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Abstract In this paper, we study the transient behavior of a level dependent single
server queueing systems with a waiting room of finite size during the busy period. The
focus is on the level dependent PH/PH/1/K queue. We derive in closed-form the joint
transform of the length of the busy period, the number of customers served during the
busy period, and the number of losses during the busy period. We differentiate between
two types of losses: the overflow losses that are due to a full queue and the losses due
to an admission controller. For the M/PH/1/K, M/PH/1/K under a threshold policy,
and PH/M/1/K queues we determine simple expressions for their joint transform.

Keywords PH/PH/1/K queue - Phase-type distributions - Level dependent queues -
Busy period - Transient analysis - Absorbing Markov chains - Matrix Analytical
Approach

1 Introduction

In practice, it is often the case that arrivals and their service times depend on the system
state. For example, in roadway traffic networks it is well-known that the vehicle service
time deteriorates as a function of the occupancy on the roadway [7]. In human based
service systems, there is a strong correlation between the volume of work demanded
from a human and her/his productivity. At the packet switch (router) in telecommuni-
cation systems, when the buffer size increases, a controller drops the arriving packets
with an increasing probability. Moreover, the transient performance measures of a sys-
tem are important for understanding the system evolution. All these facts motivate us
to study the transient measures of a state dependent queueing system.

The transient regime of queueing systems is much more difficult to analyze than
the steady state regime. This explains the scarcity of transient research results in this
field compared to the steady state regime. A good exception is the M/M/1 queue which
has been well studied in both transient and steady state regimes. This paper is devoted
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to the study of the more general case of the transient behavior of the level dependent
PH/PH/1/K queue, i.e., the level dependent PH/PH/1 queue with finite waiting room
of size K — 1. In particular, we shall analyze the measures related to the busy period.

Takdcs in [15, Chap 1] was among the first to derive the transient probabilities
of the M/M/1/K queue, referred to as P;;(t). Basically, these are the probabilities
that at time ¢ the queue length is j given it was ¢ at time zero. Building on these
probabilities Takdcs also determined the transient probabilities of the M/M/1 queue
by taking the limit of P;;(t) for K — oo. For the M/G/1/K queue, Cohen [6, Chap II1.6]
computed the Laplace transform of P;;(t) and the bivariate transform of the number
of customers served and the number of losses due to overflow during the busy period.
This is done using complex analysis. Specifically, the joint transform is presented as
a fraction of two contour integrals that involve K and the Laplace-Stieltjes transform
(LST) of the customers’ service time. Rosenlund in [13] extended Cohen’s result by
deriving the joint transform of the busy period length, the number of customers served
and the number of losses during the busy period. In a similar way to [13], Rosenlund
in [14] analyzed the G/M/1/K queue and gave the trivariate transform. The approach
of Rosenlund is more probabilistic than Cohen’s analysis. However, Rosenlund’s final
results for the trivariate transform for M/G/1/K and G/M/1/K queues are represented
as a fraction of two contour integrals. For more recent works on the busy period analysis
of M/G/1/K queue we refer to [8,16]. Recently, there was an increased interest in the
expected number of losses during the busy period in the M/G/1/K queue with equal
arrival and service rate; see, e.g., [1,12,17]. In this case, the interesting phenomenon
is that the expected number of losses during the busy period in the M/G/1/K queue
equals one for all values of K > 1.

In this paper, we shall assume that the distribution of the inter-arrival times and
service times is phase-type. For this reason, the embedding of the queue length process
at the instants of departures or arrivals becomes unnecessary in order to analyze its
steady state distribution. We emphasize that is a key difference between our approach
and those used in [6,13,14]. For an algorithmic method of the LST of the busy period
in the PH/PH/1 queue see, e.g., [10,11]. Bertsimas et al. in [4] derived in closed-form
the LST of the busy period in the PH/PH/1 queue as a function of the roots of a
specific function that involves the LST of the inter-arrival and service times.

In [2], we extended the results of Rosenlund in [13] for the M/M/1/K queue in
several ways. First, we studied a level dependent M/M/1/K queue with admission
control. Second, we considered the residual busy period that is initiated with n > 1
customers. Moreover, we derived the distribution of the maximum number of customers
during the busy period and other related performance measures. In this paper, we shall
extend these results by considering the level dependent PH/PH/1/K queue. In a similar
way to [2], this shall be done using the theory of absorbing Markov chains. The key
point is to model the event that the system becomes empty as absorbing. Contrary to
the analysis in [2], the derivation of the joint transform shall not use the explicit inverse
of some Toeplitz matrices, however, we shall here proceed with a different approach
that is based on the analyticity of probability generating functions.

The paper is organized as follows. In Section 1.1, we give a detailed description
of the model and the assumptions made. Section 2 reports our results that shall be
presented in a number of different Theorems, Propositions, and Corollaries. More pre-
cisely, Theorem 1 gives our main result for the four variate transform as function of
the inverse of a specific matrix. Proposition 1 presents a numerical recursion to in-
vert this matrix. In Propositions 2, 3, and 4, we derive the closed-form expressions for
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the four variate transform for the M/PH/1/K, the level dependent M/PH/1/K, and
PH/M/1/K queues.

1.1 Model

We consider a level dependent PH/PH/1/K queueing system, i.e., a level dependent
PH/PH/1 queue with finite waiting room of size K — 1 customers. The arrival process
is a renewal process with phase-type inter-arrival times distribution and with Laplace-
Stieltjes transform (LST) ¢;(w), Re(w) > 0, in the case where the queue length is
it € {0,1,...,K}. The service times distribution is phase-type with LST &;(w), in
the case where the queue length is ¢ € {0,1,..., K}. A phase-type distribution can
be represented by an initial distribution vector «, a transient generator T, and an
absorption rate vector T, i.e., T 1T° = —eT, where T
entries equal to one. For more details we refer, e.g., to [10, p. 44]. Then, it is well-known
that the LST of the inter-arrival times can be written as follows

is a column vector with all

bi(w) = f;(wl — F;)'F?,  Re(w) >0, (1)

where the initial probability distribution f; is a row vector of dimension Mg, the
transient generator F; is an My-by-M, matrix, and the absorption rate vector F} is a
column vector of dimension M. Similarly, the LST of the service times reads

&(w) = si(wl — S;)7'SY,  Re(w) > 0, (2)

where s; is a row vector of dimension Ms, S; is an Ms-by-Ms matrix, and S’f is a
column vector of dimension Ms.

We assume that an admission controller is installed at the entry of the queue that
has the duty of dropping the arriving customers with probability p; when the queue
length is ¢ € {0,1,..., K}. In other words, the customers are admitted in the queue
with probability ¢; = 1 — p; when its queue length is ¢. The arrivals to the queue of
size K are all lost. In the sequel, we shall refer to the latter type of losses as overflow
losses. It should be clear that in this case pg =1 and qx = 0.

We are interested in the queue behavior during the busy period which is defined
as: the time interval that starts with an arrival that joins an empty queue and ends
at the first time the queue becomes empty again. We note that an arrival to an empty
queue is admitted in the system with probability qg, 0 < go < 1. Similarly, we define
the residual busy period as the busy period initiated with n > 1 customers. Note that
for n = 1 the residual busy period and the busy period are equal. In the following,
we shall assume that, unless otherwise stated, at the beginning of the residual busy
period the distribution vector of the phases of the inter-arrival times and service times
are distributed according to fn, and sp.

Consider an arbitrary residual busy period. Let By denote its length. Let Sy, denote
the total number of served customers during By,. Let Ly denote the total number of
losses, i.e. arrivals that are not admitted in the queue either due to the admission
control or to the full queue, during By,. We shall differentiate between the two types of
losses. Let Ly, denote the total number of losses that are not admitted in the queue due
to the admission control, during By,. Let L$, denote the total number of the overflow
losses that are not admitted in the queue because it is full, i.e. due to px = 1, during

By, In this paper, we determine the joint transform E [67“’3"213" zé"z:?"] , Re(w) >0,
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|z1] <1, |22] <1, and |23] < 1. We will use the theory of absorbing Markov chains.
This is done by modeling the event that "the queue jumps to the empty state” as
an absorbing event. Tracking the number of customers served and losses before the
absorption occurs gives the desired result.

A word on the notation: throughout x := y will designate that by definition x is
equal to vy, gy the indicator function of any event (1{E} is equal to one if E is true

and zero otherwise), z7 the transpose vector of x, e; the unit row vector of appropriate
dimension with all entries equal to zero except the i-th entry that is one, and I the
identity matrix of appropriate dimension. We use ® as the Kronecker product operator
defined as follows. Let X and Y be two matrices and z(3, j) and y(7, j) denote the (i, 5)-
entries of X and Y respectively then X ® Y is a block matrix where the (3, j)-block is
equal to z(4,7)Y. Finally, let det(X) denote the determinant of the square matrix X.

2 Results

Before reporting our main result we shall first introduce a set of matrices, then we
define our key absorbing Markov chain (AMC), and finally we order the AMC states
in a proper way that yields a nice structure. The event that the queue becomes empty,
i.e. the end of the busy period, is modeled as an absorbing event which justifies the
need of the theory of absorbing Markov chains.

Let us define the following K-by-K block matrices: the matrix A that is an upper
bidiagonal block matrix with i-th upper diagonal element equal to ¢;(F}f;) ® I and
i-th diagonal element equal to F; ® I + I ® S;, the matrix B that is a lower diagonal
matrix with i-th lower diagonal element equal to I ® (S7s;), and the matrix C that is
a diagonal matrix with i-th diagonal element, : = 1,..., K — 1, equal to p;(F{f;) ® I
and K-th element equal to 0, and the matrix D that is a zero block matrix with
(K, K)-block element equal to (F fix) ® I. Note that F} is a column vector and f;
is a row vector thus FY f; is a matrix. Similarly, SJs; is a matrix. Moreover, note that
A + B represents the generator of a level dependent PH/PH/1/K queue restricted to
strictly positive queue length, see, e.g., [10, Chap. 3]. Let us denote Qg (w, 21, 22, 23) =
wl— A — 21B — 29C — 23D. For ease of presentation, we shall refer to Qg (w, 21, 22, 23)
as Q. Appendix I gives a detailed description of the structure of A, B, C, and D.

Let P(t) = (Phs(t),Pha(tLN(t),S(t)7LC(t)7L°(t)) denote the continuous-time
Markov process with a discrete state-space §2 := {1,--- , Ms}x{1,--- , Ma}x{0,1,-- -,
K} xNxNxN, where Phs(t) represents the phase of the (if any) customer in service at
time ¢, Phq(t) the phase of the inter-arrival time at time ¢, N(t) represents the number
of customers in the queue at time t, S(¢) the number of served customers from the queue
until t, L°(¢) the number of losses due to the admission control in the queue until t,
L°(t) the number of overflow losses in the queue until t, and N the set of non-negative
integers. States with N (¢) = 0 are absorbing. We refer to this absorbing Markov process
by AMC. The absorption of the AMC occurs when the queue becomes empty, i.e.,
N(t) = 0. We set the AMC initial state at time ¢t = 0 to P(0) = (ps,pa,n,0,0,0),
n>1, ps € {1,---, Ms} with distribution vector equal to sn and pq € {1, -+, Mg}
with distribution vector equal to fn. For this reason, the time until absorption of the
AMC is equal to Bp, the residual busy period length. Moreover, it is clear that Sp
(resp. Ly, and L), the total number of departures (resp. losses) during the residual
busy period, is equal to S(Bn +¢€) = Sp (resp. L°(Bn+¢€) = Ly, and L°(Bn+¢€) = Ly),
€ > 0.
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During a residual busy period, the processes S(t), L°(t), and L°(t) are counting
processes. To take advantage of this property, we order the transient states of the AMC,
ie. (4,7, k,l,m,0) € 2\{(,-,0,-,-, )}, increasingly first according to o, then m, I, k, j,
and finally according to . In the following, we shall express the generator of the AMC as
a function of the aforementioned matrices A, B, C, and D, see Appendix I for further
details. The proposed ordering induces that the generator matrix of the transitions
between the transient states of the AMC, denoted by G, is an infinite upper-diagonal
block matrix with diagonal blocks equal to Gg and upper-diagonal blocks equal to Uy,
ie.,

GoUp0 -+ -
=0 GoUpO --- | (3)

We note that Gg denotes the generator matrix of the transitions which do not in-
duce any modification in the number of overflow losses, i.e., Ly, (¢). Moreover, Uy de-
notes the transition rate matrix of the transitions that represent an arrival to a full
queue (an overflow), i.e., transitions between the transient states (i, j, K,l,m,0) and
(1, i K, l,m, o+ 1), where j' is the initial phase of the next inter-arrival time just after
an overflow loss. For this reason, Uy is a block diagonal matrix with diagonal blocks
equal to Ugg. The blocks Ugg are in turn diagonal block matrices with entries equal
to D. See Appendix I for a detailed description of the matrices D, Ugg and Ug. The
block matrix G is also an infinite upper-diagonal block matrix with diagonal blocks
equal to G1, and upper-diagonal blocks equal to Uj. Therefore, Gg has the following
canonical form:
GLU;0 - -
Go = 0 GiU;0 --- (4)

where U, denotes the transition rate matrix of the transitions that represent a dropped
arriving customer by the admission controller, i.e., transitions between the transient
states (i,4,k,1,m, o) and (4,5, k,l,m + 1,0). For this reason, Uj is a block matrix
of diagonal entries equal to C. See Appendix I for a full description of the matrices
U; and C. The matrix G is the generator matrix of the transition between the
transient states (i,j,k,l,m,0) and (i',5',k’,l',m,0), i.e. the transitions that do not
induce any modification in the number of overflow losses and of losses due to the
admission controller. Observe that G1 has the following canonical form:

G, = 0O ABO -- ) (5)

The upper-diagonal blocks of G represent the transition between the transient states
(i,4,k,1,m,0) and (¢, j,k—1,141,m,0), i.e. a transition that models a departure from
the queue. For this reason, the upper-diagonal blocks are equal to the aforementioned
matrix B. The diagonal blocks of G represents the transitions due to a modification
in the inter-arrival phase, service phase, or an arrival that is admitted in the queue.
For this reason, the diagonal blocks of G; is equal A. Note that a full description of
the matrices A and B is given in Appendix I.
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In the following we model the event that the queue becomes empty, i.e. the end of
the busy period, as an absorbing event. The joint transform is deduced by determining
the last state visited before absorption.

We are now ready to formulate our main result.

Theorem 1 (Level dependent queue) Assume that the residual busy period starts
with n customers at time zero, and at time zero the phases of the inter-arrival time
and the service time are distributed according to fn and sn. The joint transform of Bp,
Sn, and Ly, is then given by

E[ein"zls"ZQL"zg"] =zien @ fn ® anRI(el ® e)T ® SY.

Proof: Let us denote

i jbtmio(t) = P(P(t) = (i, 4, k,1,m,0) | P(0) = (ps,pa,n,0,0,0)).

The Laplace transform of 7; ; . 7 m.o(t) denotes

o0
3 —wt
ﬂ'i,j,k,l,m,o(w):/ e 'y ktm,o(D)dt,  Re(w) > 0.
=0

Moreover, let us define the following row vectors:

I ke mao(W) = (710 m,0(W)s -+ 3y jiesimyo (W)

Hk,l,m,o(w) = (ﬁl,k,l,m,o(w)v ) ﬁMa,k,l,m,o(w))7
ﬁl,m,o(w) = (ﬁl,l,m,o(w)7 T 7ﬁK,l,m,o(w))'

The Kolmogorov backward equation of the absorbing state (i, 7,0,1, m,0) reads

d .
Eﬂ'i,j,o,l,m,o(t) = T j1,0—1,m,0(t)ST(3), (6)

where S7 (i) is the i-th entry of SY. Since (3, 4,0,1, m,0) is an absorbing state it is easily
seen that

Ti,5.0,m.0(t) = ]P’(Bn <t,Phs(Bn) = i, Pha(Bn) = j, Sn =1, Ly, = m,
L% =0 P(0) = (ps.pem,0,0,0)).
Hence, the Laplace transform of the Lh.s. of (6) is equal to the joint transform E [e_WB”

'1{Ph5 (Bn)=i}" l{Pha(Bn):j} . l{Sn:l} . 1{L$L:m} . l{L%:o}] . Taking the Laplace trans-
form on both sides in (6) and summing over all values of ¢ and j gives that

M,
—wB,, ~
Ele™™""  1gg, 21y - 1{re=m} - L{ro—o}] = ZH',l,l—l,m,o(w)Si)
j=1

- T
= Hl,l—l,m,o(w)e ® Si)

=) 1 pmo(w)(e1®e) ® S5
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Removing the condition on Sy, LY, and LS we deduce that

oo o 0

c o ~
E[e_WB”zf"z'QL”zgl;"] Z Z Z zllzglzgﬂl,l,m’o(w)(el ® e)T ® ST

=1 m=00=0
oo o0 o0

=21y A Y A A o(w)er®e) @57 (7)

We now derive the r.h.s. of E[efwB" zls" zsz zé‘g‘] Taking the Laplace transforms of
the Kolmogorov backward equations of the AMC we find that

le,?n,o(w)(wI - A) = 1{l,m,o:0}6n ® fn®sn+ 1{l21}]~]l71,m,0(w)B
+1{m21}ﬁl,m71,0(w)c + l{ozl}ﬁl,m,ofl(w)Dv (8)
where en, ® fn ® sn, represents the initial state vector of the AMC, and the matrices A,

B, C, and D are given in Appendix I. Multiplying (8) by zllzgnzg and summing the
result first over all o, then m, and finally [ yields that

o0 o0 oo

Z 2 Z 25" Zzgﬁhm,o(w)(wl —A-—2z1B—2C—23D)=en® fn®sn. (9)
Note that (wI—A —2z1B —23C —23D), Re(w) > 0, is invertible since it has a dominant
main diagonal. Inserting (9) into (7) completes the proof. O

Remark 1 Assume that the residual busy period starts with n customers at time zero,
and at time zero the phases of the inter-arrival time and the service time are distributed
according to some distribution vectors fro and spg. The joint transform of Bn, Sn,
and Ly is then given by

E [e_wB"'zf"' ZQLZ'z?ffl] =zien @ frno ® snon_(l (e1® e)T ® ST.
Proposition 1 The joint transform By, S1, LY, and LS is given by
E[e_WBlzfleLTZ?fi] =21f1®s1 (Xl)_leT ® ST,
where X;, i =1,..., K — 1, satisfies the following (backward) recursion
Xi=wl-F; @1 -1®S; — 22p; F{ f; @1 = 214; F} f; ® I(Xz‘+1)711 ® SPy1sit1,

with
Xg=uwl-Fr@Il-1®Skg —z23Ffx ®L

Proof: According to Theorem 1 the joint transform of By, Sy, LY, and L{ can be
written as .
E[e_wBlzflzlez?fl] =211 ®51Qk (1, el @ SY,

where Qg (1,1) is the (1, 1)-block entry of Q}l. Let us partition the matrix Qg as

follows
~{ Qu1| Qu2
Qx = <Q21 QKl) ’ (10)
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where Q11 == wI -F1 @I -1® 81 —20p1FYf1 ® L, Qu2 :== —e1 @ 1F7 f1 ® 1,
Qo1 :=—21 (el)T ®I® S9sa, Qi_1 is obtained from the matrix Qg by removing its

first blocks row and first blocks column. A simple linear algebra gives that the inverse
of Qg reads

Q}—(l _ ( Qi) ! |Q1_11Q12(Q§2)1) 7 (11)

-Q5 Q21(Qf)) 7 (Q5) "

where Qf; = Qi1 — Q12Qx! Qa1 and Q35 == Qr_1 — QuQj; Qua. It is then
readily seen that
E[efwBlzslzLizL?] =211 ®51(Q] )716T®SO
1 *2 *3 1J1 1 11 1
= 21/1 ©@51(Q11 — Qi2(Qx 1) 'Qa1) e’ @ 57
z1f1®81(w1—F1®I—I®S1 —z2op1 FY f1 @1

—1
—qiFY fi ®IQK—1(171)I®S§)52) el @Sy, (12)

where Qi _1(1,1) is the (1,1)-block entry of Qi_(l_l. Qg _1 is a tridiagonal block
matrix. Repeating the same way of partitioning the matrix Qi to Qg _1 one can
show that

Qr-1(1,1) =uwl-Fo QI -1® Sy — 20p2F5 fo ® I — @2 F5 fo ® IQg _2(1,1)I ® S5 s3.

Qg _2(1,1) is the (1,1)-block entry of QI_(l_2 and Qg _o is obtained from the ma-
trix Qg _1 by removing its first row and first column. For this reason, we deduce by

induction that E[efwBl zls1 2512351] satisfies the recursion defined in Proposition 1.

2.1 M/PH/1/K Queue

For the M/PH/1/K we have that -F; = F’f; =\, i=1,--- ,K,S; =S and S{s; =
5%, i =1,---, K. Let &(w) = s(wl — 8)715° denote the LST of the service times.
Moreover, we assume that ¢; =¢,i=1,--- K — 1.

Lemma 1 The function © — zlf(w + A1 —gqz— pzz)) has Ms + 1 distinct non-null
T00tS 71, ,"A 41, Such that 0 < |ri] <|ro| < -+ <|rpr 41l

Proof 1t is well-known that £(w), the LST of the service times which has a phase-type
distribution of My phases, is a rational function. Therefore, the denominator of &(w)
is a polynomial in w of degree Ms and the numerator is a polynomial of degree < M.
For this reason, the numerator of  — z1&(w + A(1 — gz — pz2)) is a polynomial in x of
degree Ms + 1. Therefore, the function z — zlf(w +A(1—gqx— pzz)) has Ms + 1 roots.
It is easily checked that zero is not a root of this function.

For the sake of clarity of the presentation, we will assume that these roots are
distinct. In Section 3 we shall relax this assumption by considering that r;; = r; + le,
e>0,ie{l,...,Ms+1}and [ =0,...,L — 1, and taking the limit in our final result
for € — 0. This means, we have that r; is a root of multiplicity L.
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Let Dy denote the circle with center at the origin and with radius 7, % <

n < |ri|, r1 is the root with the smallest absolute value of
:rlef(er/\(lfq:rfsz)) =0. (13)

We are now ready to present the main result of the M/PH/1/K queue.

Proposition 2 (M/PH/1/K Queue) The joint transform of Bn, Sn, Ly, and Ly,
for the M/PH/1/K queue is given by

1 1 1 dx
E[ein"zS"ZL;ZLZ] 2w fDn oK—1-n qrt+pza—23 v—2z21{(w+A(1—qz—p2z2))
1 72 ~3 - 1 1 dx ’

1
271 fDn e B-T qr+pza—z3 x—2z1E(w+A(1—qr—p22))

Proof According to Theorem 1 the transform of By, Sn, Ly, , and Lj, for the M/PH/1/K
queue can be reduced as follows: (due to the Poisson arrivals we have that f, = 1 and
the vector e is of dimension one, i.e., e = 1 in Theorem 1),
_ LS L° _
E [e wB"’zf"'ZQ " 23 "] =z1€n ® SQKle{ ® 5%, (14)
where Qp in this case is a K-by-K tridiagonal block matrix with upper diagonal

blocks equal to Eg = —gAI, i-th diagonal blocks equal to E; = wl + A\(1 — pz2)I — S,
i =1,---,K — 1, and K-th diagonal block equal to Ej = wl + A(1 — 23)I — S,

and lower-diagonal blocks equal to Eo = —215°s. Therefore, Qi has the following
canonical form:
E,Ey) 0 - --
E; E;1 Eg O
Qx=| 0 (15)
: L E; Eg
0 --- 0 Eg Ej
Let u = (u1, - ,ug) :=en ® sQ;(l. Note that each entry of the row vector w is in its

turn a row vector of dimension My and is a function of w, 21, 22, and z3. Then (14) in
terms of u rewrites

E[efwB"zls"zg‘i‘zé‘g‘] = z1u15°. (16)
The definition of u gives that uQ g = en ® s. Developing the latter equation yields
Lisoyuio1Bo + ui[lc k- 13B1 + Lpim iy BT 4 L<k—1yuiri Bo = Li—pys, (17)

where i = 1,--- , K. Since uy is analytic we deduce from (17) that u;, i = 2,--- , K,
are analytic. Multiplying (17) by z' and summing it over 4 we find that

. . 1 —1
Z wzt = (u1E2 + :cKuK(:ch +E; —E])+ m"s) (J:EO +E1+ ;Eg)

-1
= (zlulsos —z"s+ )\J:K(qz: + pzo — 23)uK) (S —pI+ %S%) , (18)
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where p := w4+ A(1 — gz — pz2). Let S« := S — pI. Note that under the condition that
Re(p) > 0 the matrix S« is nonsingular. Hence, the Sherman-Morrison formula, see,
e.g., [3, Fact 2.14.2, p. 67], yields that

-1
(5-+2s%) =87t - L _s7lsvsi (19)
T T+ 218S, .S°

The multiplication to the right of (18) with the column vector S° and (19) gives that
o __ o, .mn K - —1 o
Zu z's 7x+zlss 5o (zlulS s—z"s+ Az (gz + pza zg)uK)S* S°. (20)

From (2) we know that sS;15° = —£(p) and S;15° = —(;Sl(p)7 e 7§Ms(p))T7 where
€4 (p) = e;(pI — S)~1S°. Therefore, £(p) = s((p), - - ,fMS(p))T is a linear combina-
tion of £%(p), i = 1,--- , M. Inserting sS; 15° and S;15° into (20) yields

M,

Zuzm §° = ey (B 87— E ) X (gt pea—2s) Eumsﬂ(p)}, (21)
j=
where ug = (ug1, - ,uxnm,). We recall that u;S° is an analytic function. For this

reason, the Lh.s. of (21) should be analytical for any finite z. This gives that the
singular points, roots of x — z1£(p), on the r.h.s. of (21) are removable.

Lemma 1 and the analyticity of Z 1 UiT igo gives that

M,
20u1S°€(pi) + Arf (qri + p2a — 23) D urci€ (pi) = 1€(pi), i =1, Ms +1,(22)
j=1

where p; := w+ A(1 —gr; —pz2). The system of equations in (22) has Ms + 1 equations

with Ms+1 unknowns which are zju15°, uk1, -, ux pm,. Using Cramer’s rule we find
that
_ ¢ o det(M*
]E[@ anZf”Zf”Zgl;n] — Zlulso — ( ) (23)

det(M) ’

where det(M) is the determinant of the (Ms + 1)-by-(Ms + 1) matrix M with i-th

row equal to (f(pl)/[)\rzK (qri + pz2 — 23)], X (ps), - -, Mo (pi))7 =1+, Ms + 1.
Therefore, M has the following canonical form:

&(p1) 1 - M
FVE S ors—) £ (p1) §4=(p1)

5(/;1-) 1- . MS- )
M = Arf((qri+p22723) 13 (pz) £ (pz)

Elpmg+1)
Arﬁs 11 p1tpza—23)

Epns41) - EMe(par,41)

The matrix M”* is obtained from M by replacing its first column with

()\'rl ey §(paa+1) ))T.

— s ) —
7™ (gr1 + pra — 23) A (@ g 4 pz2 — 23
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The Laplace expansion of the determinant along the first column of M and M* gives
that

Ms+1 E(p)(—1)*H! *7e
E[e—an S, LS L"] _ Zi:l /\rf(’"(qri+p22_z3)det(M (7'7 1))

2% M _ €)1 :
> im1 Arf(qrﬁng_ZS)det(M(%1))

M+1 (—1)* .
B Zi:l Tf(flin(qm-i-pzz—zs)det(M(Z’ 1)) (24)
- Ms+1 (=1)* . ’
Zi:l Tf(ili(qn-&-pzz—zs)det (M(Z, 1))

where M(i,1) (resp. M*(4,1)) is the Ms-by-M, matrix that results by deleting the
i-th row and the first column of M (resp. M*), and the second equality follows from
&(pi) =ri/z1 and M*(i,1) = M(s, 1).

Let Dj denote the circle with center at the origin and with radius equal to 7.
Assume that %’ < n < |ri1] with ¢ # 0. Let us define f;(z) ~; g;(z) if

fi(z)/gi(x) = h(x) that is independent of i. Let Resq f(z) denote the residue of the
complex function f(z) at point a. The sum of the residues of the following complex

function
1 1 1

2B =1-n gz + pzg — 23  — 216(w + M1 — gz — p22))’
is equal to zero, including the residue at infinity which is equal to zero (g # 0). There-

fore, we deduce that

Mg+1 (=1° ;
Zi:l T T (gritpaa— ZS)d t(M(Z71))
Ms+1 (=1)¢ .
Zi:l Tf(il(qm-‘rpz—g—z@det( (17 1))
f 1 1 dzx
B 271'1 D, zK—1-n qzFpz2—23 2—21 E(WtA(1—qz—pz2)) 25
= T - - . (25)
27r1 D, mK T qz+pza—23 z—21E(WHA(1—qz—p22))
if and only if
) 1
(—1)Zdet(M(i7 1)) ~; Resr; (26)

T — zlf(er A1 — gz prQ))‘

In the following we shall prove condition (26). Since the service times have a phase-
type distribution, {(w) is a rational function with denominator, Q¢(w), of degree Ms
and numerator of degree < M. Note that by Lemma 1 the roots of  — zlf(w + 21—

qr — pZQ)) are distinct. Therefore, we deduce that

1 Qe(w + M1 — gri — pz2))
Res; = M,+1
xlef(w+)\(1qufp22)) (—Aq)M- HJ 1 i —15)
Qﬁ(pz)

= A M.+1 :
HJ 1)]751(p1_ )

M(i,1) is an Ms-by-Ms matrix of j-th row equal to (5 (pj)s--- ,eMs (pj)) for j =
,Ms + 1 and j # i. We have that (see Appendix II for the proof)

Ji- 1H] 1HJICM—J++11 (P — pj) y Qe(pi) .
10 Qelog) 15 (o — pi)

det(M(i, 1)) = C(-1
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The latter two equations give (26) right away, which completes the proof.

Remark 2 In the case where |r1| < |pzo — 23]~ *, we choose the radius 7 such that

n < min(|ry], |pz2 — 23]¢ ). To capture this modification, it is necessary to correct the
joint transform in Proposition 2 as follows:

1 1 1 dz
Pr=t fDn KT qatpea—rs s EwIA(—qe—ps)) T 1e820/1(2)

—wBn Sn Ln L7 _
E[e "2 "2y " 23

- 1 1 1 dx
571 Jp, TR TTpir—ms rmEe A (e T ReS=0 f2(2)

where zg = |pz2 — 23]¢ !, and the functions f1(z) and fa(z) are the integrands of the
contour integrations in the numerator and the denominator of E [efwB n zls " zé‘ zzé‘ g‘].
Remark 8 For the M/G/1/K queue, note that Rosenlund [13] obtained the trivariate
transform of By, S1, and Lj. Recall that L is the total number of losses during the
busy period. Restricting Rosenlund’s result to the M/PH/1/K queue Proposition 2
extends his result in two ways. First, it gives the four variate joint transform of Bn,
Sn, LS, and LS, for the case when n > 1. Second, it allows the dropping of customers

even when the queue is not full.

2.2 M/PH/1/K queue under threshold policy

Let m € {1,..., K} denote the threshold of the M/PH/1/K queue length. According
to the threshold policy if the queue length at time ¢ is 4 the inter-arrival times and
service times are then defined as follows. For ¢ < m —1, we have that —F; = Ff = Ao,
S; = So, s; = s, and p; = pg. For m < i < K — 1, we have that —F; = F’f = Ay,
S; =S; and s; = s, and p; = p1 and px = 1.

Let &(w) = s(wl — S;)71S? = P;(w)/Q;(w) denote the LST of the service times
when the queue length is below the threshold (¢ = 0) or above it (i = 1). Moreover, we
let fi(w) = e(wl —S;)7 182 = Pi*l(w)/Qé(w). Note that since Qo(w) is the common
denominator of §é(w) we have that 56(11}) = P(l) (w)/Qo(w) is a rational function where
P!(w) is polynomial of degree < Ms. Let Cq denote the matrix with (j, [)-entry equal
to the coefficient of w’ ! of the polynomial Pol(w). In the following, we shall assume
that the matrix Cy is invertible. Note that the Erlang, hyper-exponential, and Coxian
distribution satisfy the latter assumption.

Lemma 2 The function © — 21§ (w + A1 —qz— py;g)) has Ms + 1 distinct non-null
T00tS T11, y T(M,41)1» Such that O <|[ry| < - <|ry 41yl {=0,1.

Proof By analogy with the proof of Lemma 1.

Before reporting our main result on the M/PH/1/K under Threshold Policy in
Proposition 3, let us first introduce some notations:

Let Dy, denote the circle with center at the origin and with radius 71, m <
m < |r11]. According to Lemma 2, 717 is the root with the smallest absolute value.

The contour integration v(l), I =1,..., Ms, is given by

L 1 E(wA(1—qiz—pi22)) dz
2ri JD,, xK-m Qrrz+pize—=z3 z—2z1&1 (wHA(I—qrz—p122))

v(l) = =1 1 T 1 1 dz
D’r[l

(27)

27 zK-—m qrx+pize—2z3 x—21& (WHA(1—q1z—p122))
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Let pio = w + Ao(1 — gomio — poz2). Let us define vo(k, m) as follows:
(_1)k—1
vo(k,m) = 7 Umy X = X Umpy, e, kom=1,--- Ms (28)
Hl:l,l;ém Vi —Vm
where 1 < my < -+ < mpp,—p < Ms, m1,--- ,mpr,— # k, and (v1,--- ,vp,) =

(P10, 5 P(i—1)0s P(+1)0> "+ » P(M,+1)0)- Note that for k = M, > Vm, X+ X Vg, 4
is equal to one by definition. Finally, let 3(:) denote the following sum:

M, Ms+1 M,
B =Y v Y Qolomo) Y collk)volk,m), (29)
=1 m=1,m#1 k=1

where cq(l, k) is the (I, k)-entry of Cgl.
We are now ready to report our main result on the M/PH/1/K under Threshold
Policy.

Proposition 3 (M/PH/1/K under Threshold Policy) The joint transform of
By, S1, LY{,and LY in the M/PH/1/K queue operating under the threshold policy is
given by

ZMS-H 21—B(4) Qo(pio)

=1 ?n72 Mg+1 o

E[einlzslzLizLi’] _ Tio szl’]#i(PJO pio)
172 73 ZMS-H 21—0B(4) Qo(pio) ’

i=1 o1 MsFI
‘ Tio szsl’j#(ﬂjo—ﬂw)

(30)

where, 10 and r;1 are given in Lemma 2, Qo(w) is the denominator of &n(w), and B(7)
is given in (29).

Proof By analogy with Proposition 2 the joint transform Bj, Si, L{, and L{ for the
M/PH/1/K queue can be written as follows:

E [e_wBlzfl ZQle?fl] =z1e1 ® sQi_(le%F ® S5, (31)

where in this case Qg has the following structure:

_ [ Fool|Fo1
Qi = <F10 Fu) '

The matrix Fy, I = 0,1, is a block tridiagonal matrix with upper diagonal blocks
equal to Eq; = —q; A1, diagonal blocks equal to Eq; = wI + A\j(1 — p;z2)I — S; and
lower-diagonal blocks equal to Eg; = —215]s. Note that Fog is an (m — 1)-by-(m — 1)
block matrix and Fy; is an (K — m + 1)-by-(K — m + 1) block matrix. Moreover, the
(K—m+1, K —m+1)-block entry of F1; is equal to E]; = wI+A;(1—23)I—S;. The
matrix Fgi is a block matrix with all its blocks equal to the zero matrix except the
(m — 1, 1)-block that is Egg = —goAoI. Finally, the matrix Fig is a block matrix with
all blocks equal to the zero matrix except the (1, m — 1)-block that is Eo; = —2157s.
Therefore, Fog, F10, F10, and F1; have the following canonical form:

EwwEw 0O - - [ I
E20 E10 Eoo O .

Foo = o ... |, Fou= A
: . Ego 0O 0 -+ +ov -n- 0

0 --- 0 Ez Ejo Epw 0 -+ -+ - 0
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(1 I 0 Ex; E11 Eo1 O :
[ T 0 0 E21 Enn Eor O
Fio = . Fu=[ o0 "
- . . . En Eg
[0 00 0 --- 0 E Ej

Equations (11) and (31) yield that

—wB; _S; L{_LY -1 -1T
E[e w 1211221231] 22161®8(F00—F01F11 FlO) el ®5'8

_ —1
z1e1 @ S(FOO - qO)\Olelll(l, I)SfSUTU) 6,{ X 587(32)

where U is a row vector of blocks with all entries equal to zero except the last that is
I and Fl_ll(l7 1) is the (1, 1)-block entry of Fl_ll.

We shall now derive an expression for lel_ll (1,1)S7. Note that lel_ll (1,1)S7isa
column vector with size Ms. Let v := leﬁl(l7 1)S?. First, observe that F1; has the
same structure as the matrix Qg in (15) with K replaced by K —m + 1, A by A1, S
by S1, and S°s by S{s. Second, note that the [-th entry of v can be written as follows

v(l) = z1e1 @ e(F11) el ® 87, 1=1,--+, M. (33)

Therefore, by analogy with the proof of Proposition 2 we find that v(l) satisfies (27).
Note that Fgg — qo)\ovsUTU has the same structure as the matrix Qg in (15) with

K=m-—1, Eg = Eq, E;1 = E1g, E2 = Eyg, and ET =E10 — goAovs. Moreover, (32)

has the same form as (14). By analogy with the proof of Proposition 2 we find that

m—1 M,
igo -z o m—1 ) J
; a;z Sy = ————— €0 (o) [(2111150 x)€0(po) + Aogox ;amfu (5050(/)0)
—o()e(e0))]
-1
where a = (a1, -+ ,am—1) == 1 ® s(FOO — qo/\ovsUTU) , m—1 = (a(m,1)1,~~- ,

a(m—l)M3)7 and po = w + Ao(1 — gox — poz2). Recall that rjp, i =0,--- , Ms + 1, are

the roots of © — z1&o(w + Ao(1 — gox — poz2)). The analyticity of Zfil ai:ciSS gives
that

s

Y a1 (rio& (pio) — v(i)€0(pin)) = riogo(pio),
=1

21015080 (pio) + Moqorip

<.

where i =1, -+, Ms+1 and p;o = w+ A\o(1 — qoTio — poz2). Cramer’s rule yields that

0

SOt foleo) 2D et (N)
0

— LY LY
E[e w312151221231] = 2101585 =

=1

S GO, et (N)
20
= - : (34)
Yttt Elldet(N)
i0
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where that N is an Ms-by-Ms matrix that has the following canonical form
&lpro) —v()/z1 - " (pr0) —v(Ms)/=1
N — &pi-1y0) —v(@)/z1 - 5(%3 (p(i—1y0) — v(Ms) /21
o) —v)/z1 - £ (par1y0) — v(Ms)/z1
& (par+1)0) —v(1)/21 -+ €% (p(ar,+1)0) — v(Ms)/z1
Let Mq(4,1) denote the following matrix:
&pro) - g (plo)
) &pi-1yo) - & (p(iq)o)
Mo(i, 1) =
o6, 1) & parno) & (put10)
€ (p(ara+1y0) €07 (p(ar,+1)0)
It is easily seen that N can be decomposed as follows
N =My(s,1) — ieTU.
21
Since {0( ) = ( )/Qo(w), I =1,---, Ms, are rational functions with common de-

nominator Qo(w) the decomposition of My (i, 1) gives
My (i, 1) = D(i) Vo (i) Co,

where D(7) is an Ms-by-Ms diagonal matrix with j-th diagonal element, 7 = 1,---,
Ms+1 and j # i, equal to 1/Qq(pj0), Vo(i) is a Vandermonde matrix of the following
canonical from:

1 p10 o (pro)Me
V(i) = Lpi—10 --- (p(i—l)o)MS

1 Pi+1)0 -+ (p(i—H)o) o ,

1 P(Ms+1)0 - -+ (p(Ms-i-l)O)M

and Cy is the matrix with (j,1)-entry equal to the coefficient of w? ™! of the polynomial
Pi(w).
By Sylvester’s determinant we have that
det (N) = —det (Mo (3, 1)) (21 — vMo (i, 1) "e")
21
1 _ _ _
= —det(Mo(i,1)) (21 — vCq Vo (i) 'D()eT). (35)
21

By analogy with Lemma 4 in Appendix II we find that

My +1
= 1H] 5 1= J+1 (ko — Pjo) Qo(pio)
H QO(pJO) H;\/[ 1—:1#1 (pJO PiO)

det (Mo(i,1)) = det(Co)(—
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Let 8(7) := vCalVo(i)fld7 where d = D(i) ‘el Therefore, d is a column vector of
dimension Ms with j-th entry equal to Qo(pjo), j = 1,---,Ms + 1 and j # i. Let
vo(k, 1) denote the (k,l)-entry of V(i)~!. Note that the inverse of a Vandermonde
matrix is known in closed-form, see e.g. [9]. We deduce from [9] the values of vg(k, )
that are given in (28). Let us denote cg(4, j) the (4, j)-entry of Cal then it is easily seen
that B(7) is given by (29). Substituting 8(¢) and det (Mo(i7 1)) into (35) gives det (N)
Inserting det (N) into (34) completes the proof.

2.3 PH/M/1/K Queue

For the level independent PH/M/1/K we have that —S; = S{s; = p, i = 1,--- | K,
F; =Fand F’f; = F°f,i=1,--- | K. Let ¢(w) = f(wl — F)~1F° denote the LST of
the inter-arrival times. Moreover, we assume that ¢; = ¢, i =1,--- K —1, and g = 0.

Lemma 3 The function x — (q+:rp22)¢(w+,u(1 — zlx)) has Mg+ 1 distinct non-null
T00ts 01, -+ , 001, +1, Such that 0 < |o1| < |o2| < -+ < |opr, +1]-

Proof By analogy with Lemma 1.

Before reporting our result on the PH/M/1/K queue, let us introduce some notations.

Let Dg denote the circle with center at the origin and with radius equal to § with
ﬁ < § < |o1]. o1 is the root with the smallest absolute value defined in Lemma 3.
Let f(8), (), h(d), and I(J) denote the following contour integrations:

) = 1 1 1 1 do
2mi Jp, el g+ pzorw+ p(l - z12) & — (g +p22x)¢(w + u(1— zlx)) ’
(36)
1 1 1 dx
9(0) = =— — , 37
©) 2mi Jp, 2" 1Q+p22xx—(q+pzzx)¢(w+u(1—z1x)) (37)
ho) = g [ LRBRCE o , (3)
2mi Jp, @¥(qa+pzew) z— (¢4 prze)é(w + p(l — z1z))
1 q+ (pza — z3)x 1 dx
™ Jp, @(q+pzez) w+p(l—212) 2 — (¢4 prag)(w + p(l — 212))
(39)
Finally, let R denote

(w+ p)"=1 quzi + p(w + p)z2 (w+ p)(1 — pza) — quz1

We are now ready to report our result on the PH/M/1/K queue.

Proposition 4 (PH/M/1/K Queue) The joint transform of Bn, Sn, Ly, and L,
for the PH/M/1/K queue with p > 0 (p=1-q) and n=1,--- | K is given by

E[eBn20n Ll = ((w+ p)(1 - p2a) — quar) (R L RO+ M) 7

where f(9), g(9), h(d), I(d), and R are given in (36)-(40).



ques9213_source.tex; 24/01/2011; 11:58 p. 17

17

Proof Due to the exponential service times we have that s, = 1 and S{ = u . Then,
according to Theorem 1, the joint transform By, Sy, Ly, and LY, in this case can be
written as follows:

_ L¢ L° _

E[e wB"’zf",ZQ " 23 "’] = pzien ® fQKle%F R e, (41)
where Qg in this case has the same structure as in (15) with Eg = —¢F°f, E; =
(w+ I —F —pzoF°f, Ef = (w+ p)I—F — 23F°f, and Ey = —z1ul. Let b =
(b1, ,bg) == en ® fo(l. Note that each of the entries of the row vector b is in its

turn a row vector of dimension M, and is a function of w, 21, 22, and z3. Eq. (41) in
terms of b rewrites

M,
— LS LS
E[e wB"ziS"ZQ " 23 "’] = uzlbleT = puz1 Z by;. (42)
i=1

By analogy with the derivation of (18) we find that

K
. -1
Z bix= (yzlbl —2"f+ xK(qx + pzg — zg)bKFOf) (F — 01+ (qz +p22)F°f) ,
i=1
where 0 := w + p(1 — z1/x). Let F« := F — 01. Note that under the condition that

Re(6) > 0 the matrix Fx is nonsingular. Hence, the Sherman-Morrison formula, see,
e.g., [3, Fact 2.14.2, p. 67], yields

qx + pz2

F,'FofF;t (43
1+ (qz + pz2)tF; LFo TEx (43)

-1
(F* + (qz +p22)FOf> =F; ! -

Multiplying to the right of Zfil bixi with the column vector F'° and using (43) gives

K
j 1 K -1
bix' F° = 12101 —z" f+x" (qgr+pra—23)b F°f)Fy F°.
; 1 1+(qx+p22)fFI1F°( ( ) JF-
(44)
From (1) we have that fF;'F° = —¢(0) and F'F° = —(¢'(0),-- ,¢Ma(0))T,

where ¢'(0) = €;(01 — F)~1F°. Therefore, ¢(0) = f(¢'(0),--- ,¢™Ma (0))T is a linear
combination of ¢*(), i =1,--- , M,. Inserting fF; ' F° and F; 1 F° into (44) yields

M, i
K af (gt pz — 23)$(0)br FO 4 piz1 Y byt (6) — & (6)
szm F°=— ’ (45)
2 T (@ 1 p=2)0(0)
where by = (b11,--- ,b1a, ). Note that b;F° is a joint transform function. For this

reason, the Lh.s. of (45) is analytical for any finite  and the poles on the r.h.s. of (45)
are removable. Note that the roots of 1 — (gqz +p22)¢(w + u(l — zl/x)) are equal to

the inverse of the roots of x — (¢ + :rng)qﬁ(w +p(l— zlx)) Therefore, Lemma 3 and
the analyticity of Zfil bz F° gives that

Ma
+ (pz2 — 23)0; j 1 i
%qﬁ(ei)bﬁo oz Yy bid? (0) = —56(0), i=1,--+ Mo+ 1, (46)
. K3

) j=1
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where 0; := w + u(1 — z10;). The system of equations in (46) has M, + 1 equations

with Mg + 1 unknowns which are bg F°,b11,--- , b1, . Using Cramer’s rule we find
that
o det(H)
—wB,, _Sn Ly, L T €
E[e w "2 g 2y ] = pz1bie” = pzlzlblj = 7det(K)’ (47)
J:

where K is given by

TG0 o' e) o oM
K = . . . . )
%M@Mﬁl) ¢ Onr,+1) - ™M (Orr,41)
Mg+1
and H is given by
THEERo0)  6Me) o 6t Fro(01)

THEE 2 OMatL (O, 41) 6! (Oar,11) -+ M (Or, 41) o= (0, 1)
Mqg+1 Mqg+1

0 1 1 0

The Laplace expansion of the determinant along the first column of K and H gives
that

Ma+1 g+ .
~wBn S Lo it 7(p22+23)0 ¢(6;)(—1)"" det (H(7, 1))
E[e 32 23 "] = Ma+1 g+(pz2—=23)0; 1
Zl—l KT #(6;)(—1)* det(K )
Ma"!‘l + — i L .
Yt %(fl)wldet(H(z, ) .
== ; 48
M,+1 + — B . K 5
St L atlpzazslon ikl det (K (i, 1))

i

where the matrices H(4,1) and K(i,1) are obtained by deleting the i-th row and the
first column of the matrices H and K, and the second equality follows from ¢(60;) =
0i/(q + pz20i).

Note that ¢(w) is a rational function with denominator, Q4(w), of degree equal
M, and numerator of degree < M,. By analogy with the determinant of M(3, 1) that
is given in Lemma 4 in Appendix II we find that

Ji- 11_[] 1H11cvl—]trl1 - 6;) Qy(0;)
[ Qa0 Tl - 00)

det(K(i,1)) = Cp(—1

-C 1 M, +i— 1H] 1 HIICVI—_]t-ll ej)
- k( ) Ma-‘rl
[T= Qq(6))
xReso, 1 (49)

xz—(qg+ poQ)cj)(w + u(l— zlzr)) ’
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where C is a constant that is a function of the polynomials parameters of the numer-
ators of ¢*(w), i =1, -, Mq. Assume that q/|pza| < & < |o1|. We find that

Mg+1 1 + — i i+1 .
Zi:l oK %7222)0(—1)1 de‘c(K(z7 1))

i

Ma+1 (6,—06,)
RNV U ),
H Qe (05)

=C(-1

where h(d) is given in (38). Note that the minus sign that is next to h(¢) is due to the
fact that the sum of all residues of the function
q+ (pzo2 — z3)x 1
K(g+pzaz) x— (¢4 prao)d(w + p(l — z13))’

including the residue at infinity, which is equal to zero (K > 1), is zero. We shall refer
to the latter property of complex functions as the Inside-Outside property.
The expansion of the determinant of H(s, 1) along the last column yields

Ma+1 Motit1

‘ 1 (=1)Mat
det(H(Zv 1)) = Z On71 q-i—pZzO'
j=1g#i J /

et(J), (50)

where J is obtained by deleting the j-th row and the last column of the matrix H(i, 1).
It is easily seen that J is an Mg-by-M, matrix with the I-th row equal to ((;51 @),---,
qﬁMa(Gl)), l=1,--- Mg+ 1 and [l # 4,7, and the last row is equal to e. By analogy
with the determinant of M(i, 1) we find that

Mq+1
C
dei (1) = 5 (JO) II 5 H H (0, — 01)
¢ =1 l#i,] l 1,l#4,j k=1+1,k#i,j
Mq,+1 M, +1
H )1+j 1 Hl 1Hk l+1 91)
Mg +1 Ma+1
l 1l;£1j Hl 1l751 Hl 1l751_] 9]')
e Mg+1 M+1
_ Cy(=1)itit ( H 91) Hz 9 =1 Ok — 60) Qgy(0 ')
M +1 Mg+1
@ (0) =1 Q¢>( 1) 0; Hz 11751 —0:)
Qe (95)
Mol ’
0 Hl 1l751,] 76.7)

where Q4(0) is due to the last row of J which is equal toe = (1,--- ,1) = (P(; (O)/Qé(O)

P(;VI“ (0) /Qf‘1 (0)) It follows from the definitions of the matrices J and K that
Cj = C}. We note that

M,+1

Myt oo
0 = (1zi)Mat1 (w b 0)
11:[1 1= (pz1) H e

JMat1 T Qs(0) = (g+ p22 T2l Py (0)
(—pz1) Mo

= ()™M Qu(0) [(w + p)(1 — pza) — quz1],

= (pz1
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where the second equality follows from the fact that o;, [ = 1,---, Mg + 1, are the
roots of x — (¢ + xp22)¢(w +u(l— 211:)) and ¢(w) = Py(w)/Qg(w), and the last from
#(0) = 1. Inserting det( ) and HM «t1 g, into (50) yields

M,+1 .
x 1 (_1)Ma+.7+1

det(H(i, 1)) = Z —

. 220,
mrae % TP

et(J)

M, +1
- CJ(il)i [(w +p)(1 = pz2) — Qle] Hl 1 Hk l+1 —6;)

att Q¢(91)
Qu(6:) M‘f 1L Qu(6))
0 T2 (01— 03) ;4 o) 9+ P2205 0, T, (00— 05)
(51)
Note that, for p >0 and n =1,..., K, we have that

Mil 1 Qs(05)
e O TP 0, T, (00— 0))

ooy 4t PR05 0, 11105005 — 6n)

a [ 11 1

= (-1 [91' ; o;.l_l me—jResmxi (a + po22)é(w + p(1 — 212))

Ma+1

1
B Z o la +pZ20 Reso, @ = (g + pz2w)p(w + u(l - z12))
= (- 1)M TL0:(£(6) + R) + 9(9)),

where the last equality follows for p > 0 from the Inside-Outside property of the
integrands of f(J) and g(d) that are given in (36) and (37),

1 1 1
R = Resw+p ——
e e g+ prer w4+ p(l — 212) & — (g + ngx)qﬁ(w +p(l— zlx))
(pz1)™ 1 1

Tt T quz +p(w+ p)z2 (w+ p) (1 — pe2) —apzr (52)

Substituting (49) and (51) into (47) yields
Bl a5 205 = (w000 =) - ) (R4 506) + S0 ),

where 1(4) is given in (39), which completes the proof.

Remark 4 For the G/M/1/K queue, note that Rosenlund [14] obtained the four variate
transform of Bj, Si, Ly, and the busy cycle defined as the time duration between
two consecutive arrivals to an empty system. Restricting Rosenlund’s result to the
PH/M/1/K queue Proposition 4 extends his result in two ways. First, it gives the four
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variate joint transform of By, Sp, LY, and L%, for the case when n > 1. Second, it
allows the dropping of customers even when the queue is not full. Note that in the
particular case with n =1 and p = 1 — ¢ = 0, we have that f(6) = 0, g(4) = 1, and
R= 71/(w+u(1721)). Inserting these values into the joint transform in Proposition 4
yields that

My,+1 1— i 1—p(w+p(l—z10; Qe (0;
Hz1 Zi:l oz%’?o w(+,u(ﬁlb(fzwz)1)) HMai)l( 19) 0.
E[e—wBlzslzL‘{ L‘l’] _ ‘ =10 L
172 ZMa-‘rl 1 Qqp(0:)
i=1 R T{Mat1l , -
% Hl:l,[;ﬁiel 0;
f pz1(1—z3z) 1-¢p(wtp(l—212)) dx
Ds z K wtp(l—z1z2)  z—d(wtpu(l—z17))

f 1—z23x dx
Ds 2K z—¢(wtp(l-z12))

We note that the last equation is in agreement with (11) in [14].

3 Discussion: non-distinct roots

Until now we have assumed that the roots in Lemma 1-3 are distinct. We shall now
relax these assumptions and show that the results in Propositions 2-4 still hold. In the
following, we shall focus on extending the result in Proposition 2. Similarly this can be
done for Proposition 3 and 4.

Let us consider that r; 1 ; = r;+le, e > 0,1 € {1,..., Ms+1}and! =0,...,L—1, and
take the limit in our final result for ¢ — 0. This means that r; is a root of multiplicity
L. In order to show that the results in Proposition 2 hold in this case, it is readily seen
that one needs to prove that

R 1 1 1
esr,
TieK=1 g + pzg — 23 T — 216 (w + A1 — gz — pz2))
L—1
1 1 ;
=lim ) oy — p— MSHQg(p”l) . (53)
=0 Titt dMiALTPR2TA Hj:Lj;éi_H (it — pj)

First, note that when r; is a root of multiplicity L the complex residue reads

1 1 1
aK =1 gz + pzo — 23 v — 216(w + M1 — gz — p22))

Res,

1 4t 1 (x —ri)
(L= Ddal-1\ 2K —-1(gx + pzo — z3) * — 21&(w + A(1 — gz — p22))

T=T;

1 d-! ( 1 Qe(p) )
— L—-1 —1)! L-1 K-1 _ Ms+1

L—-1
L—-1 ( )(71)L717l
1 . 1 l
= lim E
(SAFHE = =0 BT i ((Ti +16)K =1 (q(ri +le) + pz2 — 23)
Qe¢(pi — Agle) )
M,+1 )
szl,jséi,~~ irL—1(pi = Adle = pj)

T=T;

X (54)
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where p = w+ A1 — gz — pz2), p; = w~+ A(1 — qr; — pz2), and the last equality follows
from the following identity for the analytical function f(z) around zg:

=l e 3 ()0 o)

o =0

d’ﬂ
dzm

f(z)

Note that the latter equation follows right away using the Taylor series of f(zg + i€)
around zg and the binomial series of (z — 1)" and its derivatives.
The r.h.s. of (53) rewrites

L-1
lim Z 1 1 Qe(pit1)
. K—1 gr, — M.+1
0D i Mt PR m A T (i — pj)

L—-1

— lim 1 1 Qe¢(pi — Mle) (55)

=0 & (ri +1e)K=1 q(r; +1le) +pzo — 23 H;'\isrjl;éi“(pi — Agle — pj)7

where,
Qe (pi + leo) _ (=D Qc(pi + Ieo)

Ms+1 — Ms+1
H_j:L_j;éiJ,.l(pi +leo — Pj) Eé 1“(L —-1-0! Hj:l,l7é07... ,L_l(Pi + leg — Pj)
(")
l (=D Qe (pi + leo)

— 1) _L—1y7Ms+1 ’
(L —1)! € Hj:1,l¢0,...,L71(pi+l€0 - pj)

with eg = —Age. Inserting the last equation into (55) yields that the r.h.s. and Lh.s. of
(53) are equal, which completes the proof.

Appendix I

In this Appendix, we give the definition and the structure of some key matrices that
we shall refer to frequently.

The matrix A is a K-by-K upper bidiagonal block matrix with i-th upper diagonal
element equal to ¢;(F; f;) ® I and i-th diagonal element equal to F; @ I+I® S;, i.e.,

F1I+I® S, ql(Fff1)®I o  ...... 0
0 FoI+I®S, qg(F;fg)@I 0o ... 0

g 1(Fp_ 1 fr-1)®1
0 .0 Frol+Il®Sk

The matrix B is a K-by-K lower diagonal matrix with i-th lower diagonal element
equal to I ® (S7s;). Therefore, B has the following canonical form:

0 0
I®(SS$2) 0 0

B= 0 I®(S9s3) 0

0 0 I® (S%sK)0
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The matrix C is a K-by-K diagonal matrix with i-th diagonal element, i =
1,..., K — 1, equal to p;(F} f;) ® I and K-th element equal to 0, i.e.,

p1(FPf1) @1 0 0
0 p2(F3f2) @1 0
C= . . :
0 0 px1(Fg_1fk-1)®10
0 0 0

The matrix D is a K-by-K zero block matrix with (K, K)-block element equal to
(F% fx) ® L Therefore, D has the following canonical form:

0 o - 0
0o - 0
D= :
0 0 0

0--- 0 (Fyfr)®l

The matrix U; is an infinite size block diagonal matrix with diagonal blocks equal
to C, i.e.,
c o - -0

Uy = 0 C 0 - 0

The matrix Ugg is an infinite size block diagonal matrix with diagonal blocks equal
to D. Therefore, Ugg has the following canonical form:

DO - -0

0O D 0 o 0
Ugo =

The matrix Uy is an infinite size block diagonal matrix with diagonal blocks equal
to Ugo, i.e.,
Up 0 -+ -~ 0

Up = 0 Uyp O - 0

Appendix II

The matrix M(3, 1) is an Ms-by-Ms matrix with j-th row equal to (51(pj), e Mo (pj))
for j=1,--- ,Ms+ 1 and j # i. Therefore, M(i, 1) has the following canonical form:

' (p1) - EMs(py)
M(i, 1) = g(P-z‘ﬂ) gMS(.pi—l)

(pi1) -+ EMs(piq1)

Epar 1) -+ M (s 1)

Recall that £(p) = s(pI — S)715° and £%(p) = e;i(pI — S)~1S°. Moreover, &(p) is a
linear combination of £!(p), - -+ ,£M#(p), and it is a rational function with denominator,
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Q¢(p), of degree equal to Ms and numerator of degree < Ms. In addition, §i(p)7
i = 1,---, Ms, are also rational functions with denominator of degree < My and
numerator of degree smaller than the denominator. Therefore, it is easily seen that
£i(p) = Pi(p)/Qg(p)7 i=1,---,Ms, where Q¢(p) is the denominator of £(p). Let C
denote the matrix with (j,¢)-entry equal to the coefficient of pj_1 of the polynomial
P'(p).

Lemma 4 The determinant of M(i,1) is given by

1 1H] 1Hiw ;L+11 - pj) Qe(ps)

det(M(,1)) = C(—-1
( ) [0 Qetoy) T i(os — pi)

: (56)

where C' = det(C).
Proof We decompose M(%, 1) as follows:
M(,1) =D -V (i) - C,

where D is the diagonal matrix with j-th diagonal entry equal to 1/Q¢(p;), 7 =
., Ms and j # i, V(i) is the Vandermonde matrix of the following form:

1p1 (e
; 1pi—1 ... (pi- 1)MS
V(i) =
® Lpigr oo (pigy1)Ms
1pMet1 --- (pao+1)™s

Note that the determinant of M(i, 1) reads,
det (M(i, 1)) = det(D)det(V(i))det(C).

It is well-known that the determinant of the Vandermonde matrix is given by, see, e.g.,

(5],

T [T T (e = p5)
1 =5 (e =2y
dt(V@) = [ II (ox—rp) =" .
G, k=t et [T jies = Pi)
Since D is the diagonal matrix with j-th diagonal entry equal to 1/Q¢(p;), j =
., Ms and j # i, it is readily seen that

1

det(D) = ——F———.
H;'V[:?,_jl;éi Qe(py)

Substituting the latter two equations into det (M(z, 1)) yields right away (56), which
completes the proof.
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