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CONSTRUCTIBLE CHARACTERS AND b -INVARIANT

by

CÉDRIC BONNAFÉ

Let (W,S) be a finite Coxeter system and let ϕ : S → R>0 be a weight function that
is, a map such that ϕ(s ) = ϕ(t ) whenever s and t are conjugate in W . Associated
with this datum, G. Lusztig has defined [Lu3, §22] a notion of constructible charac-

ters of W : it is conjectured that a character is constructible if and only if it is the
character afforded by a Kazhdan-Lusztig left cell (defined using the weight func-
tion ϕ). These constructible characters depend heavily on ϕ so we will call them
the ϕ-constructible characters of W : the set of ϕ-constructible characters will be de-
noted by ConsLus

ϕ
(W ). We shall also define a graph G Lus

W ,ϕ as follows: the vertices
of G Lus

W,ϕ are the irreducible characters and two irreducible characters χ and χ ′ are
joined in this graph if there exists a ϕ-constructible character γ of W such that χ
and χ ′ both occur as constituents of γ. The connected components of G Lus

W,ϕ (viewed
as subsets of Irr(W )) will be called the Lusztig ϕ-families: the set of Lusztig ϕ-families
will be denoted by FamLus

ϕ
(W ). If F ∈ FamLus

ϕ
(W ), we denote by ConsLus

ϕ
(F ) the set of

ϕ-constructible characters of W all of whose irreducible components belong to F .
On the other hand, using the theory of rational Cherednik algebras at t = 0 and

the geometry of the Calogero-Moser space associated with (W ,ϕ), R. Rouquier and
the author (see [BoRo1] and [BoRo2]) have defined a notion of Calogero-Moser ϕ-

cells of W , a notion of Calogero-Moser ϕ-cellular characters of W (whose set is denoted
by CellCM

ϕ
(W )) and a notion of Calogero-Moser ϕ-families (whose set is denoted by

FamCM
ϕ
(W )).

Conjecture (see [BoRo1], [BoRo2] and [GoMa]). With the above nota-

tion,

ConsLus
ϕ
(W ) =CellCM

ϕ
(W ) and FamLus

ϕ
(W ) = FamCM

ϕ
(W )

for every weight function ϕ : S→R>0.

The author is partly supported by the ANR (Project No ANR-12-JS01-0003-01 ACORT).



2 C. BONNAFÉ

The statement about families in this conjecture holds for classical Weyl groups
thanks to a case-by-case analysis relying on [Lu3, §22] (for the computation of
Lusztig ϕ-families), [GoMa] (for the computation of Calogero-Moser ϕ-families in
type A and B ) and [Be2] (for the computation of the Calogero-Moser ϕ-families in
type D). It also holds whenever |S| = 2 (see [Lu3, §17 and Lemma 22.2] and [Be1,
§6.10]).

The statement about constructible characters is much more difficult to estab-
lish, as the computation of Calogero-Moser ϕ-cellular characters is at that time out
of reach: it has been proved whenever the Caloger-Moser space associated with
(W ,S,ϕ) is smooth [BoRo2, Theorem 14.4.1] (it has also been checked if W is of type
B2...).

Our aim in this paper is to show that this conjecture is compatible with prop-
erties of the b -invariant (as defined below). With each irreducible character χ of
W is associated its fake degree fχ (t), using the invariant theory of W (see for in-
stance [BoRo2, Definition 1.5.7]). Let us denote by bχ the valuation of fχ (t): bχ is
called the b -invariant of χ . For instance, b1 = 0 and bǫ is the number of reflections
of W (here, ǫ : W → {1,−1} denotes the sign character). Also, bχ = 1 if and only if
χ is an irreducible constituent of the canonical reflection representation of W . The
following result is proved in [BoRo2, Theorems 9.6.1 and 12.3.14]:

Theorem CM. Let ϕ : S→R>0 be a weight function. Then:

(a) If F ∈ FamCM
ϕ
(W ), then there exists a unique χ ∈F with minimal b -invariant.

(b) If γ ∈ConsCM
ϕ
(W ), then there exists a unique irreducible constituent χ of γ with min-

imal b -invariant.

The next theorem is proved in [Lu2, Theorem 5.25 and its proof] (see also [Lu1]
for the first occurence of the special representations):

Theorem (Lusztig). Assume that ϕ is constant. Then:

(a) If F ∈ FamLus
ϕ
(W ), then there exists a unique χF ∈F with minimal b -invariant (χF

is called the special character of F ).

(b) If γ ∈ ConsLus
ϕ
(F ), then χF is an irreducible constituent of γ (and, of course, among

the irreducible constituents of γ, χF is the unique one with minimal b -invariant).

It turns out that, for general ϕ, there might exist Lusztig ϕ-families F such that
no element of F occurs as an irreducible constituent of all the ϕ-constructible char-
acters in ConsLus

ϕ
(F ) (this already occurs in type B3, and the reader can also check

this fact in type F4, using the tables given by Geck [Ge, Table 2]). Nevertheless, we
will prove in this paper the following result, which is compatible with the above
conjecture and the above theorems:
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Theorem L. Let ϕ : S→R>0 be a weight function. Then:

(a) If F ∈ FamLus
ϕ
(W ), then there exists a unique χ ∈F with minimal b -invariant.

(b) If γ ∈ConsLus
ϕ
(W ), then there exists a unique irreducible constituent χ of γ with mini-

mal b -invariant.

The proof of Theorem CM is general and conceptual, while our proof of Theo-
rem L goes through a case-by-case analysis, based on Lusztig’s description of ϕ-
constructible characters and Lusztig ϕ-families [Lu3, §22].

REMARK 0 - Let γχ denote the coefficient of tbχ in Fχ (t). Then it has been noticed by
Lusztig [Lu1, §2, Page 325] that γχ = 1 whenever χ is special.

As the only irreducible Coxeter systems affording possibly unequal parameters
are of type I2(2m ), F4 or Bn , and as γχ = 1 for any character χ in these groups, we can
conclude that, in general (equal or unequal parameters), γχ = 1 for all the characters
χ with minimal b -invariant constructed in Theorem L (for both (a) and (b)).

The same property holds for the characters χ with minimal b -invariant con-
structed in Theorem CM (in this case, the proof is again general and concep-
tual [BoRo2]). �

1. Proof of Theorem L

1.A. Reduction. — It is easily seen that the proof of Theorem L may be reduced
to the case where (W,S) is irreducible. If W is of type An , Dn , E6, E7, E8, H3

or H4, then ϕ is necessarily constant and Theorem L follows immediately from
Lusztig’s Theorem. If W is dihedral, then Theorem L is easily checked using [Lu3,
§17 and Lemma 22.2]. If W is of type F4, then Theorem L follows from inspection
of [Ge, Table 2]. Therefore, this shows that we may, and we will, assume that W

is of type Bn , with n ¾ 2. Write S = {t ,s1,s2, . . . ,sn−1} in such a way that the Dynkin
diagram of (W,S) is

(#) i i i · · · i
t s1 s2 sn−1

Write b = ϕ(t ) and a = ϕ(s1) = ϕ(s2) = · · · = ϕ(sn−1). If b 6∈ aN∗, then ConsLus
ϕ
(W ) =

Irr(W ) (see [Lu3, Proposition 22.25]) and Theorem L becomes obvious. So we may
assume that b = r a with r ∈N∗. To summarize:

Hypothesis. From now on, and until the end of this section, we will assume

that (W,S) is of type Bn , with n ¾ 2, that S = {t ,s1,s2, . . . ,sn−1} is such that

the Dynkin diagram of (W,S) is given by (#), that ϕ(t ) = rϕ(s1) = rϕ(s2) =

· · ·= rϕ(sn−1) = 1 with r ∈N∗.



4 C. BONNAFÉ

1.B. Admissible involutions. — Let l ¾ 0 and let Z be a totally ordered set of size
2l + r . We shall define by induction on l what is an r -admissible involution of Z .
Let ι : Z →Z be an involution. Then ι is said r -admissible if it has r fixed points and,
if l ¾ 1, there exist two consecutive elements b and c of Z such that ι(b ) = c and the
restriction of ι to Z \ {b ,c} is r -admissible.

Note that, if ι is an r -admissible involution and if ι(b ) = c > b and ι(z ) = z , then
z < b or z > c (this is easily proved by induction on |Z |).

1.C. Symbols. — We shall denote by Symk (r ) the set of symbols Λ =

�
β

γ

�
where

β = (β1 < β2 < · · · < βk+r ) and γ = (γ1 < γ2 < · · · < γk ) are increasing sequences of
non-zero natural numbers. We set

|Λ|=

k+r∑

i=1

(βi − i )+

k∑

j=1

(γj − j )

and b(Λ) =

k+r∑

i=1

(2k +2r −2i )(βi − i )+

k∑

j=1

(2k +1−2j )(γj − j ).

The number b(Λ) will be called the b-invariant of Λ. For simplifying our arguments,
we shall define

∇k ,r =

k+r∑

i=1

(2k +2r −2i )i +

k∑

j=1

(2k +1−2j )j

so that

b(Λ) =

k+r∑

i=1

(2k +2r −2i )βi +

k∑

j=1

(2k +1−2j )γj −∇k ,r .

By abuse of notation, we denote by β ∩ γ the set {β1,β2, . . . ,βk+r } ∩ {γ1,γ2, . . . ,γk } and
by β ∪γ the set {β1,β2, . . . ,βk+r }∪ {γ1,γ2, . . . ,γk }. We also set β ∔γ= (β ∪γ) \ (β ∩γ).

Now, let z′(Λ) = (β1,β2, . . . ,βr ,γ1,βr+1,γ2,βr+2, . . . ,γk ,βr+k ). We shall write

z′(Λ) = (z ′
1
(Λ),z ′

2
(Λ), · · · ,z ′

2k+r
(Λ)),

so that

(♣)

b(Λ) =

r∑

i=1

(2k +2r −2i )z ′
i
(Λ)+

2k+r∑

i=r+1

(2k + r − i )z ′
i
(Λ)−∇k ,r

=

r∑

i=1

(r − i )z ′
i
(Λ)+

2k+r∑

i=1

(2k + r − i )z ′
i
(Λ)−∇k ,r

=

r−1∑

i=1

� i∑

j=1

z ′
j
(Λ)
�
+

2k+r−1∑

i=1

� i∑

j=1

z ′
j
(Λ)
�
−∇k ,r .
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1.D. Families of symbols. — We denote by z(Λ) the sequence z 1 ¶ z 2 ¶ · · · ¶ z 2k+r

obtained after rewriting the sequence (β1,β2, . . . ,βk+r ,γ1,γ2, . . . ,γk ) in non-decreasing
order.

REMARK 1 - Note that the sequence z′(Λ) determines the symbol Λ, contrarily to
the sequence z(Λ). However, z(Λ) determines completely |Λ| thanks to the formula
|Λ|=
∑

z∈z(Λ) z − r (r +1)/2− (k + r )(k + r +1)/2. �

We say that two symbols Λ =
�
β

γ

�
and Λ′ =
�
β ′

γ′

�
in Symk (r ) are in the same family

if z(Λ) = z(Λ′). Note that this is equivalent to say that β ∩γ=β ′∩γ′ and β ∪γ=β ′∪γ′.
IfF is the family of Λ, we set XF =β ∩γ and ZF =β +̇γ: note that XF and ZF depend
only on F (and not on the particular choice of Λ ∈F ).

If ι is an r -admissible involution of ZF , we denote by Fι the set of symbols Λ =�
β

γ

�
in F such that |β ∩ω|= 1 for all ι-orbits ω.

1.E. Lusztig families, constructible characters. — Let Λ ∈ Symk (r ) be such that
|Λ|= n . Let Bip(n ) be the set of bipartitions of n . We set

λ1(Λ) = (βk+r − (k + r )¾ · · · ¾ β2−2¾ β1−1),

λ2(Λ) = (γk −k ¾ · · · ¾ γ2−2¾ γ1−1)

and λ(Λ) = (λ1(Λ),λ2(Λ)).

Then λ(Λ) is a bipartition of n . We denote by χΛ the irreducible character of W

denoted by χλ(Λ) in [Lu3, §22] or in [GePf, §5.5.3]. Then [GePf, §5.5.3]

(♦) bχΛ = b(Λ).

With these notation, Lusztig described the ϕ-constructible characters in [Lu3,
Proposition 22.24], from which the description of Lusztig ϕ-families follow by
using [Lu3, Lemma 22.22]:

Theorem 2 (Lusztig). Let FLus be a Lusztig ϕ-family and let γ ∈ ConsLus
ϕ
(FLus). If we

choose k sufficiently large, then:

(a) There exists a family F of symbols in Symk (r ) such that

FLus= {χΛ | Λ∈F}.

(b) There exists an r -admissible involution ι of ZF such that

γ=
∑

Λ∈Fι

χΛ.
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Definition 3. The symbol Λ is said special if z(Λ) = z′(Λ).

REMARK 4 - According to Remark 1, there is a unique special symbol in each family.
It will be denoted by ΛF . Finally, note that, if Λ, Λ′ belong to the same family, then
|Λ|= |Λ′|. �

Now, Theorem L follows from Theorem 2, Formula (♦) and the following next
Theorem:

Theorem 5. Let F be a family of symbols in Symk (r ), let ι be an r -admissible involution

of ZF and let Λ∈F . Then:

(a) b(Λ) ¾ b(ΛF ) with equality if and only if Λ=ΛF .

(b) There is a unique symbol ΛF ,ι in Fι such that, if Λ ∈ Fι, then b(Λ) ¾ b(ΛF ,ι), with

equality if and only if Λ=ΛF ,ι.

1.F. Proof of Theorem 5(a). — First, note that z(Λ) = z(ΛF ) = z′(ΛF ). As z′(Λ) is a
permutation of the non-decreasing sequence z′(ΛF ), we have

i∑

j=1

z ′
j
(Λ) ¾

i∑

j=1

z ′
j
(ΛF )

for all i ∈ {1,2, · · · ,2k + r }. So, it follows from (♣) that

b(Λ)−b(ΛF ) =

r−1∑

i=1

� i∑

j=1

�
z ′

j
(Λ)− z ′

j
(ΛF )
��
+

2k+r−1∑

i=1

� i∑

j=1

�
z ′

j
(Λ)− z ′

j
(ΛF )
��

.

So b(Λ) ¾ b(ΛF ) with equality only whenever
∑i

j=1
z ′j (Λ) =
∑i

j=1
z ′j (ΛF ) for all i ∈

{1,2, . . . ,2k + r }. The proof of Theorem 5(a) is complete.

1.G. Reduction for the proof of Theorem 5(b). — First, assume that XF 6= ∅. Let

b ∈ XF and let Λ=
�
β

γ

�
∈F . Then b ∈ β∩γ= XF and we denote by β [b ] the sequence

obtained by removing b to β . Similarly, let Λ[b ] =
�
β [b ]

γ[b ]

�
.

Then Λ[b ]∈ Symk−1(r ) and

(♥) b(Λ) = b(Λ[b ])+∇k ,r −∇k−1,r +b
�

4k +2r +1−
∑

z∈z(Λ)
z ¶ b

2
�
+2
∑

z∈z(Λ)
z<b

z .

Proof of (♥). Let i 0 and j0 be such that βi 0
= b and γj0

= b . Then

b(Λ)−b(Λ[b ]) =∇k ,r −∇k−1,r+(2k +2r −2i 0)b +

i 0−1∑

i=1

2βi +(2k +1−2j0)b +

j0−1∑

j=1

2γj .
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But the numbers β1, β2,. . . , βi 0
, γ1, γ2,. . . , γj0

are exactly the elements of the sequence
z(Λ) which are ¶ b . So

i 0+ j0 =
∑

z∈z(Λ)
z ¶ b

1

and
i 0−1∑

i=1

βi +

j0−1∑

j=1

γj =
∑

z∈z(Λ)
z<b

z .

This shows (♥). �

Now, the family of Λ[b ] depends only on the family of Λ (and not on Λ itself):
indeed, z(Λ[b ]) is obtained from z(Λ) by removing the two entries equal to b . We
will denote by F [b ] the family of Λ[b ]. Moreover, ZF [b ] =ZF and the map Λ 7→ Λ[b ]
induces a bijection between F and F [b ], and also induces a bijection between Fι
and F [b ]ι.

Moreover, the formula (♥) shows that the difference between b(Λ) and b(Λ[b ])

depends only on b and F , so proving Lemma 6 for the pair (F , ι) is equivalent to
proving Lemma 6 for the pair (F [b ], ι). By applying several times this principle if
necessary, this means that we may, and we will, assume that

XF =∅.

1.H. Proof of Theorem 5(b). — We denote by f r < · · ·< f 1 the elements of ZF which
are fixed by ι. We also set f r+1 = 0 and f 0 =∞. As ι is r -admissible, the set Z

(d )
F =

{z ∈ZF | f d+1 < z < f d } is ι-stable and contains no ι-fixed point (for d ∈ {0,1, . . . ,r }).
Let kd = |Z

(d )
F |/2 and let ιd be the restriction of ι to Z

(d )
F . Then ιd is a 0-admissible

involution of Z
(d )
F .

If Λ =
�
β

γ

�
∈ Fι, we set β (d ) = β ∩Z

(d )
F , γ(d ) = γ ∩Z

(d )
F and Λ(d ) =

�
β (d )

γ(d )

�
. Then

Λ(d ) ∈ Symkd
(0) and, if F (d ) denotes the family of Λ(d ), then Λ(d ) ∈F (d )ιd .

Now, if Λ′ =
�
β ′

γ′

�
∈ Symk ′(0), we set

bd (Λ
′) =

k ′∑

i=1

(2k ′+2d −2i )β ′
i
+

k ′∑

j=1

(2k ′+1−2j )γ′
j
.

The number bd (Λ
′) is called the bd -invariant of Λ′. It then follows from the definition

of b and ∇k ,r that

(♠) b(Λ) =

r∑

d=0

bd (Λ
(d ))−∇k ,r +

r∑

d=1

2
�

k0+k1+ · · ·+kd−1

��
f d +
∑

z∈Z (d )

z
�

.
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Since the map
Fι −→
∏r

d=0
F
(d )
ιd

Λ 7−→ (Λ(0),Λ(1), . . . ,Λ(d ))

is bijective and since b(Λ)−
∑r

d=0
bd (Λ

(d )) depends only on (F , ι) and not on Λ (as
shown by the formula (♠)), Theorem 5(b) will follow from the following lemma :

Lemma 6. There exists a unique symbol in F (d )ιd with minimal bd -invariant.

The proof of Lemma 6 will be given in the next section.

2. Minimal bd -invariant

For simplifying notation, we set Z =Z
(d )
F , l = kd , G =F (d ) and  = ιd . Let us write

Z = {z 1,z 2, . . . ,z 2l } with z 1 < z 2 < · · · < z 2l . Recall from the previous secion that  is a
0-admissible involution of Z .

2.A. Construction. — We shall define by induction on l ¾ 0 a symbol Λ(d ) (Z ) ∈ G .
If l = 0, then Λ(d ) (Z ) is obviously empty. So assume now that, for any set of non-zero
integers Z ′ of order 2(l − 1), for any 0-admissible involution  ′ of Z ′ and any d ′ ¾ 0,

we have defined a symbol Λ(d
′)

 ′
(Z ′). Then Λ(d ) (Z ) =

�
β
(d )
 (Z )

γ(d )

(Z )

�
is defined as follows:

let Z ′ =Z \ {z 1, ι(z 1)},  ′ the restriction of  to Z ′ and let

d ′ =

(
d −1 if d ¾ 1,
1 if d = 0.

Then |Z ′|= 2(l −1) and  ′ is 0-admissible. So Λ(d
′)

 ′
(Z ′) =

�β (d ′)
 ′
(Z ′)

γ
(d ′)

 ′
(Z ′)

�
is well-defined by

the induction hypothesis. We then set

β (d )

(Z ) =

(
β
(d ′)

 ′
(Z ′)∪ {z 1} if d ¾ 1,

β
(d ′)

 ′ (Z
′)∪ { (z 1)} if d = 0,

and γ(d )

(Z ) =

(
γ
(d ′)

 ′
(Z ′)∪ { (z 1)} if d ¾ 1,

γ
(d ′)

 ′
(Z ′)∪ {z 1} if d = 0.

Then Lemma 6 is implied by the next lemma :

Lemma 6+. Let Λ∈G . Then bd (Λ) ¾ bd (Λ
(d )
 (Z )) with equality if and only if Λ=Λ(d ) (Z ).
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The rest of this section is devoted to the proof of Lemma 6+. We will first prove
Lemma 6+ whenever d ∈ {0,1} using Lusztig’s Theorem. We will then turn to the

general case, which will be handled by induction on l = |Z |/2. We fix Λ=
�
β

γ

�
∈Gι.

2.B. Proof of Lemma 6+ whenever d = 1. — Let z be a natural number strictly big-

ger than all the elements of Z . Let Λ̃ =
�
β ∪ {z }

γ

�
∈ Symk (1). Then b1(Λ) = b(Λ̃) +C ,

where C depends only on Z . Let Λ̃0 =

�
z 1,z 3, . . . ,z 2l−1,z

z 2, . . . ,z 2l

�
. Since  is 0-admissible,

it is easily seen that, if  (z i ) = z j , then j − i is odd. So Λ̃0 ∈ G . But, by [Lu1, §5],
b(Λ̃)¾ b(Λ̃0) with equality if and only if Λ̃ = Λ̃0. So it is sufficient to notice that
ãΛ(1)

(Z ) = Λ̃0, which is easily checked.

2.C. Proof of Lemma 6+ whenever d = 0. — Assume in this subsection, and only

in this subsection, that d = 0 or 1. We denote by Λop =

�
γ

β

�
∈ G . It is readily seen

from the construction that Λ(0) (Z )op =Λ
(1)
 (Z ) and that

b1(Λ) = b0(Λ
op)+
∑

z∈Z

z .

So Lemma 6+ for d = 0 follows from Lemma 6+ for d = 1.

2.D. Proof of Lemma 6+ whenever d ¾ 2. — Assume now, and until the end of this
section, that d ¾ 2. We shall prove Lemma 6+ by induction on l = |Z |/2. The result is
obvious if l = 0, as well as if l = 1. So we assume that l ¾ 2 and that Lemma 6+ holds
for l ′ ¶ l−1. Write  (z 1) = z 2m , where m ¶ l (note that  (z 1) 6∈ {z 1,z 3,z 5, . . . ,z 2l−1} since
 is 0-admissible).

Assume first that m < l . Then Z can we written as the union Z = Z+ ∪̇ Z−,
where Z+ = {z 1,z 2, . . . ,z 2m } and Z− = {z 2m+1,z 2m+2, . . . ,z 2l } are  -stable (since  is 0-
admissible). If ǫ ∈ {+,−}, let  ǫ denote the restriction of  to Z ǫ, let β ǫ = β ∩Z ǫ,

γǫ = γ ∩Z ǫ and Λǫ =
�
β ǫ

γǫ

�
, and let G ǫ denote the family of Λǫ. Then it is easily

seen that Λǫ ∈ G ǫ ǫ , that bd (Λ)−
�

bd (Λ
+) + bd (Λ

−)
�

depends only on (G ,  ) and that
Λ
(d )
 (Z )ǫ = Λ

(d )
 ǫ (Z

ǫ). By the induction hypothesis, bd (Λ
ǫ)¾ bd (Λ

(d )
 ǫ (Z

ǫ)) with equality if
and only if Λǫ = Λ(d ) ǫ (Z ǫ). So the result follows in this case. This means that we may,
and we will, work under the following hypothesis:

Hypothesis. From now on, and until the end of this section, we
assume that  (z 1) = z 2l .
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As in the construction of Λ(d ) (Z ), let Z ′ =Z \{z 1,z 2l }= {z 2,z 3, . . . ,z 2l−1}, let  ′ denote
the restriction of  to Z ′ and let

d ′ =

(
d −1 if d ¾ 1,
1 if d = 0.

Then |Z ′| = 2(l − 1) and  ′ is 0-admissible. Let Λ′ =
�
β ′

γ′

�
where β ′ = β \ {z 1,z 2l } and

γ′ = γ \ {z 1,z 2l }. Since d ¾ 2, we have z 1 ∈ β
(d )
 (Z ) and z 2l ∈ γ

(d )
 (Z ). This implies that

(Æ) bd (Λ
(d )

(Z )) = bd−1(Λ

(d−1)

 ′
(Z ′))+ z 2l +2(l +d )z 1+2

∑

z∈Z ′

z .

If z 1 ∈ β , then Λ=Λ(d ) (Z ) if and only if Λ′ =Λ(d
′)

 ′
(Z ′) and again

bd (Λ) = bd−1(Λ
′)+ z 2l +2(l +d )z 1+2

∑

z∈Z ′

z .

So the result follows from (Æ) and from the induction hypothesis.
This means that we may, and we will, assume that z 1 ∈ γ. In this case,

bd (Λ) = bd+1(Λ
′)+2d z 2l +(2l +1)z 1.

Then it follows from (Æ) that

bd (Λ)−bd (Λ
(d )

(Z )) = bd+1(Λ

′)−bd−1(Λ
(d−1)

 ′ (Z ′))+ (2d −1)(z 2l − z 1)−2
∑

z∈Z ′

z .

So, by the induction hypothesis,

bd (Λ)−bd (Λ
(d )

(Z )) ¾ bd+1(Λ

(d+1)

 ′
(Z ′))−bd−1(Λ

(d−1)

 ′
(Z ′))+ (2d −1)(z 2l − z 1)−2

∑

z∈Z ′

z .

Since z 2l − z 1 > z 2l−1− z 2, it is sufficient to show that

(?) bd+1(Λ
(d+1)

 ′ (Z ′))−bd−1(Λ
(d−1)

 ′ (Z ′)) ¾−(2d −1)(z 2l−1− z 2)+2
∑

z∈Z ′

z .

This will be proved by induction on the size of Z ′. First, if  (z 2) < z 2l , then we can
separate Z ′ into two  ′-stable subsets and a similar argument as before allows to
conclude thanks to the induction hypothesis.

So we assume that  ′(z 2) = z 2l−1. Let Z ′′ = Z ′ \ {z 2,z 2l−1} and let  ′′ denote the
restriction of  ′ to Z ′′. Since z 2 ∈ β

(d+1)

 ′
(Z ′), we can apply (Æ) one step further to get

bd+1(Λ
(d+1)

 ′
(Z ′))−bd−1(Λ

(d−1)

 ′
(Z ′)) = bd (Λ

(d )

 ′′
(Z ′′)+ z 2l−1+2(l +d )z 2+2

∑

z∈Z ′′

z

−
�

bd−2(Λ
(d−2)

 ′′
(Z ′′))+ z 2l−1+2(l +d −2)z 2+2

∑

z∈Z ′′

z
�

= bd (Λ
(d )

 ′′
(Z ′′)−bd−2(Λ

(d−2)

 ′′
(Z ′′))+4z 2.
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So, by the induction hypothesis,

bd+1(Λ
(d+1)

 ′ (Z ′))−bd−1(Λ
(d−1)

 ′ (Z ′)) ¾ −(2d −3)(z 2l−2− z 3)+2
∑

z∈Z ′′

z +4z 2

¾ −(2d −3)(z 2l−1− z 2)+2
∑

z∈Z ′

z +2z 2−2z 2l−1

= −(2d −1)(z 2l−1− z 2)+2
∑

z∈Z ′

z ,

as desired. This shows (?) and completes the proof of Lemma 6+.

3. Complex reflection groups

IfW is a complex reflection group, then R. Rouquier and the author have also de-
fined Calogero-Moser cellular characters and Calogero-Moser families (see [BoRo1]
or [BoRo2]). IfW is of type G (l ,1,n ) (in Shephard-Todd classification), then Leclerc
and Miyachi [LeMi, §6.3] proposed, in link with canonical bases of Uv (sl∞)-modules,
a family of characters that could be good analogue of constructible characters: let
us call them the Leclerc-Miyachi constructible characters of G (l ,1,n ). If l = 2, then they
coincide with constructible characters [LeMi, Theorem 10].

Of course, it would be interesting to know if Calogero-Moser cellular characters
coincide with the Leclerc-Miyachi ones: this seems rather complicated but it should
be at least possible to check if the Leclerc-Miyachi constructible characters satisfy
the analogous properties with respect to the b -invariant.
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