). If the

graph’s vertices are points on the OX axis (each point i

having a coordinate xi) and the travel time between two

vertices i and j is the difference between their

coordinates (tri,j=|xi-xj|), we can consider that the OY

axis corresponds to time. With this representation, each

candy box k is a point with coordinates (xvk, tak). When

computing the value Cmax[k] of the candy box k, we are

interested in the Cmax values of candy boxes p<k whose

coordinates have the following property: |xvp-xvk|�tak-

tap. This equation defines a rectangular quarter-plane,

with the origin in (xvk, tak). By rotating all the points

associated by 45 degrees around the origin, each candy

box is assigned some new coordinates (xk’, yk’). With

the new coordinates, the condition for a candy box p<k

to be considered when computing Cmax[k] is: xp’�xk’

and yp’�yk’. The quarter-plane is now aligned with the

OX’ and OY’ axes. If we consider the value Cmax[k] of a

candy box k to be the weight of the point (xk’, yk’), we

are interested in finding the maximum weight of a point

located inside a quarter-plane. We can use orthogonal

range search data structures, like 2D range trees, for

which range queries and updates take O(log2M) each.

4. Two-Player Games

4.1. K in a Row

There are N empty (unoccupied) squares on a linear

board, numbered from 1 to N (from left to right). At

each turn, a player must occupy K�1 consecutive

unoccupied squares. The first player which cannot

perform a move when its turn comes loses the game.

The game can be analyzed using the Sprague-Grundy

game theory. For every number i (0�i�N), we will

compute G(i)=the Grundy number of a game state

consisting of i consecutive empty squares. We have

G(i)=0, for i<K. For i�K, we will generate the set of all

the successor states. There are i-K+1 possible moves,

according to the first occupied square. If the first

occupied square is j (1�j�i-K+1), then, after occupying

the squares j, j+1, …, j+K-1, we have j-1 empty

squares to the left and i-j-K+1 empty squares to the

right. Thus, we now have a sum of two independent

games, composed of j-1 and i-j-K+1 squares. The

Grundy number of the sum of the two games is G(j-1)

xor G(i-j-K+1). The set of Grundy numbers of all the

successor states is SG={G(0) xor G(i-K), G(1) xor G(i-

K-1), …, G(i-K) xor G(0)} and G(i)=mex(SG) (mex =

minimum excluded value). Although the game can be

analyzed this way, the complexity of computing all the

Grundy numbers is O(N
2
) overall. Let’s consider now

the case K=1. It is obvious that the first player (the one

performing the first move) will win only if N is an odd

number; otherwise, the second player will win. For

K�2, we will focus on the losing states (with Grundy

numbers equal to 0). We will consider the sequence of

losing states s0, s1, s2, …, starting from s0=K-1 (the

states with less than K-1 squares are also losing states,

but they can be trivially handled). Starting from this

sequence, we consider the sequence of differences

between two consecutive losing states, i.e. a sequence

d1, d2, …, where di=si-si-1. For K=2, the sequence of

differences has a prefix of length 8 (4, 4, 6, 6, 4, 4, 6,

4) and a period of length 5 afterwards (4, 12, 4, 4, 10).

Using this information, we can find out in O(1) time

whether a given state is a winning or losing one. For

K�4, we noticed another interesting pattern regarding

the sequence of differences: the first 12 differences are

always d1=2·K, d2=2·K, d3=4·K-2, d4=4·K-2, d5=4·K,

d6=4·K-2, d7=8·K-2, d8=4·K-2, d9=8·K, d10=8·K-2,

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

d11=16·K-6, d12=4·K. We could not find any other

pattern after d12. However, with this pattern, we can

analyze in O(1) time any state between 1 and 69·K-19.

4.2. Collect an Even/Odd Number of Objects

There is one pile containing N objects (N is odd).

Two players perform moves alternately. When its turn

comes, a player may remove from the pile any number

of objects x between 1 and K (if there are at least x

objects in the pile). The player keeps the objects he/she

removed and adds them to the objects removed during

previous moves. When the pile becomes empty, each

player counts the number of objects he/she gathered

from the pile during the game. The winner of the game

is the player who gathered an even number of objects.

Here we can use dynamic programming, by computing

two sets of values: win[0,i] and win[1,i]. win[0,i] is 1,

if the pile contains i objects, the winner must gather an

even number of objects and the player whose turn is

next has a winning strategy (and 0, otherwise); win[1,i]

is defined similarly, except that the winner must gather

an odd number of objects. We have win[0,0]=1 and

win[1,0]=0. For 1�i�N, we have:

��

�
�

�

=++

≤≤∃

=

otherwise 0,

0c]-i2, mod 2)) mod c)-((i12) mod win[((c

such that K})min{i,c1(if1,

i]win[0,
(2)

��

�
�

�

=+

≤≤∃

=

otherwise 0,

0c]-i2, mod 2)) mod c)-((i2) mod win[((c

such that K})min{i,c1(if1,

i]win[1,
(3)

If win[0,N]=1, then the first player has a winning

strategy; otherwise, the second player has one. An

algorithm implementing the equations above has time

complexity O(N·K) and considers the number of

objects in the pile in increasing order. The time

complexity can be improved to O(N), by maintaining a

table last[x,y,z] (0�x,y,z�1), with the following

meaning: the last value of i (number of objects in the

pile) such that: the parity of the number of objects

gathered by the winner is x (0 for even, 1 for odd),

y=((the number i of objects in the pile) mod 2) and

z=win[x,i]. The new equations for win[0,i] and win[1,i]

and the algorithm are given below:

�
�

�
�

�

≤

≤

=

otherwise 0,

K0]) 2), mod 1)-((i 2), mod 1)-last[((i-(i if 1,

K0]) 2), mod (i 2), mod 1)-last[((i-(i if 1,

i]win[0,
(4)

�
�

�
�

�

≤

≤

=

otherwise 0,

K0]) 2), mod 1)-((i 2), mod last[(i-(i if 1,

K0]) 2), mod (i 2), mod last[(i-(i if 1,

i]win[1,
(5)

The values win[0,i] and win[1,i] present some

unexpected patterns. For even K, we have win[0,N]=0,

only if (N mod (K+2)=1). For odd K, we have

win[0,N]=0, only if (N mod (2·K+2)=1). We should

notice that, by computing the win[0,i] and win[1,i]

values, we also solved the version of the game in which

the winner has to gather an odd number of objects. The

values of win[1,N] exhibit similar patterns. For odd K,

we have win[1,N]=0, only if (N mod (2·K+2)=(K+2)).

For even K, win[1,N]=0, only if (N mod (K+2)=

(K+1)). Similar rules can be developed for win[0,N]

and win[1,N] when N is even, but in this case both

players may win the game. For even N and odd K,

win[0,N]=0, only if (N mod (2·K+2)=(K+1)) and

win[1,N]=0, only if (N mod (2·K+2)=0). For even N

and even K, win[0,N] is always 1 and win[1,N]=0,

only if (N mod (K+2)=0).

5. Related Work & Conclusions

Cellular automata were made popular by Conway’s

Game of Life [1], but have since emerged as an

important scientific topic [3]. Single-player games are

very popular; some of them which are closely related to

the ones studied in this paper are presented in [2,5].

The Sprague-Grundy theory [6] for two-player

impartial games is the best known for analyzing normal

play games (those where the winner makes the last

move). In [4], periodicity and arithmetic-periodicity

aspects of some hexadecimal two-player impartial

games are considered. In this paper we discussed

several zero-, one- and two-player games, for which we

identified new, unexpected patterns and developed new

techniques for computing optimal strategies.

6. References

[1] M. Gardner, “Mathematical Games: The fantastic

combinations of John Conway's new solitaire game ‘Life’”,

Scientific American 223, 1970, pp. 120-123.

[2] E. D. Demaine, M. L. Demaine, J. O’Rourke, “PushPush

and Push-1 are NP-hard in 2D”, Proc. of the 12th Canadian

Conference on Computational Geometry, 2000, pp. 211-219.

[3] E. Goles, “Parallel and Serial Dynamics in Boolean

Networks”, Proc. of the 13th International Workshop on

Cellular Automata, 2007.

[4] S. Howse, R. J. Nowakowski, “Periodicity and arithmetic-

periodicity in hexadecimal games”, Theoretical Computer

Science, vol. 313, 2004, pp. 463-472.

[5] E. D. Demaine, M. L. Demaine, H. A. Verrill, “Coin-

Moving Puzzles”, More Games of No Chance, Cambridge

University Press, 2002, pp. 405-431.

[6] P. M. Grundy, “Mathematics and Games”, Eureka 2,

1939, pp. 6-8.

