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Note on the velocity and related fields of steady
irrotational two-dimensional surface

gravity waves

BY DIDIER CLAMOND*

Laboratoire J.-A. Dieudonné, Université de Nice – Sophia Antipolis,
Parc Valrose, 06108 Nice Cedex 2, France

The velocity and other fields of steady two-dimensional surface gravity waves in
irrotational motion are investigated numerically. Only symmetric waves with one crest per
wavelength are considered, i.e. Stokes waves of finite amplitude, but not the highest waves,
nor subharmonic and superharmonic bifurcations of Stokes waves. The numerical results
are analysed, and several conjectures are made about the velocity and acceleration fields.
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1. Introduction

Although quite a lot seems to be known by physicists regarding the velocity field
induced by steady irrotational surface gravity waves, some results remain to be
rigorously demonstrated mathematically. The purpose of this paper is to provide
some numerical evidence of the structure of the velocity and related fields, in
order to help mathematicians to guess which properties are more likely to be
true and should thus be demonstrated. We shall pay particular attention to the
vertical velocity and acceleration fields, for which rigorous results are lacking.
Of course, numerical ‘evidence’ is not rigorous mathematical proof. However,

accurate computations can give some insights into what may (or may not) be
expected, and thus provide hints about what one should try to prove. For instance,
waves with different crests [1] and asymmetric waves [2] were first discovered
numerically. For extreme waves, such as the two examples just given above, there
are several questions that remain to be answered. But, even for non-extreme
waves of finite amplitude, there are some results that remain to be rigorously
demonstrated. One example is the structure of the vertical velocity field, whereas
the horizontal one is already quite well understood [3]. A fairly complete review
on exact results and numerical models can be found in recent publications [4–6]
and the references therein.
Note that a deep knowledge of steady surface waves is not only of purely

academic interest. Indeed, accurate experiments and numerical simulations of
large-amplitude irregular unsteady surface waves have shown that their structure
can be relatively well described by suitably adapted steady irrotational solutions
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[7,8]. Thus, a better understanding of steady irrotational surface waves should be
of interest to all practitioners in the field.
Several efficient numerical methods have been developed to compute steady

water waves [9–14]. Among these methods, we decided to use Fenton’s program
because: (i) it is freely available; and (ii) it gives easy access to various physical
quantities. Fenton’s algorithm is not the most efficient for computing extreme
waves, but it is good enough for symmetric waves of finite amplitude, as
considered here.
The paper is organized as follows. In §2, the hypothesis and notation are

introduced. Section 3 describes the methodology and the parameters related to
the results given in the following section. Section 4 is devoted to discussing the
results and making some conjectures.

2. Definitions and notation

We consider steady two-dimensional potential flows due to surface gravity waves
in fluid of constant depth. The fluid is homogeneous, the surface tension is
neglected and the pressure is zero at the impermeable free surface, whereas the
seabed is fixed, horizontal and impermeable. Here, we consider only waves that are
symmetric around each crest and trough, and that have only one crest per period;
i.e. we do not consider extreme waves that are subharmonic or superharmonic
bifurcations of Stokes waves.
Let (x , y) be a Cartesian coordinate system, moving with the wave; x being

the horizontal coordinate and y the upward vertical one. The wave is L-periodic
and x = 0 is the abscissa of a wave crest. We denote k ≡ 2p/L the wavenumber
(k→ 0, i.e. L→ ∞, for solitary waves). The equations y = −d, y = h(x) and y = 0
denote, respectively, the equations of the bottom, of the free surface and of the
mean water level. The latter implies that 〈h〉 = 0 (〈 · 〉 is the Eulerian average
operator over one period), i.e.

〈h〉 ≡
k

2p

∫p/k

−p/k

h(x) dx = 0. (2.1)

Finally, H ≡ h(0)− h(p/k) denotes the total wave height (trough-to-crest
elevation), and the wave steepness 3 is classically defined as 3 ≡ kH /2. Another
dimensionless parameter, L/d, characterizes the relative length of the wave.
Let f, j, u and v be the velocity potential, the stream function, the horizontal

and vertical velocities, respectively, such that u = vxf = vyj and v = vyf = −vxj.

We denote with over ‘breves’ the quantities written at the seabed, e.g. f̆(x)=
f(x , y = −d), whereas over ‘tildes’ denote the quantities written at the surface,

e.g. f̃(x)= f(x , y = h(x)).1 The quantities j̃ and j̆ are constants, because the free
surface and the bottom are streamlines.
The dynamic condition can be expressed in term of the Bernoulli equation

2p + 2gy + u2 + v2 =B, (2.2)

1Note that, for example, ũ = ṽxf �= vx f̃ = ũ + ṽvxh.
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where p is the pressure divided by the density, g > 0 is the acceleration due to
gravity and B is the Bernoulli constant. At the free surface, the pressure is zero,
i.e. p̃= 0. The latter condition, together with (2.1), yields a definition for the
Bernoulli constant

B = 〈ũ2 + ṽ2〉. (2.3)

Let −cS be the mean flow velocity defined as

cS ≡ −

〈
1

d

∫h

−d

u(x , y) dy

〉
=

j̆ − j̃

d
. (2.4)

Thus, cS is the phase velocity of the wave observed in the frame of reference
without mean flow. Another important quantity is the phase velocity cE observed
in the frame of reference without mean velocity at the seabed, i.e.

cE ≡ −〈ŭ〉 = −〈u(x , y = −d)〉. (2.5)

Many other phase velocities can, of course, be defined, but cS and cE are two
velocities of special interest. Note that B = c2

S
= c2

E
in deep water (d→ ∞) and

for solitary waves (k→ 0). Also note that neither cS nor cE is the linear phase

velocity c0 ≡
√
(g/k) tanh(kd). Note finally that the definition (2.5) of cE implies

the existence of a function F such that

f̆ = −cEx + F̆, 〈F̆〉 = 0. (2.6)

The irrotationality yields that the relations in (2.5) and (2.6) written at y = −d
also hold at any horizontal line y = constant; thus, the function F ≡ cEx + f is
(2p/k)-periodic in the x-direction. We shall consider the horizontal velocity U
observed in the frame of reference without mean velocity at the bottom, i.e.

U ≡ u + cE = vxF, (2.7)

as well as the horizontal and vertical components of the acceleration,

ax ≡Dtu and ay ≡Dtv, (2.8)

where Dt is the temporal derivative following the motion.

3. Numerical resolution

The equations shown above cannot be solved analytically in closed form. Thus, a
numerical resolution is necessary to obtain such solutions. Here, we use a method
and program provided by Fenton [11]. This method is efficient enough for all but
the highest waves, the latter being of limited practical interest. Fenton’s program
has been modified to quadruple precision (about 32-digit accuracy) and some
numerical parameter adjustments have been made by the present author in order
to increase somewhat the program’s range of applicability and to guarantee (as
much as possible) the accuracy of the results presented here.
We computed large waves of various wavelength-to-depth ratios in order to

cover a broad range from deep to shallow water, i.e. we consider the cases
L/d = {0, 5, 7.5, 10, 15, 20, 30, 40}. For each of these ratios, about the largest wave
computable with Fenton’s program is considered, i.e. we consider the respective
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height-to-depth ratios H /d = {0, 0.4, 0.45, 0.45, 0.5, 0.55, 0.6, 0.65} with the cor-
responding steepnesses 3 ≈ {0.360, 0.251, 0.188, 0.141, 0.105, 0.086, 0.063, 0.051}.
The relative shallowness of these particular solutions can also be gauged from
the parameter tanh(kd)≈ {1, 0.85, 0.68, 0.56, 0.4, 0.3, 0.2, 0.16}.
Because only symmetric waves are considered, the numerical solutions are

displayed for half a period 0� kx � p, where x = 0 is the abscissa of a wave crest.
Also, without loss of generality, we consider that cE > 0, i.e. the waves propagate
towards the increasing x-direction. All the comments below are valid for this
(non-restrictive) particular choice.

4. Discussion

Consider first the horizontal velocity field U observed in the frame of reference
where the wave travels with speed cE. The horizontal velocity at the free surface
(figure 1) and at the bottom (figure 2) decays monotonically from crest to trough.
This is known to be rigorously true in deep water [15,16], in finite depth [17]
and for solitary waves [18]. The present numerical results (figures 3 and 4)
show that it should also be true along any horizontal line, and not only along
streamlines.
The computation of vertical velocity v at the free surface (figure 5) and along

any horizontal line (figure 6) shows that v has only one maximum and one
minimum per wavelength. The maximum is somewhere at the free surface (this
is obvious because v is a harmonic function) as shown in figure 7, but it does not
seem that its position is simply connected to the abscissa where the slope of the
surface is extremum.
Considering the variations between one crest and the following trough, it

appears that v is not a convex function in general, but that may be the case
in deep water (kd≫ 1). This conjecture is supported by the variations of the
gradient of the vertical velocity (figures 8–11). From figures 10 and 11, one can
infer that this property is shared by the function vyu = −vxv. The magnitude of
the gradient of v (i.e. ‖grad v‖) is maximum at the crest, minimum at the trough
and decays monotonically along the free surface (figure 12). These properties do
not seem to be true in the bulk of the fluid (figure 13).
The horizontal acceleration field ax (figures 14 and 15) seems to share the

same qualitative variations and convexity as the vertical velocity field, whereas
the vertical acceleration field ay resembles somewhat the field of vyu = −vxv
(figures 16 and 17). If true, these conjectures should be more difficult to prove
because, unlike v and vxv, ax and ay are not harmonic functions.
Finally, we consider the pressure field (figure 18), which has been investigated

by Escher & Schlurmann [19] under an infinitesimal periodic wave, and under a
solitary wave by Constantin [20]. The pressure increases monotonically with depth
and the isobars are maximum under the crest. This means that the pressure
is dominated by its hydrostatic component. This has been demonstrated for
Stokes waves [21] and for solitary waves [22]. If we consider the total pressure
minus the hydrostatic pressure, then the resulting dynamic pressure p + gy =
1
2
(B − u2 − v2) is shown in figures 19 and 20. It seems that the dynamic pressure
decays monotonically from crest to trough along any horizontal line and probably
also along any streamline, as is the case for the free surface and the bottom.
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Figure 1. Horizontal velocity at the free surface.
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Figure 12. Magnitude of gradient ‖grad v‖ at the free surface.
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Figure 13. Iso ‖grad v‖. Black lines: 12 equally spaced iso-values (different on each panel). (Online
version in colour.)

0

0.1

0.2

0.3

0.4

a
x 

/ g
a

x 
/ g

a
x 

/ g
a

x 
/ g

0

0.1

0.2

0

0.1

0.2

0.3

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

0

0.1

0.2

0.3

0 0

0.1

0.2

0.3

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1.0

kx/p

0.2 0.4 0.6 0.8 1.0

kx/p

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

d = •, e = 0.38 L/d = 5, H/d = 0.40

L/d = 30, H/d = 0.60 L/d = 40, H/d = 0.65

L/d = 15, H/d = 0.50 L/d = 20, H/d = 0.55

L/d = 7.5, H/d = 0.45 L/d = 10, H/d = 0.45

Figure 14. Horizontal acceleration at the free surface.

11



−3

−2

−1

0

−1.0

−0.5

0

−1.0

−0.5

0

−1.0

−0.5

0

−1.0

−0.5

0

−1.0

−0.5

0

−1.0

−0.5

0

0.5

−1.0

−0.5

0

0.5

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

d = •, e = 0.38 L/d = 5, H/d = 0.40

L/d = 30, H/d = 0.60 L/d = 40, H/d = 0.65

L/d = 15, H/d = 0.50 L/d = 20, H/d = 0.55

L/d = 7.5, H/d = 0.45 L/d = 10, H/d = 0.45

y/
d

y/
d

y/
d

y/
d

y/
d

y/
d

y/
d

k
y

0 0.2 0.4 0.6 0.8 1.0

kx/p

0 0.2 0.4 0.6 0.8 1.0

kx/p

Figure 15. Iso-horizontal accelerations. Black lines: 12 equally spaced iso-values (different on each
panel). (Online version in colour.)

−0.2

0

0.2

−0.2

−0.1

0

0.1

−0.2

−0.1

0

0.1

−0.2

−0.1

0

0.1

−0.2

−0.1

0

0.1

−0.2

−0.1

0

0.1

−0.2

−0.1

0

0.1

−0.3

−0.2

−0.1

0

0.1

0 0.2 0.4 0.6 0.8 1.0

kx/p

0 0.2 0.4 0.6 0.8 1.0

kx/p

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

d = •, e = 0.38 L/d = 5, H/d = 0.40

L/d = 30, H/d = 0.60 L/d = 40, H/d = 0.65

L/d = 15, H/d = 0.50 L/d = 20, H/d = 0.55

L/d = 7.5, H/d = 0.45 L/d = 10, H/d = 0.45

a
y 

/ g
a

y 
/ g

a
y 

/ g
a

y 
/ g

Figure 16. Vertical acceleration at the free surface.
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panel). (Online version in colour.)
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Figure 19. Iso-dynamic pressure (p + gy). Black lines: 12 equally spaced iso-values (different on
each panel). (Online version in colour.)
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This short paper should be concluded by reminding the reader that the
conjectures made here are based on observations of numerical ‘evidence’ and
may not be true, in general. However, for symmetric waves with one crest per
wavelength, these conjectures should be true at least up to a finite (not small)
amplitude, i.e. not only for infinitesimal waves.
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