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In this work, we demonstrate how phase change memory (PCM) devices can be used to emulate

biologically inspired synaptic functions in particular, potentiation and depression, important for

implementing neuromorphic hardware. PCM devices with different chalcogenide materials are

fabricated and characterized. The asymmetry between the potentiation and depression behaviors of

the PCM is stressed. Detailed multi-physical simulations are performed to study the underlying

physics of the synaptic behavior of PCM. A versatile behavioral model and a multi-level circuit-

compatible model are developed for system and circuit-level neuromorphic simulations. We

propose a unique low-power methodology named the 2-PCM Synapse, to use PCM devices as

synapses in large scale neuromorphic systems. To show the strength of our proposed solution, we

efficiently simulated fully connected feed-forward spiking neural network capable of complex

visual pattern extraction from real world data. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4749411]

I. INTRODUCTION

Research in the field of biologically inspired neuromor-

phic circuits, with the goal of achieving low power, highly

parallel, and fault-tolerant systems, has recently gained a lot

of interest.1–8 Neuromorphic hardware contains components

that can emulate functions performed by the neurons and the

synapses present inside the brain. In order to build functional

neuromorphic circuits comparable to the cerebral cortex, an

enormous number of neurons (1010) and synapses (1014 to

1015) are desired.9 The idea of achieving such a high synaptic

density using pure CMOS synapse circuits is not practical in

terms of on-chip silicon area consumption, due to the large

number of transistors required (more than 10 transistors per

synapse).10 Hybrid neuromorphic architectures containing

CMOS “neuronal” circuits, integrated with nanoscale

“synaptic” devices11 have thus been proposed in recent years.

Some nanoscale devices considered for implementing synap-

tic functions include hybrid organic/nanoparticle transistors,12

single-electron transistors,13 carbon-nanotube based struc-

tures,14 ionic/electronic hybrid transistors,15 and atomic

switches.16 Neurophysiological models17,18 suggest that a de-

vice, in order to emulate synaptic behavior, should have a con-

ductance that can be modulated by the type of stimulus it

receives. Since the storage of synaptic weights is believed to

play an important role in the functionality of neural net-

works,19 the devices emulating synaptic behavior should pos-

sess some kind of memory to retain their conductance states

(or the so-called synaptic weights). These conditions of con-

ductance modulation and of memory effect can be fulfilled by

the class of devices known as resistive memories.20 Several

types of unipolar and bipolar resistive memory technologies

such as phase change memory (PCM),21–23 conductive-bridge

(CBRAM) or programmable-metallization cell (PMC),24,25

and oxide-resistive (OXRAM) memory26 have been demon-

strated as suitable candidates for synaptic applications.

In this work, we focus on the use of PCM devices for

synapses due to advantages such as high scalability, CMOS

compatibility, good endurance, and good technological ma-

turity compared to other resistive memory technologies.27

Section II discusses in detail the experiments demonstrating

synaptic potentiation and synaptic depression on PCM devi-

ces, and some limitations emerging from the emulation of

synaptic depression. Section III presents multi-physical sim-

ulations used to analyze the experiments described in Sec. II.

Section IV introduces a behavioral and a circuit compatible

model, for designing and simulating large scale PCM based

neural networks. Section V describes a new energy-efficient

methodology named the 2-PCM Synapse to implement syn-

aptic functionality using PCM devices and a solution to over-

come the limitations described in Secs. II and III. Finally, in

Sec.VI the behavioral model and the 2-PCM Synapse
approach were used to design a large scale neural network

for visual pattern extraction application, presented in

detail.22

II. ELECTRICAL CHARACTERIZATION

When used as a synapse, a PCM device is connected to

two spiking CMOS circuits, acting as the pre- and post-

synaptic neurons (Fig. 1). The difference between thea)E-mail: manan.suri@cea.fr.
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electrical resistivity of the amorphous and the crystalline

phases of the chalcogenide can be exploited to use PCM as

variable resistor or programmable memristor. The high-

resistive amorphous phase is usually defined as the RESET

state, while the low-resistive crystalline phase as the SET

state. When a bias is applied across the two electrodes of the

PCM, current flows through the metallic heater and the chal-

cogenide layer, causing joule-heating. Depending on the

pulse-duration, fall-time edge, and the amplitude of the cur-

rent flowing through the device, crystalline, amorphous, or

partially crystalline and partially amorphous regions can be

created inside the chalcogenide layer. If the chalcogenide

layer is melted and quenched quickly, it does not get suffi-

cient time to re-organize itself into a crystalline structure and

thus amorphous regions are created. If the chalcogenide layer

is heated, between the glass-transition and the melting tem-

perature, for sufficiently long time it leads to crystallization.

In this work, Lance-type PCM test devices, with a

100 nm-thick phase change layer and a 300 nm-diameter

tungsten plug, were fabricated and characterized. Two differ-

ent chalcogenide materials were integrated: nucleation-

dominated Ge2Sb2Te5 (GST) and growth-dominated GeTe.29

GST and GeTe were chosen to examine how materials with

different crystallization parameters would impact the synap-

tic behavior. For all the measurements, a current limiting re-

sistance of 100 X was connected in series with the top pad of

the PCM device. The bottom pad was grounded and the sig-

nal was applied to the top pad.

Throughout this paper, we will refer to an increase in

synaptic conductance as synaptic potentiation (or long term

potentiation, LTP18), and to a decrease in synaptic conduct-

ance as synaptic depression (or long term depression, LTD18).

Figs. 2(a) and 2(b) show the measured current-voltage (I-V)

and resistance-current (R-I) curves, for GST and GeTe PCM

devices. In Fig. 2(a) (I-V curve), the device was initially reset

to the amorphous state. As the applied voltage is increased,

electronic switching occurs at the threshold voltage, and the

amorphous region becomes conductive (the so called volatile

electronic-switching30). Fig. 2(b) (R-I curve) illustrates well

the difference between a SET state (crystalline), a

“potentiated” state (partially crystalline), and a strong RESET

state (large amorphous region). At the beginning of the test,

the device was reset to a high resistive amorphous state using

a strong reset-pulse (7 V, 100 ns, rise/fall time¼ 10 ns). This

was followed by the application of a programming pulse.

After the programming pulse, a small reading voltage of

0.1 V was applied to measure the device resistance.

Fig. 2(c) shows the characteristic resistance-voltage

(R-V) curves for GST based PCM devices, for different pro-

gramming pulse widths. For a given pulse amplitude, the re-

sistance decreases much faster for longer pulse widths. Thus,

by using the combination of right pulse width and right pulse

amplitude, PCM resistance (or conductance) can be modu-

lated, as an analog to synaptic weights. For both Figs. 2(b)

and 2(c) the rise and fall times of the set pulse are always

10 ns. The reset-to-set transition in GeTe is more abrupt

FIG. 2. (a) I–V characteristics for PCM

devices with 100 nm thick GST and

GeTe layer starting from initially amor-

phous phase. (b) R-I characteristics of

GST and GeTe PCM devices, with inset

showing the PCM phase of intermediate

resistance states. (c) R-V curves for GST

devices with six different pulse widths.

Read pulse¼ 0.1 V, 1 ms. The legend

shows pulse widths.

FIG. 1. Illustration of biological synapse and the equivalent PCM synapse in

a neural circuit connecting a spiking pre- and post-neuron.
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compared to GST; GeTe being a growth dominated material

crystallizes much faster compared to GST which is nuclea-

tion dominated. On the other hand the set-to-reset transition

appears to show more gradual resistance change for both

GST and GeTe as it is possible to obtain different intermedi-

ate resistance values by controlling the volume of the

amorphous region created inside the phase change layer

post-melting.

LTP can be emulated if the PCM is progressively pro-

grammed along the RESET-to-SET transition (or amor-

phous-to-crystalline). LTD can be emulated if the PCM is

progressively programmed from the SET-to-RESET transi-

tion (or crystalline-to-amorphous). In order to emulate spik-

ing neural networks (SNN), it is desired that both LTP and

LTD can be achieved by application of simple and identical

pulses. Generation of complex types of spikes or pulses

would require additional complexity in the neuron circuit

design. Two types of pulses can be defined for our purpose:

“depressing” or amorphizing pulse (reset) and a

“potentiating” or partially crystallizing pulse (a weak set).

Figs. 3(a) and 3(b) show LTP-like conductance variation

of PCM devices with GST and GeTe, respectively. Initially,

the devices were programmed to a high resistive state by

using a strong depressing pulse (7 V, 100 ns). This was fol-

lowed by the application of several identical potentiating

pulses, which are simple rectangular voltage pulses with a

rise and fall times of 10 ns (2 V for GST, 1.5 V for GeTe).

The voltage amplitude of the potentiating pulses is chosen

such that the resulting current flowing through the device is

just sufficient to switch the device and cause minimum

amount of crystallization with the application of each pulse.

Nucleation-dominated behavior leads to a more gradual con-

ductance change in GST, when compared to GeTe (GeTe

being growth dominated). The saturation of the conductance-

programming window in GeTe occurs in less than a third of

the total number of pulses required for GST. From the view-

point of storage capacity (in the form of synaptic weights)

inside a neural network, a GST synapse seems superior to a

GeTe synapse, as GST offers a higher number of intermedi-

ate conductance states.

Fig. 4 shows the emulation of LTD-like behavior on

PCM devices. The devices were first crystallized by applying

a strong potentiating pulse (2 V, 1 ls), followed by the appli-

cation of several identical depressing pulses (7 V, 50 ns). It

was not possible to obtain a gradual synaptic depression by

FIG. 3. (a) Experimental LTP character-

istics of GST PCM devices. For each

curve, first a reset pulse (7 V, 100 ns) is

applied followed by 30 consecutive iden-

tical potentiating pulses (2 V). Dotted

lines correspond to the behavioral model

fit described in Eqs. (3a) and (3b). (b)

Experimental LTP characteristics of

GeTe PCM devices. (c) Circuit-

compatible (Sec. IV B) based LTP simu-

lations for GST devices. (d) Circuit-

compatible (Sec. IV B) simulations of

the conductance evolution as a function

of the applied voltage for GST devices

with six different pulse widths. The

legends in Figs. 3(a)–3(d) indicate pulse

widths.

FIG. 4. Experimental LTD characteristics of GST and GeTe PCM devices.

Inset shows simulated phase morphology of GST layer after the application

of consecutive depressing pulses.
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applying identical depressing pulses. The LTD experiment

seems more like an abrupt binary process, with negligible in-

termediate conductance states. Multi-physical simulations

(described in Sec. III) were performed to interpret the LTD

experiment. From these simulations (shown embedded in

Fig. 4), we observed that the volume of the molten region

created after the application of each pulse remains almost the

same if the pulses are identical. We also performed LTD

simulations with consecutive pulses of increasing amplitude

(not shown in this paper), and observed a gradual decrease in

the device conductance with the application of each pulse, in

agreement with other papers.23 A strong depressing pulse

would melt a larger region compared to a weak depressing

pulse, creating a larger amorphous cap and a lower value of

final device conductance. Thus, in order to obtain gradual

synaptic depression behavior, the amplitude of the consecu-

tive pulses should increase progressively. This is also in

agreement with the set-to-reset transition seen in Fig. 2(b).

Innovative pulse sequences like the ones suggested in

Ref. 23 could help in achieving LTD with multiple interme-

diate states. Nevertheless, implementing such complex

pulse-schemes with varying amplitudes can lead to practical

problems, such as capacitive line charging and high power

dissipation, when implemented in large scale neural systems.

Moreover, the generation of non-identical pulses would lead

to an augmented complexity in the design of the CMOS neu-

ron circuits. Additionally, emulation of LTD or synaptic

depression on PCM devices is significantly more energy con-

suming compared to the emulation of synaptic potentiation,

as the former requires amorphization (occurring at a higher

temperature compared to crystallization). In Sec. V, we will

propose a new solution to emulate LTD with PCM devices,

thus overcoming the limitations discussed above.

III. PHYSICAL SIMULATIONS

In this section, we present electro-thermal simulations to

study the underlying physics of the LTP and LTD experi-

ments described in Sec. II. The motivation for such a study

is to optimize the synaptic characteristics by engineering the

crystallization properties of the phase change materials.

Crystallization properties of phase change materials can be

altered to some extent by doping,33,34 modifying the stoichi-

ometric compositions,35–37 and interface engineering.50 A

better control over the crystallization parameters by materi-

als engineering is also in the interest of multi-level PCM

implementation38 and enhanced data-retention characteris-

tics.39 All the simulations were performed for the GST based

PCM devices. The electro-thermal simulator, developed in

MATLAB and Cþþ, was described in detail in Ref. 31. The sim-

ulations were performed in the 2D axi-symmetrical coordi-

nate reference system. In all the simulations, a series load

resistance, Rs, and a parasitic capacitance Cp (Fig. 5(a)) were

considered. Figs. 5(b)–5(e) show the time evolution of sev-

eral simulated electro-thermal parameters for a PCM device

(initially amorphous), during the application of a potentiating

pulse (2.1 V, 30 ns). The evolution of the voltage drop across

the device, the current, the resistance, and the maximum cell

temperature is shown.

Fig. 6 shows a time snapshot of the GST phases during

the application of a depressing pulse (8 V, 25 ns), starting

from an initially crystalline state. The selected time is the be-

ginning of the quenching process (i.e., the falling edge of the

reset pulse, Fig. 6(a)). Before this instant, a mushroom-

shaped melted mass of GST (brown color) in the region right

above the W-plug is seen. As the quenching progresses, the

GST amorphizes, moving inwards from the melted-

crystalline interface towards the center of the mushroom.

FIG. 5. (a) 2D Axi-symmetrical half cell

description used for physical simulations.

(b) Simulated time evolution of applied

voltage pulse and drop across the device for

a potentiating pulse. (c) Simulated maxi-

mum temperature in GST layer with the

applied pulse. (d) Simulated current passing

through the device during the applied pulse.

(e) Simulated resistance of the device with

the applied pulse.
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Formation of thin amorphous GST (green color) can be seen

at melted-crystalline interface in Fig. 6(b).

The first few points in the LTP curves (for GST) shown

in (Fig. 3(a)) are crucial in determining the total number of

intermediate conductance states that can be obtained for a

given programming-window. The maximum change in

conductance was indeed observed to occur during the appli-

cation of the first 5 pulses for GST. In order to better under-

stand the variation of conductance during the application of

first few pulses in the LTP experiment, we performed the

simulations shown in Fig. 7. The nucleation rate (I) and

growth velocity (V) in the phase change layer were modeled

using Eqs. (1) and (2), respectively, adapted from Ref. 31

I ¼ Na c On Z exp �DG�

kT

� �
; (1)

V ¼ c d 1 � exp
�DGv

RT
:

M

q

� �� �
; (2)

where Na is the number of nucleation sites, c an atomic

vibration frequency, the DG are free energies, Z a Zeldovitch

parameter, On the number of atoms at critical nucleus sur-

face, M a molar mass, d an inter-atomic distance, q a volu-

mic mass, and DGv the difference in Gibbs free energy

between the amorphous and the crystalline phases. The cal-

culation of each parameter is detailed in Ref. 31.

For the simulations shown in Fig. 7, the fitting of the

GST-LTP experimental data (corresponding to the 50 ns

pulse width, Fig. 3(a)) was defined as the reference nuclea-

tion rate (NR¼ 1) and the reference growth velocity

(GR¼ 1). LTP simulations (Fig. 7(a)) with artificially

increased (GR¼ 10) and artificially reduced (GR¼ 0.1)

growth velocities with respect to GST (GR¼ 1) were per-

formed, keeping the nucleation rate constant. Similarly, LTP

simulations with artificially increased (NR¼ 2) and artifi-

cially reduced (NR¼ 0.1) nucleation rates were also per-

formed (Fig. 7(b)). The artificial boost or decrease in NR and

GR was performed by directly multiplying Eqs. (1) and (2)

FIG. 6. (a) Simulated depressing (reset)

pulse indicating the instance of time snap-

shot. (b) Time snapshot of the simulated

phase morphology of the GST phase

change layer.

FIG. 7. (a) Simulated LTP curves while fixing

the nucleation rate (NR) and varying the growth

rate GR compared to GST (taken as reference:

GR¼ 1, NR¼ 1). Corresponding simulations of

GST layer morphology are shown (0th pulse:

reset; 1st-5th: potentiating). (b) Simulated LTP

curves while fixing the growth rate (GR¼ 1)

and varying the nucleation rate (NR) compared

to GST (taken as reference material: NR¼ 1,

GR¼ 1). Corresponding simulation of GST

layer morphology are also shown.
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with a constant value. Three major observations were made.

First, the maximum value of conductance was reached in

fewer pulses if either the growth or the nucleation rate were

enhanced. Second, the shape of the bulk amorphous region

created after application of the initial reset pulse had a strong

dependence upon the values of the growth and the nucleation

rates. It is not straightforward to decouple the effect of the

nucleation and of the growth parameters as the shape of the

amorphous region or morphology changes after the applica-

tion of each potentiating pulse.32 A high growth rate

(GR¼ 10) leads to a strong crystal growth from the

amorphous-crystalline interface during the falling edge of

the reset pulse, thus distorting the mushroom-like shape of

the amorphous region. A low growth rate (GR¼ 0.1) leads to

a more uniform mushroom shape of the amorphous region.

Finally, after the application of the first potentiating pulse,

conductance was more sensitive to changes in the nucleation

rate compared to growth. Fig. 7 also shows the strong impact

of nucleation rate and growth velocity on the morphological

evolution of the crystalline phase inside phase change layer.

IV. MODELING

A. Behavioral model for system level simulations

In order to model the millions of PCM synapses in large

scale neural networks, and thus to evaluate the potential of

PCM synaptic technology, a computationally efficient model

of its behavior is particularly desirable. For this purpose, we

introduced the following phenomenological equation to

model the LTP characteristics of the GST and GeTe devices

during a LTP pulse:

dG

dt
¼ a exp �b

G� Gmin

Gmax � Gmin

� �
(3a)

where G is the device conductance, a and b are fitting param-

eters. Gmin and Gmax are the minimum and maximum values

of device conductance, respectively. This equation was origi-

nally introduced to model memristive devices.40 To model

the conductance change DG after the application of a short

LTP pulse of duration Dt, Eq. (3a) may be integrated as

DG ¼ aDt exp �b
G� Gmin

Gmax � Gmin

� �
: (3b)

These equations gave a very satisfactory fit of our meas-

urements for both GST and GeTe devices, as shown in Figs.

3(a) and 3(b). This is valuable because the shape of the

potentiation curve should have a serious impact on the sys-

tem performance as suggested by the works in computational

neuroscience.41 For GST and GeTe, we used unique set of

parameters a, b, and Gmin. Gmax, for the different pulse

widths. Table I lists the values of the parameters used for the

fitting two pulse widths for GST and GeTe shown in Figs.

3(a) and 3(b), respectively.

B. Circuit-compatible model

To design hybrid neural circuits consisting of CMOS

neurons and PCM synapses, a circuit-compatible model for

the PCM is required. We thus developed a circuit compatible

PCM model, specifically tailored to capture the progressive

character of the LTP experiments shown in this paper. This

simple circuit-compatible model, inspired by Ref. 42, was

developed using the VHDL-AMS language and includes

both LTP and LTD. The simulations were performed with

the Cadence AMS simulator. Fig. 3(c) shows the simulated

LTP curves for six different pulse widths for GST. Table III

lists all the constants and fitting parameters used in the

circuit-compatible model. The model consists of three parts:

electrical, thermal, and phase-change. For the electrical part,

an Ohmic relationship between current and voltage is

assumed:

v ¼ Rgst:i: (4)

We preferred not to include the threshold switching

effect in this model, as its primary purpose is to emulate LTP

behavior during learning in large-scale neural networks sim-

ulations, where simulation efficiency is essential. Rgst is the

low field resistance of the device, which consists of the sum

of the GST layer resistance and the bottom and top electro-

des resistance Rs. The resistance of the phase change layer is

a function of the amorphous volume fraction Ca

Rgst ¼ Rs þ R1�Ca
0c :R0a

Ca (5)

R0c and R0a correspond to the resistances of the fully crystal-

lized and fully amorphized states, respectively. We used a

logarithmic interpolation, which is intermediate between the

series and parallel cases,42 as this led to the best fitting for

our GST devices.

In order to evaluate the impact of resistance drift43 on

the stability of the learning, we included a behavioral model-

ing of this phenomenon, which can be optionally enabled or

disabled in the simulations. To do so, R0a is replaced with Ra

Ra ¼ R0a:
t

t0

� �Ca:dr

; (6)

where t0 is the time, at which the latest phase change

occurred (i.e., when Tb last crossed Tg).

In the thermal part of the model, the electrical power Pt

and the temperature of the phase-change material Tb are con-

nected by the following equation, with T0 the ambient

temperature

Tb ¼ T0 þ Pt:Rtgst: (7)

TABLE I. Fitting parameters of the behavioral model for 300 ns GST LTP

curve and 100 ns GeTe LTP curve shown in Figs. 3(a) and 3(b),

respectively.

Parameters GST (300 ns) GeTe (100 ns)

Gmin (lS) 8.50 8.33

Gmax (mS) 2.3 2.9

a (S/s) 1100 3300

b �3.8 �0.55
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The thermal resistance of the phase change layer Rtgst is

described by the following equation:

Rtgst ¼ ð1� CaÞ:Rtc0 þ Ca:Rta0; (8)

where Rtco and Rtao are the thermal resistances for the com-

pletely crystallized and completely amorphized states. Due to

the threshold switching effect, the electrical power during

phase change is essentially independent on the amorphous ra-

tio. The electrical power is therefore calculated using the fully

crystallized phase-change resistance, for which no threshold

switching occurs, instead of the low field resistance

Pt ¼
v2

Rs þ R0c
: (9)

The phase-change part of the model uses behavioral

equations. Amorphization occurs when Tb is higher than Tm,

the melting temperature. The amorphization rate is assumed

to increase linearly with the temperature, and is zero when

Tb is equal to Tm, thus ensuring continuity with the crystalli-

zation rate at this temperature. This leads to the equation

dCa

dt
¼ 1

sa
:
Tb � Tm

Tm
; when Tb > Tm: (10)

The equation modeling the crystallization rate does not

attempt to model nucleation-driven and growth-driven rate

separately. The expression we used is, however, reminiscent

to growth rate modeling. It includes a term Ca
2, because

crystallization rate typically depends on the amorphous-

crystal interface surface for growth-driven process (and vol-

ume for nucleation-driven process).

dCa

dt
¼�Ca

2

sc
: 1� exp Ea:

Tb�Tm

Tb

� �� �
:exp �Eb

Tb

� �
;

when Tb < Tm and Tb >Tg: (11)

This model, with parameters listed in Table II, gives

good fitting results for the LTP curves (Fig. 3(c)), although

the fit is not as excellent as the behavioral model (Fig. 3(a)).

Simulation of the conductance evolution as a function of the

applied voltage with the same parameters is shown in Fig.

3(d). Although the fitting is less accurate for shorter pulses,

all the curves in Fig. 3 were fitted with a single set of param-

eters. The model captures the correct behavior of the PCM

for a relatively wide range of measurements with a small

number of semi-physical parameters. It is therefore adapted

for fast exploration and easier circuit design where PCM

devices are employed to emulate millions of synapses.

V. THE “2-PCM SYNAPSE” CIRCUIT

Different feasible programming methodologies to use

PCM or nanoscale resistive-memory devices as synapses in

neural networks have been proposed in the literature.48,49

Here, we propose a new methodology based on the use of

two PCM devices for emulating a single synapse (Fig. 8). In

this scheme, one of the PCM device implements synaptic

potentiation (the LTP-device), while the other (the LTD-

device) implements synaptic depression. Both devices are

initialized to a high resistive amorphous state before the net-

work undergoes learning. The contribution of the currents

through the LTP device to the post-synaptic neuron is posi-

tive, while that of the LTD device is negative. Thus, when

the LTD device is potentiated, the overall impact of the syn-

apse is a synaptic depression, because the current flowing

through it is subtracted in the post neuron. Since the depres-

sion is also attained by crystallization, it can be performed

gradually and by using identical pulses. The detailed pro-

gramming methodology for implementing a simplified form

of biological spike-time-dependent-plasticity (STDP)45

learning rule using the 2-PCM Synapse is described in detail

in Ref. 22. The pre- and the post-neuron pulses are defined in

such a way that when the pre-neuron spikes before the post

TABLE II. Parameters used for the GST compact model simulations shown in Fig. 3(c).

Parameter Value Description

Electrical model

Rs 100 X Serial resistance (top and bottom electrodes)

R0a 159 kX Resistance of the fully amorphized state

R0c 135 X Resistance of the fully crystallized state

Thermal model

Rta0 15.9� 103 W/K Thermal resistance of the fully crystallized state

Rtc0 5.07� 103 W/K Thermal resistance of the fully amorphized state

T0 300 K Ambient temperature

Phase-change model

Ea 0.335 Fitting parameter for crystallization rate at high temperature

Eb 5.77� 103 Fitting parameter for crystallization rate at low temperature

Tg 380 K Lowest temperature at which crystallization can occur

Tm 698 K Melting temperature of the phase change material

sa 8.17� 10� 13 s�1 Amorphization rate (fitting)

sc 1.10� 10�6 s�1 Crystallization rate (fitting)

dr 0.03 Drift coefficient
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neuron, the interaction of the two pulses would only potenti-

ate or partially crystallize the LTP device, without affecting

the state of the LTD device. In the case when the post-

neuron spikes before the pre-neuron, the two pulses interact

and potentiate only the LTD device, without affecting the

state of the LTP device. The conductance of the PCM devi-

ces increases during the learning process and eventually sat-

urates. Thus, we developed a refresh mechanism to enable

continuous learning in the system. The refresh mechanism

reduces the conductance of the LTP and LTD devices while

keeping the weight of the equivalent synapse unchanged.

When one of the two devices reaches its maximum conduct-

ance the refresh mechanism is initiated. First, both the devi-

ces are programmed to reset. Then, a series of potentiating or

partially crystallizing pulses are applied to the PCM device

which initially had a higher conductance. The potentiating

pulses are applied until the equivalent synaptic weight is re-

programmed within a reasonably accurate range. Due to the

inherent variability robustness of neural architectures, it is

not necessary that the synapse be re-programmed to the exact

same value of the synaptic weight before the initiation of the

refresh operation. As one of the device stays at minimum

conductance, this mechanism enables continued evolution of

the weights. The detailed circuit implementation of the

refresh methodology is described in Ref. 28. Although the

2-PCM Synapse approach occupies more area compared to a

synapse based on a single PCM device, it has several impor-

tant advantages. It is particularly low power, because the ma-

jority of the synaptic events are achieved by crystallization

(and not by amorphization), which is a less energy consum-

ing phase-change phenomenon. Another inherent advantage

of this approach is the decrease of the impact of resistance

drift on the stored synaptic information. Since we potentiate

and depress the synapses by crystallization, the majority of

the synaptic information is stored or programmed in the low

resistance states of the PCM devices. Crystalline or low re-

sistance states are more stable and immune to the resistance

drift phenomena compared to high resistance PCM states.44

If the synaptic depression events were to be implemented by

amorphization, all the information stored in the depressed

synapses would be in the high-resistance regime and thus

more susceptible to resistance-drift.

VI. NEURAL NETWORK AND LEARNING TEST CASE

To validate the approach of the 2-PCM Synapse
described in Sec. V, we simulate a two-layer fully connected

feed-forward spiking neural network (Fig. 9) deeply detailed

in Ref. 22. The neurons are based on a a leaky-integrate-fire

(LIF) model.46 The GST and GeTe PCM synapses were

modeled using Eqs. (3a) and (3b). Overall, there are 70 neu-

rons (60 in the first layer and 10 in the second layer) in the

network. Address-event representation (AER) data (Fig.10)

recorded with128� 128 pixel silicon retina47 are used as the

input for the neural network. The AER data are a special for-

mat recording of cars passing on a 6-lane freeway. Each of

the 128� 128 pixels in Fig. 9 is connected through two syn-

apses to every neuron in the first layer. Likewise, each neu-

ron in the first layer is connected to every neuron in the

second layer with a single synapse, leading to a total of 1

966 680 synapses and thus 3 933 360 PCM devices (2 PCM/

synapse). The goal of the neural network is to detect cars

passing in different lanes on a freeway in an unsupervised

way. Fig. 10 and Table III show the overall learning results

for the AER dataset. The average successful detection rate

for the neural network was found to be greater than 90%. To

demonstrate the variability robustness of our neuromorphic

system, we implement 20% dispersion on standard deviation

FIG. 8. Circuit schematic for the 2-PCM Synapse. The input of the current

from the LTD devices is inverted in the post-synaptic neuron. FIG. 9. Simulated two-layer fully connected feed, forward SNN with 70

fully connected neurons and about 2 million synapses.22

FIG. 10. Grey squares show video recorded data of cars passing on a free-

way in AER format. Black squares show the sensitivity map of the neurons

in the 1st layer of the neural network for both GST and GeTe. Each neuron

becomes sensitive to a specific orientation of cars in a specific lane.
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of all the parameters in Eqs. (3a) and (3b). Output neurons in

the 2nd layer are able to detect cars in 4 traffic lanes out of 6

for systems based on GST-PCM synapses, and 5 out of 6

lanes for systems based on GeTe- PCM synapses, respec-

tively. The frequency of potentiating pulses per device is

about 25 times higher than the frequency of reset pulses for

GST-PCM based system, and about 10 times higher for

GeTe-PCM based system. Indeed, this result suggests that

the efficiency of the system can be further increased by

choosing the right phase-change material with the optimum

number of intermediate resistance states in the LTP curve. A

rough estimate of the power consumption to program the

PCM synapses in the two layer neural network for the car-

detection experiment is provided in Ref. 22. The total learn-

ing duration for the cars experiment is about 10 min and the

total power dissipation in the learning mode for program-

ming the PCM synapses is 112 lW. Based on results from

the literature, Fig. 11 shows a strong trend of set and reset

current reduction of PCM devices with scaling of the active

contact area. Using the current values for the state of the art

devices shown in Fig. 11, the power dissipated to program

the PCM synapses in the test case can be decreased to as low

as 100 nW.

VII. CONCLUSIONS

In this paper, we demonstrated that PCM devices could

be used to emulate synaptic behavior such as synaptic poten-

tiation (LTP) and synaptic depression (LTD). The reason for

the abrupt or binary LTD behavior with identical depressing

pulses was explained. PCM devices with two different chal-

cogenides materials—GST and GeTe—were characterized.

The impact of nucleation rate and growth velocity on LTP

experiments was studied. Growth-dominated GeTe showed

much faster saturation in the synaptic potentiation experi-

ment compared to nucleation-dominated GST. GST devices

showed a higher number of intermediate resistance states for

the LTP behavior compared to GeTe. Physical simulations

evidenced a strong dependence of the morphological evolu-

tion of the phase change layer on the growth velocity and the

nucleation rate for the LTP. Enhancing the nucleation rate or

growth velocity leads to a faster conductance saturation and

thus to a smaller number of intermediate resistance states in

the LTP simulations. The shape of the amorphous mushroom

formed after the application of the initial reset pulse had a

dependence on the growth velocity. Conductance variation

in the LTP simulations was found to be more sensitive to

nucleation rate compared to growth velocity, after the appli-

cation of the first potentiating pulse.

A versatile behavioral model and a multi-level circuit-

compatible model useful for large scale neural network

simulations were developed. We finally provided a new

architecture 2-PCM Synapse to overcome the limitations

imposed by emulation of LTD through progressive amorph-

ization. Our approach which mainly relies on the use of crys-

tallization is more energy efficient, uses simple identical

pulses and has a higher tolerance to loss of synaptic informa-

tion through resistance drift.

Using the low power 2-PCM Synapses and a spiking

neural network, we demonstrated complex pattern extraction

from real world visual data of cars passing on a freeway. The

simulated neural network was able to detect moving cars

with a very high average detection rate (>90%) and

extremely low synaptic programming power (112 lW).
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