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If W is a finite Coxeter group and ϕ is a weight function, Lusztig has defined ϕ-constructible characters of W , as well as a partition of the set of irreducible characters of W into Lusztig ϕ-families. We prove that every Lusztig ϕ-family contains a unique character with minimal b -invariant, and that every ϕ-constructible character has a unique irreducible constituent with minimal b -invariant. This generalizes Lusztig's result about special characters to the case where ϕ is not constant. This is compatible with some conjectures of Rouquier and the author about Calogero-Moser families and Calogero-Moser cellular characters.

Let (W ,S ) be a finite Coxeter system and let ϕ : S → >0 be a weight function that is, a map such that ϕ(s ) = ϕ(t ) whenever s and t are conjugate in W . Associated with this datum, G. Lusztig has defined [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§22] a notion of constructible characters of W : it is conjectured that a character is constructible if and only if it is the character afforded by a Kazhdan-Lusztig left cell (defined using the weight function ϕ). These constructible characters depend heavily on ϕ so we will call them the ϕ-constructible characters of W : the set of ϕ-constructible characters will be denoted by Cons Lus ϕ (W ). We will also define a graph Lus W ,ϕ as follows: the vertices of Lus W ,ϕ are the irreducible characters and two irreducible characters χ and χ ′ are joined in this graph if there exists a ϕ-constructible character γ of W such that χ and χ ′ both occur as constituents of γ. The connected components of Lus W ,ϕ (viewed as subsets of Irr(W )) will be called the Lusztig ϕ-families: the set of Lusztig ϕ-families will be denoted by Fam Lus ϕ (W ). If ∈ Fam Lus ϕ (W ), we denote by Cons Lus ϕ ( ) the set of ϕ-constructible characters of W all of whose irreducible components belong to .

On the other hand, using the theory of rational Cherednik algebras at t = 0 and the geometry of the Calogero-Moser space associated with (W , ϕ), R. Rouquier and the author (see [START_REF] Bonnafé | Calogero-Moser versus Kazhdan-Lusztig cells[END_REF] and [START_REF] Bonnafé | Cellules de Calogero-Moser[END_REF]) have defined a notion of Calogero-Moser ϕcells of W , a notion of Calogero-Moser ϕ-cellular characters of W (whose set is denoted by Cell CM ϕ (W )) and a notion of Calogero-Moser ϕ-families (whose set is denoted by

Fam CM ϕ (W )).
Conjecture (see [START_REF] Bonnafé | Calogero-Moser versus Kazhdan-Lusztig cells[END_REF], [START_REF] Bonnafé | Cellules de Calogero-Moser[END_REF] and [GoMa]). With the above notation,

Cons Lus ϕ (W ) = Cell CM ϕ (W ) and Fam Lus ϕ (W ) = Fam CM ϕ (W )
for every weight function ϕ : S → >0 .

The statement about families in this conjecture holds for classical Weyl groups thanks to a case-by-case analysis relying on [Lu3, §22] (for the computation of Lusztig ϕ-families), [GoMa] (for the computation of Calogero-Moser ϕ-families in type A and B ) and [START_REF] Bellamy | The Calogero-Moser partition for G (m, d , n)[END_REF] (for the computation of the Calogero-Moser ϕ-families in type D ). It also holds whenever |S | = 2 (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§17 and Lemma 22.2] and [Be1, §6.10]). The statement about constructible characters is much more difficult to establish, as the computation of Calogero-Moser ϕ-cellular characters is at that time out of reach. It has been proved whenever the Caloger-Moser space associated with (W ,S , ϕ) is smooth [START_REF] Bonnafé | Cellules de Calogero-Moser[END_REF]Theorem 14.4.1] (this includes the cases where (W ,S ) is of type A, or of type B for a large family of weight functions: in all these cases, the ϕ-constructible characters are the irreducible ones). It has also been checked by the author whenever |S | = 2 or (W ,S ) is of type B 3 (unpublished).

Our aim in this paper is to show that this conjecture is compatible with properties of the b -invariant (as defined below). With each irreducible character χ of W is associated its fake degree f χ (t), using the invariant theory of W (see for instance [BoRo2, Definition 1.5.7]). Let us denote by b χ the valuation of

f χ (t): b χ is called the b -invariant of χ. Let r χ denote the coefficient of t b χ in f χ (t). In other words, r χ ∈ * and f χ (t) ≡ r χ t b χ mod t b χ +1 .
For instance, b 1 = 0 and b ǫ is the number of reflections of W (here, ǫ : W → {1, -1} denotes the sign character). Also, b χ = 1 if and only if χ is an irreducible constituent of the canonical reflection representation of W . The following result is proved in [BoRo2, Theorems 9.6.1 and 12.3.14]:

Theorem CM. Let ϕ : S → >0 be a weight function. Then:

(a) If ∈ Fam CM ϕ (W ), then there exists a unique χ ∈ with minimal b -invariant. Moreover, r χ = 1. (b) If γ ∈ Cell CM ϕ (W )
, then there exists a unique irreducible constituent χ γ of γ with minimal b -invariant. Moreover, r χ γ = 1.

The next theorem is proved in [Lu2, Theorem 5.25 and its proof] (see also [START_REF] Lusztig | A class of irreducible representations of a Weyl group[END_REF] for the first occurence of the special representations): Theorem (Lusztig). Assume that ϕ is constant. Then: It turns out that, for general ϕ, there might exist Lusztig ϕ-families such that no element of occurs as an irreducible constituent of all the ϕ-constructible characters in Cons Lus ϕ ( ) (this already occurs in type B 3 , and the reader can also check this fact in type F 4 , using the tables given by Geck [START_REF] Geck | Computing Kazhdan-Lusztig cells for unequal parameters[END_REF]Table 2]). Nevertheless, we will prove in this paper the following result, which is compatible with the above conjecture and the above theorems: The proof of Theorem CM is general and conceptual, while our proof of Theorem L goes through a case-by-case analysis, based on Lusztig's description of ϕconstructible characters and Lusztig ϕ-families [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§22]. REMARK 0 -As the only irreducible Coxeter systems affording possibly unequal parameters are of type I 2 (2m), F 4 or B n , and as r χ = 1 for any character χ in these groups, the statement "r χ = 1" in Theorem L(a) and (b) follows immediately from Lusztig's Theorem. Therefore, we will prove only the statements about the minimality of the b -invariant and the scalar product.

Proof of Theorem L

1.A. Reduction. -It is easily seen that the proof of Theorem L may be reduced to the case where 2]. Therefore, this shows that we may, and we will, assume that W is of type B n , with n 2. Write S = {t , s 1 , s 2 , . . ., s n -1 } in such a way that the Dynkin diagram of (W ,S ) is

(W ,S ) is irreducible. If W is of type A n , D n , E 6 , E 7 , E 8 , H 3 or H 4 ,
(#) i i i • • • i t s 1 s 2 s n -1 Write b = ϕ(t ) and a = ϕ(s 1 ) = ϕ(s 2 ) = • • • = ϕ(s n -1 ). If b ∈ a * , then Cons Lus ϕ (W ) = Irr(W ) (see [Lu3, Proposition 22.25]
) and Theorem L becomes obvious. So we may assume that b = r a with r ∈ * , and since the notions are unchanged by multiplying ϕ by a positive real number, we may also assume that a = 1. Therefore:

Hypothesis and notation. From now on, and until the end of this section, we assume that the Coxeter system (W ,S ) is of type B n , with n 2, that S = {t , s 1 , s 2 , . . ., s n -1 } is such that the Dynkin diagram of (W ,S ) is given by (#) and that ϕ(t

) = r ϕ(s 1 ) = r ϕ(s 2 ) = • • • = r ϕ(s n -1 ) = r with r ∈ * .
We will now review the combinatorics introduced by Lusztig (symbols, admissible involutions,...) in order to compute families and constructible characters in type B n (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]§22] for further details). where

β = (β 1 < β 2 < • • • < β k +r ) and γ = (γ 1 < γ 2 < • • • < γ k )
are increasing sequences of non-zero natural numbers. We set

|Λ| = k +r i =1 (β i -i ) + k j =1 (γ j -j ) and b(Λ) = k +r i =1 (2k + 2r -2i )(β i -i ) + k j =1 (2k + 1 -2 j )(γ j -j ).
The number b(Λ) will be called the b-invariant of Λ. For simplifying our arguments, we will define

∇ k ,r = k +r i =1 (2k + 2r -2i )i + k j =1 (2k + 1 -2 j ) j so that b(Λ) = k +r i =1 (2k + 2r -2i )β i + k j =1 (2k + 1 -2 j )γ j -∇ k ,r .
By abuse of notation, we denote by β ∩ γ the set {β 1 , β 2 , . . .,

β k +r } ∩ {γ 1 , γ 2 , . . ., γ k } and by β ∪ γ the set {β 1 , β 2 , . . ., β k +r } ∪ {γ 1 , γ 2 , . . ., γ k }. We also set β ∔ γ = (β ∪ γ) \ (β ∩ γ).
We now define

z ′ (Λ) = (β 1 , β 2 , . . ., β r , γ 1 , β r +1 , γ 2 , β r +2 , . . ., γ k , β r +k )
and we will write

z ′ (Λ) = (z ′ 1 (Λ), z ′ 2 (Λ), • • • , z ′ 2k +r (Λ)), so that (♣) b(Λ) = r i =1 (2k + 2r -2i )z ′ i (Λ) + 2k +r i =r +1 (2k + r -i )z ′ i (Λ) -∇ k ,r = r i =1 (r -i )z ′ i (Λ) + 2k +r i =1 (2k + r -i )z ′ i (Λ) -∇ k ,r = r -1 i =1 i j =1 z ′ j (Λ) + 2k +r -1 i =1 i j =1 z ′ j (Λ) -∇ k ,r .
1.D. Families of symbols. -We denote by z(Λ) the sequence z 1 z 2 • • • z 2k +r obtained after rewriting the sequence (β 1 , β 2 , . . ., β k +r , γ 1 , γ 2 , . . ., γ k ) in non-decreasing order.

REMARK 1 -Note that the sequence z ′ (Λ) determines the symbol Λ, contrarily to the sequence z(Λ). However, z(Λ) determines completely |Λ| thanks to the formula

|Λ| = z ∈z(Λ) z -r (r + 1)/2 -(k + r )(k + r + 1)/2.
We say that two symbols Λ = β γ

and

Λ ′ = β ′ γ ′ in Sym k (r ) are in the same family if z(Λ) = z(Λ ′ ). Note that this is equivalent to say that β ∩ γ = β ′ ∩ γ ′ and β ∪ γ = β ′ ∪ γ ′ . If
is the family of Λ, we set X = β ∩ γ and Z = β +γ: note that X and Z depend only on (and not on the particular choice of Λ ∈ ).

If ι is an r -admissible involution of Z , we denote by ι the set of symbols Λ = β γ in such that |β ∩ ω| = 1 for all ι-orbits ω.

1.E. Lusztig families, constructible characters. -Let Λ ∈ Sym k (r ) be such that |Λ| = n. Let Bip(n) be the set of bipartitions of n. We set

λ 1 (Λ) = (β k +r -(k + r ) • • • β 2 -2 β 1 -1), λ 2 (Λ) = (γ k -k • • • γ 2 -2 γ 1 -1)
and

λ(Λ) = (λ 1 (Λ), λ 2 (Λ)).
Then 

γ = Λ∈ ι χ Λ . If Λ = β γ , we set Λ # = β \ (β ∩ γ) γ \ (β ∩ γ) . Definition 3. The symbol Λ is said special if z(Λ # ) = z ′ (Λ # ).
REMARK 4 -According to Remark 1, there is a unique special symbol in each family. It will be denoted by Λ . Finally, note that, if Λ, Λ ′ belong to the same family, then .

|Λ| = |Λ ′ |.
Then

Λ[b ] ∈ Sym k -1 (r ) and (♥) b(Λ) = b(Λ[b ]) + ∇ k ,r -∇ k -1,r + b 4k + 2r + 1 - z ∈z(Λ) z b 2 + 2 z ∈z(Λ) z <b z .
Proof of (♥). Let i 0 and j 0 be such that

β i 0 = b and γ j 0 = b . Then b(Λ) -b(Λ[b ]) = ∇ k ,r -∇ k -1,r +(2k + 2r -2i 0 )b + i 0 -1 i =1 2β i + (2k + 1 -2 j 0 )b + j 0 -1 j =1 2γ j .
But the numbers β 1 , β 2 ,. . . , β i 0 , γ 1 , γ 2 ,. . . , γ j 0 are exactly the elements of the sequence z(Λ) which are b . So

i 0 + j 0 = z ∈z(Λ) z b 1 and i 0 -1 i =1 β i + j 0 -1 j =1 γ j = z ∈z(Λ) z <b z .
This shows (♥). On the other hand, the formula (♥) shows that the difference between b(Λ) and b(Λ[b ]) depends only on b and , so proving Theorem 5 for the pair ( , ι) is equivalent to proving Theorem 5 for the pair ( [b ], ι). By applying several times this principle if necessary, this means that we may, and we will, assume that

X = ∅.

1.G. Proof of Theorem 5(a)

. -First, note that z(Λ) = z(Λ ) = z ′ (Λ ) (the last equality follows from the fact that Λ is special and X = ∅). As z ′ (Λ) is a permutation of the non-decreasing sequence z ′ (Λ ), we have

i j =1 z ′ j (Λ) i j =1 z ′ j (Λ )
for all i ∈ {1, 2, • • • , 2k + r }. So, it follows from (♣) that b(Λ) -b(Λ ) = r -1 i =1 i j =1 z ′ j (Λ) -z ′ j (Λ ) + 2k +r -1 i =1 i j =1 z ′ j (Λ) -z ′ j (Λ ) .

So b(Λ) b(Λ ) with equality only whenever

i j =1 z ′ j (Λ) = i j =1 z ′ j (Λ )
for all i ∈ {1, 2, . . ., 2k + r }. The proof of Theorem 5(a) is complete.

1.H. Proof of Theorem 5(b).

-We denote by f r < • • • < f 1 the elements of Z which are fixed by ι. We also set f r +1 = 0 and f 0 = ∞. As ι is r -admissible, the set

Z (d ) = {z ∈ Z | f d +1 < z < f d } is ι-stable and contains no ι-fixed point (for d ∈ {0, 1, . . ., r }). Let k d = |Z (d )
|/2 and let ι d be the restriction of ι to Z (d ) . Then ι d is a 0-admissible involution of Z (d ) . (0) and, if (d ) denotes the family of Λ (d ) , then

If Λ = β γ ∈ ι , we set β (d ) = β ∩ Z (d ) , γ (d ) = γ ∩ Z (d ) and Λ (d ) = β (d ) γ (d ) . Then Λ (d ) ∈ Sym k d
Λ (d ) ∈ (d ) ι d . Now, if Λ ′ = β ′ γ ′ ∈ Sym k ′ (0), we set b d (Λ ′ ) = k ′ i =1 (2k ′ + 2d -2i )β ′ i + k ′ j =1 (2k ′ + 1 -2 j )γ ′ j . The number b d (Λ ′ ) is called the b d -invariant of Λ ′ . It then follows from the definition of b and ∇ k ,r that (♠) b(Λ) = r d =0 b d (Λ (d ) ) -∇ k ,r + r d =1 2 k 0 + k 1 + • • • + k d -1 f d + z ∈Z (d )
z .

Since the map

ι -→ r d =0 (d ) ι d Λ -→ (Λ (0) , Λ (1) , . . ., Λ (d ) )
is bijective and since b(Λ) -

r d =0 b d (Λ (d )
) depends only on ( , ι) and not on Λ (as shown by the formula (♠)), Theorem 5(b) will follow from the following lemma : Lemma 6. There exists a unique symbol in (d ) ι d with minimal b d -invariant.

The proof of Lemma 6 will be given in the next section.

Minimal b d -invariant

For simplifying notation, we set Z = Z (d ) , l = k d , = (d ) and  = ι d . Let us write

Z = {z 1 , z 2 , . . ., z 2l } with z 1 < z 2 < • • • < z 2l .
Recall from the previous secion that  is a 0-admissible involution of Z .

2.A. Construction. -We will define by induction on

l 0 a symbol Λ (d )  (Z ) ∈  . If l = 0, then Λ (d )
 (Z ) is obviously empty. So assume now that, for any set of non-zero integers Z ′ of order 2(l -1), for any 0-admissible involution  ′ of Z ′ and any d ′ 0, we have defined a symbol

Λ (d ′ )  ′ (Z ′ ). Then Λ (d )  (Z ) = β (d )  (Z ) γ (d )  (Z )
is defined as follows:

let Z ′ = Z \ {z 1 , ι(z 1 )},  ′ the restriction of  to Z ′ and let d ′ = d -1 if d 1, 1 if d = 0. Then |Z ′ | = 2(l -1) and  ′ is 0-admissible. So Λ (d ′ )  ′ (Z ′ ) = β (d ′ )  ′ (Z ′ ) γ (d ′ )  ′ (Z ′ )
is well-defined by the induction hypothesis. We then set

β (d )  (Z ) = β (d ′ )  ′ (Z ′ ) ∪ {z 1 } if d 1, β (d ′ )  ′ (Z ′ ) ∪ { (z 1 )} if d = 0, and 
γ (d )  (Z ) = γ (d ′ )  ′ (Z ′ ) ∪ { (z 1 )} if d 1, γ (d ′ )  ′ (Z ′ ) ∪ {z 1 } if d = 0.
Then Lemma 6 is implied by the next lemma :

Lemma 6 + . Let Λ ∈  . Then b d (Λ) b d (Λ (d )  (Z )) with equality if and only if Λ = Λ (d )  (Z ).
The rest of this section is devoted to the proof of Lemma 6 + . We will first prove Lemma 6 + whenever d ∈ {0, 1} using Lusztig's Theorem. We will then turn to the general case, which will be handled by induction on l = |Z |/2. We fix Λ = β γ ∈ ι . -Assume now, and until the end of this section, that d 2. We will prove Lemma 6 + by induction on l = |Z |/2. The result is obvious if l = 0, as well as if l = 1. So we assume that l 2 and that Lemma 6 + holds for l ′ l -1. Write  (z 1 ) = z 2m , where m l (note that  (z 1 ) ∈ {z 1 , z 3 , z 5 , . . ., z 2l -1 } since

2.B. Proof of

 is 0-admissible).
Assume first that m < l . Then Z can we written as the union Z = Z + ∪ Z -, where 

Z + = {z 1 , z 2 , . . ., z 2m } and Z -= {z 2m +1 , z 2m +2 , . . ., z 2l } are  -stable (since  is 0- admissible). If ǫ ∈ {+, -}, let  ǫ denote the restriction of  to Z ǫ , let β ǫ = β ∩ Z ǫ , γ ǫ = γ ∩ Z ǫ and Λ ǫ =
Λ (d )  (Z ) ǫ = Λ (d )  ǫ (Z ǫ ). By the induction hypothesis, b d (Λ ǫ ) b d (Λ (d )  ǫ (Z ǫ )) with equality if and only if Λ ǫ = Λ (d )
 ǫ (Z ǫ ). So the result follows in this case. This means that we may, and we will, work under the following hypothesis:

Hypothesis. From now on, and until the end of this section, we assume that  (z 1 ) = z 2l .

As in the construction of Λ (d )  (Z ), let Z ′ = Z \{z 1 , z 2l } = {z 2 , z 3 , . . ., z 2l -1 }, let  ′ denote the restriction of  to Z ′ and let

d ′ = d -1 if d 1, 1 if d = 0. Then |Z ′ | = 2(l -1) and  ′ is 0-admissible. Let Λ ′ = β ′ γ ′ where β ′ = β \ {z 1 , z 2l } and γ ′ = γ \ {z 1 , z 2l }. Since d 2, we have z 1 ∈ β (d )  (Z ) and z 2l ∈ γ (d )  (Z ). This implies that ( ) b d (Λ (d )  (Z )) = b d -1 (Λ (d -1)  ′ (Z ′ )) + z 2l + 2(l + d )z 1 + 2 z ∈Z ′ z . If z 1 ∈ β , then Λ = Λ (d )  (Z ) if and only if Λ ′ = Λ (d ′ )  ′ (Z ′ ) and again b d (Λ) = b d -1 (Λ ′ ) + z 2l + 2(l + d )z 1 + 2 z ∈Z ′ z .
So the result follows from ( ) and from the induction hypothesis. This means that we may, and we will, assume that z 1 ∈ γ. In this case,

b d (Λ) = b d +1 (Λ ′ ) + 2d z 2l + (2l + 1)z 1 .
Then it follows from ( ) that

b d (Λ) -b d (Λ (d )  (Z )) = b d +1 (Λ ′ ) -b d -1 (Λ (d -1)  ′ (Z ′ )) + (2d -1)(z 2l -z 1 ) -2 z ∈Z ′ z .
So, by the induction hypothesis,

b d (Λ) -b d (Λ (d )  (Z )) b d +1 (Λ (d +1)  ′ (Z ′ )) -b d -1 (Λ (d -1)  ′ (Z ′ )) + (2d -1)(z 2l -z 1 ) -2 z ∈Z ′ z . Since z 2l -z 1 > z 2l -1 -z 2 , it is sufficient to show that (?) b d +1 (Λ (d +1)  ′ (Z ′ )) -b d -1 (Λ (d -1)  ′ (Z ′ )) -(2d -1)(z 2l -1 -z 2 ) + 2 z ∈Z ′ z .
This will be proved by induction on the size of Z ′ . First, if  (z 2 ) < z 2l -1 , then we can separate Z ′ into two  ′ -stable subsets and a similar argument as before allows to conclude thanks to the induction hypothesis.

So we assume that  ′ (z 2 ) = z 2l -1 . Let Z ′′ = Z ′ \ {z 2 , z 2l -1 } and let  ′′ denote the restriction of  ′ to Z ′′ . Since 

 ′ (Z ′ )) -(2d -3)(z 2l -2 -z 3 ) + 2 z ∈Z ′′ z + 4z 2 -(2d -3)(z 2l -1 -z 2 ) + 2 z ∈Z ′ z + 2z 2 -2z 2l -1 = -(2d -1)(z 2l -1 -z 2 ) + 2 z ∈Z ′ z ,
as desired. This shows (?) and completes the proof of Lemma 6 + .

Complex reflection groups

If is a complex reflection group, then R. Rouquier and the author have also defined Calogero-Moser cellular characters and Calogero-Moser families (see [START_REF] Bonnafé | Calogero-Moser versus Kazhdan-Lusztig cells[END_REF] or [START_REF] Bonnafé | Cellules de Calogero-Moser[END_REF]). If is of type G (l , 1, n) (in Shephard-Todd classification), then Leclerc and Miyachi [START_REF] Leclerc | Constructible characters and canonical bases[END_REF]§6.3] proposed, in link with canonical bases of U v (sl ∞ )modules, a family of characters that could be a good analogue of constructible characters: let us call them the Leclerc-Miyachi constructible characters of G (l , 1, n). If l = 2, then they coincide with constructible characters [START_REF] Leclerc | Constructible characters and canonical bases[END_REF]Theorem 10].

Of course, it would be interesting to know if Calogero-Moser cellular characters coincide with the Leclerc-Miyachi ones: this seems rather complicated but it should be at least possible to check if the Leclerc-Miyachi constructible characters satisfy the analogous properties with respect to the b -invariant.

( a )

 a If ∈ Fam Lus ϕ (W ), then there exists a unique χ ∈ with minimal b -invariant (χ is called the special character of ). Moreover, r χ = 1. (b) If γ ∈ Cons Lus ϕ ( ), then χ is an irreducible constituent of γ (and, of course, among the irreducible constituents of γ, χ is the unique one with minimal b -invariant). Moreover, 〈γ, χ 〉 = 1.

Theorem L .

 . Let ϕ : S → >0 be a weight function. Then: (a) If ∈ Fam Lus ϕ (W ), then there exists a unique χ ∈ with minimal b -invariant. Moreover, r χ = 1. (b) If γ ∈ Cons Lus ϕ (W ), then there exists a unique irreducible constituent χ γ of γ with minimal b -invariant. Moreover, r χ γ = 1 and 〈γ, χ〉 = 1.

  then ϕ is necessarily constant and Theorem L follows immediately from Lusztig's Theorem. If W is dihedral, then Theorem L is easily checked using [Lu3, §17 and Lemma 22.2]. If W is of type F 4 , then Theorem L follows from inspection of[Ge, Table 

1

  .B. Admissible involutions. -Let l 0 and let Z be a totally ordered set of size 2l + r . We will define by induction on l what is an r -admissible involution of Z . Let ι : Z → Z be an involution. Then ι is said r -admissible if it has r fixed points and, if l 1, there exist two consecutive elements b and c of Z such that ι(b ) = c and the restriction of ι to Z \ {b , c } is r -admissible. Note that, if ι is an r -admissible involution and if ι(b ) = c > b and ι(z ) = z , then z < b or z > c (this is easily proved by induction on |Z |). 1.C. Symbols. -We will denote by Sym k (r ) the set of symbols Λ = β γ

  λ(Λ) is a bipartition of n. We denote by χ Λ the irreducible character of W denoted by χ λ(Λ) in [Lu3, §22] or in [GePf, §5.5.3]. Then [GePf, §5.5.3] (♦) b χ Λ = b(Λ). With these notations, Lusztig described the ϕ-constructible characters in [Lu3, Proposition 22.24], from which the description of Lusztig ϕ-families follows by using [Lu3, Lemma 22.22]: Theorem 2 (Lusztig). Let Lus be a Lusztig ϕ-family and let γ ∈ Cons Lus ϕ ( Lus ). If we choose k sufficiently large, then: (a) There exists a family of symbols in Sym k (r ) such that Lus = {χ Λ | Λ ∈ }. (b) There exists an r -admissible involution ι of Z such that

  Now, Theorem L follows from Theorem 2, Formula (♦) and the following next Theorem:Theorem 5. Let be a family of symbols in Sym k (r ), let ι be an r -admissible involution of Z and let Λ ∈ . Then: (a) b(Λ) b(Λ ) with equality if and only if Λ = Λ . (b) There is a unique symbol Λ ,ι in ι such that, if Λ ∈ ι , then b(Λ) b(Λ ,ι ), with equality if and only if Λ = Λ ,ι . The rest of this section is devoted to the proof of Theorem 5. 1.F. First reduction. -First, assume that X = ∅. Let b ∈ X and let Λ = β γ ∈ . Then b ∈ β ∩ γ = X and we denote by β [b ] the sequence obtained by removing b to β . Similarly, let Λ[b ] = β [b ] γ[b ]

Now, the family

  of Λ[b ] depends only on the family of Λ (and not on Λ itself): indeed, z(Λ[b ]) is obtained from z(Λ) by removing the two entries equal to b . We will denote by [b ] the family of Λ[b ]. Moreover, Z [b ] = Z and the map Λ → Λ[b ] induces a bijection between and [b ], and also induces a bijection between ι and [b ] ι .

∈

  Lemma 6 + whenever d = 1. -Let z be a natural number strictly bigger than all the elements ofZ . Let Λ = β ∪ {z } γ Sym k (1). Then b 1 (Λ) = b( Λ) + C ,where C depends only onZ . Let Λ0 = z 1 , z 3 , . . ., z 2l -1 , z z 2 , . . ., z 2l . Since  is 0-admissible, it is easily seen that, if  (z i ) = z j , then ji is odd. So Λ0 ∈  . But,by [Lu1, §5], b( Λ) b( Λ0 ) with equality if and only if Λ = Λ0 . So it is sufficient to notice that Λ (1)  (Z ) = Λ0 , which is easily checked. 2.C. Proof of Lemma 6 + whenever d = 0. -Assume in this subsection, and only in this subsection, that d = 0 or 1. We denote by Λ op = γ β ∈  . It is readily seen from the construction that Λ (0)  (Z ) op = Λ (1)  (Z ) and that b 1 (Λ) = b 0 (Λ op ) + z ∈Z z . So Lemma 6 + for d = 0 follows from Lemma 6 + for d = 1. 2.D. Proof of Lemma 6 + whenever d 2.

  and let ǫ denote the family of Λ ǫ . Then it is easily seen that Λ ǫ ∈ ǫ  ǫ , that b d (Λ)b d (Λ + ) + b d (Λ -) depends only on ( ,  ) and that

  z 2 ∈ β (d +1) ′ (Z ′ ), we can apply ( ) one step further to getb d +1 (Λ (d +1)  ′ (Z ′ ))b d -1 (Λ (d -1)  ′ (Z ′ )) = b d (Λ (d )  ′′ (Z ′′ ) + z 2l -1 + 2(l + d )z 2 + 2 z ∈Z ′′ z b d -2 (Λ (d -2)  ′′ (Z ′′ )) + z 2l -1 + 2(l + d -2)z 2 + 2 z ∈Z ′′ z = b d (Λ (d )  ′′ (Z ′′ ))b d -2 (Λ (d -2)  ′′ (Z ′′ )) + 4z 2 .So, by the induction hypothesis,b d +1 (Λ (d +1)  ′ (Z ′ ))b d -1 (Λ (d -1)
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