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In this paper, we study the transient behavior of a level dependent single server queueing systems with a waiting room of finite size during the busy period. The focus is on the level dependent PH/PH/1/K queue. We derive in closed-form the joint transform of the length of the busy period, the number of customers served during the busy period, and the number of losses during the busy period. We differentiate between two types of losses: the overflow losses that are due to a full queue and the losses due to an admission controller. For the M/PH/1/K, M/PH/1/K under a threshold policy, and PH/M/1/K queues we determine simple expressions for their joint transform.

Introduction

In practice, it is often the case that arrivals and their service times depend on the system state. For example, in roadway traffic networks it is well-known that the vehicle service time deteriorates as a function of the occupancy on the roadway [START_REF] Jain | Modeling vehicular traffic flow using M/G/C/C state dependent queueing models[END_REF]. In human based service systems, there is a strong correlation between the volume of work demanded from a human and her/his productivity. At the packet switch (router) in telecommunication systems, when the buffer size increases, a controller drops the arriving packets with an increasing probability. Moreover, the transient performance measures of a system are important for understanding the system evolution. All these facts motivate us to study the transient measures of a state dependent queueing system.

The transient regime of queueing systems is much more difficult to analyze than the steady state regime. This explains the scarcity of transient research results in this field compared to the steady state regime. A good exception is the M/M/1 queue which has been well studied in both transient and steady state regimes. This paper is devoted to the study of the more general case of the transient behavior of the level dependent PH/PH/1/K queue, i.e., the level dependent PH/PH/1 queue with finite waiting room of size K -1. In particular, we shall analyze the measures related to the busy period.

Takács in [15, Chap 1] was among the first to derive the transient probabilities of the M/M/1/K queue, referred to as P ij (t). Basically, these are the probabilities that at time t the queue length is j given it was i at time zero. Building on these probabilities Takács also determined the transient probabilities of the M/M/1 queue by taking the limit of P ij (t) for K → ∞. For the M/G/1/K queue, Cohen [START_REF] Cohen | The single server queue[END_REF]Chap III.6] computed the Laplace transform of P ij (t) and the bivariate transform of the number of customers served and the number of losses due to overflow during the busy period. This is done using complex analysis. Specifically, the joint transform is presented as a fraction of two contour integrals that involve K and the Laplace-Stieltjes transform (LST) of the customers' service time. Rosenlund in [START_REF] Rosenlund | Busy periods in time-dependent M/G/1 queue[END_REF] extended Cohen's result by deriving the joint transform of the busy period length, the number of customers served and the number of losses during the busy period. In a similar way to [START_REF] Rosenlund | Busy periods in time-dependent M/G/1 queue[END_REF], Rosenlund in [START_REF] Rosenlund | The queue G/M/m/N: busy period and cycle, waiting time under reverse and random order service[END_REF] analyzed the G/M/1/K queue and gave the trivariate transform. The approach of Rosenlund is more probabilistic than Cohen's analysis. However, Rosenlund's final results for the trivariate transform for M/G/1/K and G/M/1/K queues are represented as a fraction of two contour integrals. For more recent works on the busy period analysis of M/G/1/K queue we refer to [START_REF] Lee | M/G/1/K queue with vacation time and exhaustive service discipline[END_REF][START_REF] Takagi | On the busy period of an M/G/1/K queue[END_REF]. Recently, there was an increased interest in the expected number of losses during the busy period in the M/G/1/K queue with equal arrival and service rate; see, e.g., [START_REF] Abramov | On a property of refusal systems[END_REF][START_REF] Righter | A note on losses in M/G/1/N queues[END_REF][START_REF] Wolff | Losses per cycle in a single-server queue[END_REF]. In this case, the interesting phenomenon is that the expected number of losses during the busy period in the M/G/1/K queue equals one for all values of K ≥ 1.

In this paper, we shall assume that the distribution of the inter-arrival times and service times is phase-type. For this reason, the embedding of the queue length process at the instants of departures or arrivals becomes unnecessary in order to analyze its steady state distribution. We emphasize that is a key difference between our approach and those used in [START_REF] Cohen | The single server queue[END_REF][START_REF] Rosenlund | Busy periods in time-dependent M/G/1 queue[END_REF][START_REF] Rosenlund | The queue G/M/m/N: busy period and cycle, waiting time under reverse and random order service[END_REF]. For an algorithmic method of the LST of the busy period in the PH/PH/1 queue see, e.g., [START_REF] Neuts | Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach[END_REF][START_REF] Ramaswami | The N/G/1 queue and its detailed analysis[END_REF]. Bertsimas et al. in [START_REF] Bertsimas | Transient and busy period analysis of the GI/G/1 queue: the method of stages[END_REF] derived in closed-form the LST of the busy period in the PH/PH/1 queue as a function of the roots of a specific function that involves the LST of the inter-arrival and service times.

In [START_REF] Hanbali | Busy period analysis of the state dependent M/M/1/K queue[END_REF], we extended the results of Rosenlund in [START_REF] Rosenlund | Busy periods in time-dependent M/G/1 queue[END_REF] for the M/M/1/K queue in several ways. First, we studied a level dependent M/M/1/K queue with admission control. Second, we considered the residual busy period that is initiated with n ≥ 1 customers. Moreover, we derived the distribution of the maximum number of customers during the busy period and other related performance measures. In this paper, we shall extend these results by considering the level dependent PH/PH/1/K queue. In a similar way to [START_REF] Hanbali | Busy period analysis of the state dependent M/M/1/K queue[END_REF], this shall be done using the theory of absorbing Markov chains. The key point is to model the event that the system becomes empty as absorbing. Contrary to the analysis in [START_REF] Hanbali | Busy period analysis of the state dependent M/M/1/K queue[END_REF], the derivation of the joint transform shall not use the explicit inverse of some Toeplitz matrices, however, we shall here proceed with a different approach that is based on the analyticity of probability generating functions.

The paper is organized as follows. In Section 1.1, we give a detailed description of the model and the assumptions made. Section 2 reports our results that shall be presented in a number of different Theorems, Propositions, and Corollaries. More precisely, Theorem 1 gives our main result for the four variate transform as function of the inverse of a specific matrix. Proposition 1 presents a numerical recursion to invert this matrix. In Propositions 2, 3, and 4, we derive the closed-form expressions for the four variate transform for the M/PH/1/K, the level dependent M/PH/1/K, and PH/M/1/K queues.

Model

We consider a level dependent PH/PH/1/K queueing system, i.e., a level dependent PH/PH/1 queue with finite waiting room of size K -1 customers. The arrival process is a renewal process with phase-type inter-arrival times distribution and with Laplace-Stieltjes transform (LST) φ i (w), Re(w) ≥ 0, in the case where the queue length is i ∈ {0, 1, . . . , K}. The service times distribution is phase-type with LST ξ i (w), in the case where the queue length is i ∈ {0, 1, . . . , K}. A phase-type distribution can be represented by an initial distribution vector α, a transient generator T, and an absorption rate vector T o , i.e., T -1 T o = -e T , where e T is a column vector with all entries equal to one. For more details we refer, e.g., to [10, p. 44]. Then, it is well-known that the LST of the inter-arrival times can be written as follows

φ i (w) = f i (wI -F i ) -1 F o i , Re(w) ≥ 0, (1) 
where the initial probability distribution f i is a row vector of dimension Ma, the transient generator F i is an Ma-by-Ma matrix, and the absorption rate vector F o i is a column vector of dimension Ma. Similarly, the LST of the service times reads

ξ i (w) = s i (wI -S i ) -1 S o i , Re(w) ≥ 0, (2) 
where s i is a row vector of dimension Ms, S i is an Ms-by-Ms matrix, and S o i is a column vector of dimension Ms.

We assume that an admission controller is installed at the entry of the queue that has the duty of dropping the arriving customers with probability p i when the queue length is i ∈ {0, 1, . . . , K}. In other words, the customers are admitted in the queue with probability q i = 1p i when its queue length is i. The arrivals to the queue of size K are all lost. In the sequel, we shall refer to the latter type of losses as overflow losses. It should be clear that in this case p K = 1 and q K = 0.

We are interested in the queue behavior during the busy period which is defined as: the time interval that starts with an arrival that joins an empty queue and ends at the first time the queue becomes empty again. We note that an arrival to an empty queue is admitted in the system with probability q 0 , 0 < q 0 ≤ 1. Similarly, we define the residual busy period as the busy period initiated with n ≥ 1 customers. Note that for n = 1 the residual busy period and the busy period are equal. In the following, we shall assume that, unless otherwise stated, at the beginning of the residual busy period the distribution vector of the phases of the inter-arrival times and service times are distributed according to fn and sn.

Consider an arbitrary residual busy period. Let Bn denote its length. Let Sn denote the total number of served customers during Bn. Let Ln denote the total number of losses, i.e. arrivals that are not admitted in the queue either due to the admission control or to the full queue, during Bn. We shall differentiate between the two types of losses. Let L c n denote the total number of losses that are not admitted in the queue due to the admission control, during Bn. Let L o n denote the total number of the overflow losses that are not admitted in the queue because it is full, i.e. due to p K = 1, during Bn. In this paper, we determine the joint transform E e -wBn z Sn 1 z

L c n 2 z L o n 3
, Re(w) ≥ 0, This is done by modeling the event that "the queue jumps to the empty state" as an absorbing event. Tracking the number of customers served and losses before the absorption occurs gives the desired result.

A word on the notation: throughout x := y will designate that by definition x is equal to y, 1 {E} the indicator function of any event E (1 {E} is equal to one if E is true and zero otherwise), x T the transpose vector of x, e i the unit row vector of appropriate dimension with all entries equal to zero except the i-th entry that is one, and I the identity matrix of appropriate dimension. We use ⊗ as the Kronecker product operator defined as follows. Let X and Y be two matrices and x(i, j) and y(i, j) denote the (i, j)entries of X and Y respectively then X ⊗ Y is a block matrix where the (i, j)-block is equal to x(i, j)Y. Finally, let det(X) denote the determinant of the square matrix X.

Results

Before reporting our main result we shall first introduce a set of matrices, then we define our key absorbing Markov chain (AMC), and finally we order the AMC states in a proper way that yields a nice structure. The event that the queue becomes empty, i.e. the end of the busy period, is modeled as an absorbing event which justifies the need of the theory of absorbing Markov chains.

Let us define the following K-by-K block matrices: the matrix A that is an upper bidiagonal block matrix with i-th upper diagonal element equal to q i (F o i f i ) ⊗ I and i-th diagonal element equal to F i ⊗ I + I ⊗ S i , the matrix B that is a lower diagonal matrix with i-th lower diagonal element equal to I ⊗ (S o i s i ), and the matrix C that is a diagonal matrix with i-th diagonal element, i = 1, . . . , K -1, equal to p i (F o i f i ) ⊗ I and K-th element equal to 0, and the matrix D that is a zero block matrix with (K, K)-block element equal to (F o K f K ) ⊗ I. Note that F o i is a column vector and f i is a row vector thus F o i f i is a matrix. Similarly, S o i s i is a matrix. Moreover, note that A + B represents the generator of a level dependent PH/PH/1/K queue restricted to strictly positive queue length, see, e.g., [START_REF] Neuts | Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach[END_REF]Chap. 3

]. Let us denote Q K (w, z 1 , z 2 , z 3 ) = wI -A -z 1 B -z 2 C -z 3 D.
For ease of presentation, we shall refer to Q K (w, z 1 , z 2 , z 3 ) as Q K . Appendix I gives a detailed description of the structure of A, B, C, and D.

Let P(t) := P hs(t), P ha(t), N(t), S(t), L c (t), L o (t) denote the continuous-time Markov process with a discrete state-space K}×N×N×N, where P hs(t) represents the phase of the (if any) customer in service at time t, P ha(t) the phase of the inter-arrival time at time t, N (t) represents the number of customers in the queue at time t, S(t) the number of served customers from the queue until t, L c (t) the number of losses due to the admission control in the queue until t, L o (t) the number of overflow losses in the queue until t, and N the set of non-negative integers. States with N (t) = 0 are absorbing. We refer to this absorbing Markov process by AMC. The absorption of the AMC occurs when the queue becomes empty, i.e., N (t) = 0. We set the AMC initial state at time t = 0 to P(0) = (ps, pa, n, 0, 0, 0), n ≥ 1, ps ∈ {1, • • • , Ms} with distribution vector equal to sn and pa ∈ {1, • • • , Ma} with distribution vector equal to fn. For this reason, the time until absorption of the AMC is equal to Bn, the residual busy period length. Moreover, it is clear that Sn (resp. L o n and L c n ), the total number of departures (resp. losses) during the residual busy period, is equal to S(Bn

Ω := {1, • • • , Ms}×{1, • • • , Ma}×{0, 1, • • • ,
+ ) = Sn (resp. L c (Bn + ) = L c n and L o (Bn + ) = L o n ), > 0.
During a residual busy period, the processes S(t), L c (t), and L o (t) are counting processes. To take advantage of this property, we order the transient states of the AMC, i.e. (i, j, k, l, m, o) ∈ Ω \ {(•, •, 0, •, •, •)}, increasingly first according to o, then m, l, k, j, and finally according to i. In the following, we shall express the generator of the AMC as a function of the aforementioned matrices A, B, C, and D, see Appendix I for further details. The proposed ordering induces that the generator matrix of the transitions between the transient states of the AMC, denoted by G, is an infinite upper-diagonal block matrix with diagonal blocks equal to G 0 and upper-diagonal blocks equal to U 0 , i.e.,

G = ⎛ ⎜ ⎝ G 0 U 0 0 • • • • • • 0 G 0 U 0 0 • • • . . . . . . . . . . . . . . . ⎞ ⎟ ⎠ . ( 3 
)
We note that G 0 denotes the generator matrix of the transitions which do not induce any modification in the number of overflow losses, i.e., L o n (t). Moreover, U 0 denotes the transition rate matrix of the transitions that represent an arrival to a full queue (an overflow), i.e., transitions between the transient states (i, j, K, l, m, o) and (i, j , K, l, m, o + 1), where j is the initial phase of the next inter-arrival time just after an overflow loss. For this reason, U 0 is a block diagonal matrix with diagonal blocks equal to U 00 . The blocks U 00 are in turn diagonal block matrices with entries equal to D. See Appendix I for a detailed description of the matrices D, U 00 and U 0 . The block matrix G 0 is also an infinite upper-diagonal block matrix with diagonal blocks equal to G 1 , and upper-diagonal blocks equal to U 1 . Therefore, G 0 has the following canonical form:

G 0 = ⎛ ⎜ ⎝ G 1 U 1 0 • • • • • • 0 G 1 U 1 0 • • • . . . . . . . . . . . . . . . ⎞ ⎟ ⎠ , (4) 
where U 1 denotes the transition rate matrix of the transitions that represent a dropped arriving customer by the admission controller, i.e., transitions between the transient states (i, j, k, l, m, o) and (i, j , k, l, m + 1, o). For this reason, U 1 is a block matrix of diagonal entries equal to C. See Appendix I for a full description of the matrices U 1 and C. The matrix G 1 is the generator matrix of the transition between the transient states (i, j, k, l, m, o) and (i , j , k , l , m, o), i.e. the transitions that do not induce any modification in the number of overflow losses and of losses due to the admission controller. Observe that G 1 has the following canonical form:

G 1 = ⎛ ⎜ ⎝ A B 0 • • • • • • 0 A B 0 • • • . . . . . . . . . . . . . . . ⎞ ⎟ ⎠ .
(

The upper-diagonal blocks of G 1 represent the transition between the transient states (i, j, k, l , m, o) and (i , j, k-1, l+1, m, o), i.e. a transition that models a departure from the queue. For this reason, the upper-diagonal blocks are equal to the aforementioned matrix B. The diagonal blocks of G 1 represents the transitions due to a modification in the inter-arrival phase, service phase, or an arrival that is admitted in the queue. For this reason, the diagonal blocks of G 1 is equal A. Note that a full description of the matrices A and B is given in Appendix I.

In the following we model the event that the queue becomes empty, i.e. the end of the busy period, as an absorbing event. The joint transform is deduced by determining the last state visited before absorption.

We are now ready to formulate our main result.

Theorem 1 (Level dependent queue) Assume that the residual busy period starts with n customers at time zero, and at time zero the phases of the inter-arrival time and the service time are distributed according to fn and sn. The joint transform of Bn, Sn, and Ln is then given by

E e -wBn z Sn 1 z L c n 2 z L o n 3 = z 1 en ⊗ fn ⊗ snQ -1 K (e 1 ⊗ e) T ⊗ S o 1 .
Proof: Let us denote

π i,j,k,l,m,o (t) := P P(t) = (i, j, k, l, m, o) | P(0) = (ps, pa, n, 0, 0, 0) . The Laplace transform of π i,j,k,l,m,o (t) denotes πi,j,k,l,m,o (w) = ∞ t=0 e -wt π i,j,k,l,m,o (t)dt, Re(w) ≥ 0.
Moreover, let us define the following row vectors:

Πj,k,l,m,o (w) = π1,j,k,l,m,o (w), • • • , πMs,j,k,l,m,o (w) , Πk,l,m,o (w) = Π1,k,l,m,o (w), • • • , ΠMa,k,l,m,o (w) , Πl,m,o (w) = Π1,l,m,o (w), • • • , ΠK,l,m,o (w) .
The Kolmogorov backward equation of the absorbing state (i, j, 0, l, m, o) reads

d dt π i,j,0,l,m,o (t) = π i,j,1,l-1,m,o (t)S o 1 (i), (6) 
where S o 1 (i) is the i-th entry of S o 1 . Since (i, j, 0, l, m, o) is an absorbing state it is easily seen that

π i,j,0,l,m,o (t) = P Bn < t, P hs(Bn) = i, P ha(Bn) = j, Sn = l, L c n = m, L o n = o | P(0) = (ps, pa, n, 0, 0, 0) .
Hence, the Laplace transform of the l.h.s. of ( 6) is equal to the joint transform E e -wBn

•1 {P hs(Bn)=i} •1 {P ha(Bn)=j} •1 {Sn=l} •1 {L c n =m} •1 {L o n =o} .
Taking the Laplace transform on both sides in [START_REF] Cohen | The single server queue[END_REF] and summing over all values of i and j gives that

E e -wBn • 1 {Sn=l} • 1 {L c n =m} • 1 {L o n =o} = Ma j=1 Πj,1,l-1,m,o (w)S o 1 = Π1,l-1,m,o (w)e T ⊗ S o 1 = Πl-1,m,o (w)(e 1 ⊗ e) T ⊗ S o 1 .
Removing the condition on Sn, L c n , and L o n we deduce that

E e -wBn z Sn 1 z L c n 2 z L o n 3 = ∞ l=1 ∞ m=0 ∞ o=0 z l 1 z m 2 z o 3 Πl-1,m,o (w)(e 1 ⊗ e) T ⊗ S o 1 = z 1 ∞ l=0 z l 1 ∞ m=0 z m 2 ∞ o=0 z o 3 Πl,m,o (w)(e 1 ⊗ e) T ⊗ S o 1 . ( 7 
)
We now derive the r.h.s. of E e -wBn z Sn 1 z

L c n 2 z L o n 3
. Taking the Laplace transforms of the Kolmogorov backward equations of the AMC we find that Πl,m,o (w)(wI

-A) = 1 {l,m,o=0} en ⊗ fn ⊗ sn + 1 {l≥1} Πl-1,m,o (w)B +1 {m≥1} Πl,m-1,o (w)C + 1 {o≥1} Πl,m,o-1 (w)D, (8) 
where en ⊗ fn ⊗ sn represents the initial state vector of the AMC, and the matrices A, B, C, and D are given in Appendix I. Multiplying ( 8) by z l 1 z m 2 z o 3 and summing the result first over all o, then m, and finally l yields that

∞ l=0 z l 1 ∞ m=0 z m 2 ∞ o=0 z o 3 Πl,m,o (w)(wI -A -z 1 B -z 2 C -z 3 D) = en ⊗ fn ⊗ sn. ( 9 
)
Note that (wI

-A -z 1 B -z 2 C -z 3 D), Re(w) > 0
, is invertible since it has a dominant main diagonal. Inserting ( 9) into ( 7) completes the proof.

Remark 1 Assume that the residual busy period starts with n customers at time zero, and at time zero the phases of the inter-arrival time and the service time are distributed according to some distribution vectors f n0 and s n0 . The joint transform of Bn, Sn, and Ln is then given by E e -wBn z Sn 1 z

L c n 2 z L o n 3 = z 1 en ⊗ f n0 ⊗ s n0 Q -1 K (e 1 ⊗ e) T ⊗ S o 1 .
Proposition 1 The joint transform B 1 , S 1 , L c 1 , and L o 1 is given by

E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = z 1 f 1 ⊗ s 1 X 1 -1 e T ⊗ S o 1 ,
where X i , i = 1, . . . , K -1, satisfies the following (backward) recursion

X i = wI -F i ⊗ I -I ⊗ S i -z 2 p i F o i f i ⊗ I -z 1 q i F o i f i ⊗ I X i+1 -1 I ⊗ S o i+1 s i+1 , with X K = wI -F K ⊗ I -I ⊗ S K -z 3 F o K f K ⊗ I. Proof: According to Theorem 1 the joint transform of B 1 , S 1 , L c 1 , and L o 1 can be written as E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = z 1 f 1 ⊗ s 1 Q K (1, 1)e T ⊗ S o 1 ,
where

Q K (1, 1) is the (1, 1)-block entry of Q -1 K .
Let us partition the matrix Q K as follows where

Q K = Q 11 Q 12 Q 21 Q K-1 , ( 10 
Q 11 := wI -F 1 ⊗ I -I ⊗ S 1 -z 2 p 1 F o 1 f 1 ⊗ I, Q 12 := -e 1 ⊗ q 1 F o 1 f 1 ⊗ I, Q 21 := -z 1 (e 1 ) T ⊗ I ⊗ S o 2 s 2 , Q K-1
is obtained from the matrix Q K by removing its first blocks row and first blocks column. A simple linear algebra gives that the inverse of Q K reads

Q -1 K = (Q * 11 ) -1 -Q -1 11 Q 12 (Q * 22 ) -1 -Q -1 22 Q 21 (Q * 11 ) -1 (Q * 22 ) -1 , ( 11 
)
where

Q * 11 := Q 11 -Q 12 Q -1 K-1 Q 21 and Q * 22 := Q K-1 -Q 21 Q -1 11 Q 12 . It is then readily seen that E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = z 1 f 1 ⊗ s 1 (Q * 11 ) -1 e T ⊗ S o 1 = z 1 f 1 ⊗ s 1 (Q 11 -Q 12 (Q K-1 ) -1 Q 21 ) -1 e T ⊗ S o 1 = z 1 f 1 ⊗ s 1 wI -F 1 ⊗ I -I ⊗ S 1 -z 2 p 1 F o 1 f 1 ⊗ I -q 1 F o 1 f 1 ⊗ IQ K-1 (1, 1)I ⊗ S o 2 s 2 -1 e T ⊗ S o 1 , ( 12 
)
where

Q K-1 (1, 1) is the (1,1)-block entry of Q -1 K-1 . Q K-1 is a tridiagonal block matrix.
Repeating the same way of partitioning the matrix

Q K to Q K-1 one can show that Q K-1 (1, 1) = wI -F 2 ⊗ I -I ⊗ S 2 -z 2 p 2 F o 2 f 2 ⊗ I -q 2 F o 2 f 2 ⊗ IQ K-2 (1, 1)I ⊗ S o 3 s 3 . Q K-2 (1, 1) is the (1,1)-block entry of Q -1 K-2 and Q K-2
is obtained from the matrix Q K-1 by removing its first row and first column. For this reason, we deduce by

induction that E e -wB1 z S1 1 z L c 1 2 z L o 1 3
satisfies the recursion defined in Proposition 1.

M/PH/1/K Queue

For the M/PH/1/K we have that -

F i = F o i f i = λ, i = 1, • • • , K, S i = S and S o i s i = S o s, i = 1, • • • , K. Let ξ(w) = s(wI -S) -1 S o
denote the LST of the service times. Moreover, we assume that

q i = q, i = 1, • • • , K -1. Lemma 1 The function x -z 1 ξ w + λ(1 -qx -pz 2 ) has Ms + 1 distinct non-null roots r 1 , • • • , r Ms+1 , such that 0 < |r 1 | < |r 2 | < • • • < |r Ms+1 |.
Proof It is well-known that ξ(w), the LST of the service times which has a phase-type distribution of Ms phases, is a rational function. Therefore, the denominator of ξ(w) is a polynomial in w of degree Ms and the numerator is a polynomial of degree < Ms. For this reason, the numerator of x -

z 1 ξ(w + λ(1 -qx -pz 2 )) is a polynomial in x of degree Ms + 1. Therefore, the function x -z 1 ξ w + λ(1 -qx -pz 2 ) has Ms + 1 roots.
It is easily checked that zero is not a root of this function.

For the sake of clarity of the presentation, we will assume that these roots are distinct. In Section 3 we shall relax this assumption by considering that r i+l = r i + l , > 0, i ∈ {1, . . . , Ms + 1} and l = 0, . . . , L -1, and taking the limit in our final result for → 0. This means, we have that r i is a root of multiplicity L. Let Dη denote the circle with center at the origin and with radius η, pz2-z3 q < η < |r 1 |, r 1 is the root with the smallest absolute value of

x -z 1 ξ w + λ(1 -qx -pz 2 ) = 0. ( 13 
)
We are now ready to present the main result of the M/PH/1/K queue.

Proposition 2 (M/PH/1/K Queue) The joint transform of Bn, Sn, L o n , and L c n for the M/PH/1/K queue is given by

E e -wBn z Sn 1 z L c n 2 z L o n 3 = 1 2πi Dη 1 x K-1-n 1 qx+pz2-z3 dx x-z1ξ(w+λ(1-qx-pz2)) 1 2πi Dη 1 x K-1 1 qx+pz2-z3 dx x-z1ξ(w+λ(1-qx-pz2))
.

Proof According to Theorem 1 the transform of Bn, Sn, L c n , and L o n for the M/PH/1/K queue can be reduced as follows: (due to the Poisson arrivals we have that fn = 1 and the vector e is of dimension one, i.e., e = 1 in Theorem 1),

E e -wBn z Sn 1 z L c n 2 z L o n 3 = z 1 en ⊗ sQ -1 K e T 1 ⊗ S o , ( 14 
)
where Q K in this case is a K-by-K tridiagonal block matrix with upper diagonal blocks equal to E 0 = -qλI, i-th diagonal blocks equal to

E 1 = wI + λ(1 -pz 2 )I -S, i = 1, • • • , K -1,
and K-th diagonal block equal to E * 1 = wI + λ(1z 3 )I -S, and lower-diagonal blocks equal to E 2 = -z 1 S o s. Therefore, Q K has the following canonical form:

Q K = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ E 1 E 0 0 • • • • • • E 2 E 1 E 0 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . E 1 E 0 0 • • • 0 E 2 E * 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . ( 15 
) Let u = (u 1 , • • • , u K ) := en ⊗ sQ -1 K .
Note that each entry of the row vector u is in its turn a row vector of dimension Ms and is a function of w, z 1 , z 2 , and z 3 . Then [START_REF] Rosenlund | The queue G/M/m/N: busy period and cycle, waiting time under reverse and random order service[END_REF] in terms of u rewrites

E e -wBn z Sn 1 z L c n 2 z L o n 3 = z 1 u 1 S o . ( 16 
)
The definition of u gives that uQ K = en ⊗ s. Developing the latter equation yields 17) by x i and summing it over i we find that 

1 {i≥2} u i-1 E 0 + u i 1 {i≤K-1} E 1 + 1 {i=K} E * 1 + 1 {i≤K-1} u i+1 E 2 = 1 {i=n} s, ( 17 
)
where i = 1, • • • , K. Since u 1 is analytic we deduce from (17) that u i , i = 2, • • • , K, are analytic. Multiplying (
K i=1 u i x i = u 1 E 2 + x K u K (xE 0 + E 1 -E * 1 ) + x n s xE 0 + E 1 + 1 x E 2 -1 = z 1 u 1 S o s -x n s + λx K (qx + pz 2 -z 3 )u K S -ρI + z 1 x S o s -1 , (18) ques9213_source 
S * + z 1 x S o s -1 = S -1 * - z 1 x + z 1 sS -1 * S o S -1 * S o sS -1 * . ( 19 
)
The multiplication to the right of (18) with the column vector S o and (19) gives that

K i=1 u i x i S o = x x + z 1 sS -1 * S o z 1 u 1 S o s -x n s + λx K (qx + pz 2 -z 3 )u K S -1 * S o . ( 20 
)
From ( 2) we know that sS

-1 * S o = -ξ(ρ) and S -1 * S o = -ξ 1 (ρ), • • • , ξ Ms (ρ)
T , where

ξ i (ρ) = e i (ρI -S) -1 S o . Therefore, ξ(ρ) = s(ξ 1 (ρ), • • • , ξ Ms (ρ) T is a linear combina- tion of ξ i (ρ), i = 1, • • • , Ms. Inserting sS -1 * S o and S -1 * S o into (20) yields K i=1 u i x i S o = -x x -z 1 ξ(ρ) (z 1 u 1 S o -x n )ξ(ρ)+λx K (qx+pz 2 -z 3 ) Ms j=1 u Kj ξ j (ρ) , ( 21 
)
where

u K = (u K1 , • • • , u KMs ).
We recall that u i S o is an analytic function. For this reason, the l.h.s. of (21) should be analytical for any finite x. This gives that the singular points, roots of xz 1 ξ(ρ), on the r.h.s. of (21) are removable. Lemma 1 and the analyticity of

K i=1 u i x i S o gives that z 1 u 1 S o ξ(ρ i ) + λr K i (qr i + pz 2 -z 3 ) Ms j=1 u Kj ξ j (ρ i ) = r n i ξ(ρ i ), i = 1, • • • , Ms + 1, (22) 
where 

ρ i := w + λ(1 -qr i -pz 2 ).
L c n 2 z L o n 3 = z 1 u 1 S o = det(M * ) det(M) , ( 23 
)
where det(M) is the determinant of the (Ms + 1)-by-(Ms + 1) matrix M with i-th

row equal to ξ(ρ i )/[λr K i (qr i + pz 2 -z 3 )], ξ 1 (ρ i ), • • • , ξ Ms (ρ i ) , i = 1, • • • , Ms + 1.
Therefore, M has the following canonical form:

M = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ξ(ρ 1 ) λr K 1 (qr 1 +pz 2 -z 3 ) ξ 1 (ρ 1 ) • • • ξ Ms (ρ 1 ) . . . . . . . . . . . . ξ(ρ i ) λr K i (qr i +pz 2 -z 3 ) ξ 1 (ρ i ) • • • ξ Ms (ρ i ) . . . . . . . . . . . . ξ(ρ Ms +1 ) λr K Ms +1 (qr Ms +1 +pz 2 -z 3 ) ξ 1 (ρ Ms+1 ) • • • ξ Ms (ρ Ms+1 ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
The matrix M * is obtained from M by replacing its first column with ξ(ρ 1 )

λr K-n 1 (qr 1 + pz 2 -z 3 ) , • • • , ξ(ρ Ms+1 ) λr K-n Ms+1 (qr Ms+1 + pz 2 -z 3 ) T .
ques9213_source.tex; 24/01/2011; 11:58 p. 11

The Laplace expansion of the determinant along the first column of M and M * gives that

E e -wBn z Sn 1 z L c n 2 z L o n 3 = Ms+1 i=1 ξ(ρi)(-1) i+1 λr K-n i (qri+pz2-z3) det M * (i, 1) Ms+1 i=1 ξ(ρi)(-1) i+1 λr K i (qri+pz2-z3) det M(i, 1) = Ms+1 i=1 (-1) i r K-1-n i (qri+pz2-z3) det M(i, 1) Ms+1 i=1 (-1) i r K-1 i (qri+pz2-z3) det M(i, 1) , ( 24 
)
where M(i, 1) (resp. M * (i, 1)) is the Ms-by-Ms matrix that results by deleting the i-th row and the first column of M (resp. M * ), and the second equality follows from ξ(ρ i ) = r i /z 1 and M * (i, 1) = M(i, 1).

Let Dη denote the circle with center at the origin and with radius equal to η.

Assume that pz2-z3 q < η < |r 1 | with q = 0. Let us define f i (x) ∼ i g i (x) if f i (x)/g i (x) = h(x)
that is independent of i. Let Resaf (z) denote the residue of the complex function f (z) at point a. The sum of the residues of the following complex function

1 x K-1-n 1 qx + pz 2 -z 3 1 x -z 1 ξ(w + λ(1 -qx -pz 2 ))
, is equal to zero, including the residue at infinity which is equal to zero (q = 0). Therefore, we deduce that Ms+1 i=1

(-1) i r K-1-n i (qri+pz2-z3) det M(i, 1) Ms+1 i=1 (-1) i r K-1 i (qri+pz2-z3) det M(i, 1) = 1 2πi Dη 1 x K-1-n 1 qx+pz2-z3 dx x-z1ξ(w+λ(1-qx-pz2)) 1 2πi Dη 1 x K-1 1 qx+pz2-z3 dx x-z1ξ(w+λ(1-qx-pz2))
, (25) if and only if

(-1) i det M(i, 1) ∼ i Resr i 1 x -z 1 ξ w + λ(1 -qx -pz 2 ) . ( 26 
)
In the following we shall prove condition (26). Since the service times have a phasetype distribution, ξ(w) is a rational function with denominator, Q ξ (w), of degree Ms and numerator of degree < Ms. Note that by Lemma 1 the roots of xz 1 ξ w + λ(1qxpz 2 ) are distinct. Therefore, we deduce that

Resr i 1 x -z 1 ξ w + λ(1 -qx -pz 2 ) = Q ξ (w + λ(1 -qr i -pz 2 ) (-λq) Ms Ms+1 j=1,j =i (r i -r j ) = Q ξ (ρ i ) Ms+1 j=1,j =i (ρ i -ρ j )
.

M(i, 1

) is an Ms-by-Ms matrix of j-th row equal to ξ 1 (ρ j ), • • • , ξ Ms (ρ j ) for j = 1, • • • , Ms + 1 and j = i. We have that (see Appendix II for the proof) The latter two equations give (26) right away, which completes the proof.

det M(i, 1) = C(-1) i-1 Ms j=1 Ms+1 k=j+1 (ρ k -ρ j ) Ms+1 j=1 Q ξ (ρ j ) × Q ξ (ρ i ) Ms+1 j=1,j =i (ρ j -ρ i ) . ques9213_source . 
Remark 2 In the case where |r 1 | < |pz 2z 3 |q -1 , we choose the radius η such that η < min(|r 1 |, |pz 2z 3 |q -1 ). To capture this modification, it is necessary to correct the joint transform in Proposition 2 as follows:

E e -wBn z Sn 1 z L c n 2 z L o n 3 = 1 2πi Dη 1 x K-1-n 1 qx+pz 2 -z 3 dx x-z 1 ξ(w+λ(1-qx-pz 2 )) + Resz 0 f 1 (z) 1 2πi Dη 1 x K-1 1 qx+pz 2 -z 3 dx x-z 1 ξ(w+λ(1-qx-pz 2 )) + Resz 0 f 2 (z)
, where z 0 = |pz 2z 3 |q -1 , and the functions f 1 (z) and f 2 (z) are the integrands of the contour integrations in the numerator and the denominator of E e -wBn z Sn 1 z

L c n 2 z L o n 3
.

Remark 3 For the M/G/1/K queue, note that Rosenlund [START_REF] Rosenlund | Busy periods in time-dependent M/G/1 queue[END_REF] obtained the trivariate transform of B 1 , S 1 , and L 1 . Recall that L 1 is the total number of losses during the busy period. Restricting Rosenlund's result to the M/PH/1/K queue Proposition 2 extends his result in two ways. First, it gives the four variate joint transform of Bn, Sn, L c n , and L o n , for the case when n ≥ 1. Second, it allows the dropping of customers even when the queue is not full.

M/PH/1/K queue under threshold policy

Let m ∈ {1, . . . , K} denote the threshold of the M/PH/1/K queue length. According to the threshold policy if the queue length at time t is i the inter-arrival times and service times are then defined as follows. For i ≤ m -1, we have that

-F i = F o i f = λ 0 , S i = S 0 , s i = s, and p i = p 0 . For m ≤ i ≤ K -1, we have that -F i = F o i f = λ 1 , S i = S 1 and s i = s, and p i = p 1 and p K = 1. Let ξ i (w) = s(wI -S i ) -1 S o i = P i (w)/Q i (w)
denote the LST of the service times when the queue length is below the threshold (i = 0) or above it (i = 1). Moreover, we let ξ l i (w) = e l (wI -S i ) -1 S o i = P * l i (w)/Q l i (w). Note that since Q 0 (w) is the common denominator of ξ l 0 (w) we have that ξ l 0 (w) = P l 0 (w)/Q 0 (w) is a rational function where P l 0 (w) is polynomial of degree < Ms. Let C 0 denote the matrix with (j, l)-entry equal to the coefficient of w j-1 of the polynomial P l 0 (w). In the following, we shall assume that the matrix C 0 is invertible. Note that the Erlang, hyper-exponential, and Coxian distribution satisfy the latter assumption.

Lemma 2 The function

x -z 1 ξ l w + λ(1 -q l x -p l z 2 ) has Ms + 1 distinct non-null roots r 1l , • • • , r (Ms+1)l , such that 0 < |r 1l | < • • • < |r (Ms+1)l |, l = 0, 1.
Proof By analogy with the proof of Lemma 1.

Before reporting our main result on the M/PH/1/K under Threshold Policy in Proposition 3, let us first introduce some notations:

Let Dη 1 denote the circle with center at the origin and with radius η 1 , |p1z2-z3| q1 < η 1 < |r 11 |. According to Lemma 2, r 11 is the root with the smallest absolute value. The contour integration v(l), l = 1, . . . , Ms, is given by

v(l) = z 1 1 2πi Dη 1 1 x K-m ξ l 1 (w+λ(1-q1x-p1z2)) q1x+p1z2-z3 dx x-z1ξ1(w+λ(1-q1x-p1z2)) 1 2πi Dη 1 1 x K-m 1 q1x+p1z2-z3 dx x-z1ξ1(w+λ(1-q1x-p1z2)) . ( 27 
)
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Let ρ i0 = w + λ 0 (1q 0 r i0p 0 z 2 ). Let us define v 0 (k, m) as follows:

v 0 (k, m) = (-1) k-1 Ms l=1,l =m ν l -νm νm 1 × • • • × νm Ms -k , k,m = 1, • • • , Ms (28) where 1 ≤ m 1 < • • • < m Ms-k ≤ Ms, m 1 , • • • , m Ms-k = k, and (ν 1 , • • • , ν Ms ) = (ρ 10 , • • • , ρ (i-1)0 , ρ (i+1)0 , • • • , ρ (Ms+1)0 ). Note that for k = Ms, νm 1 ו • •×νm Ms-k is equal
to one by definition. Finally, let β(i) denote the following sum:

β(i) = Ms l=1 v(l) Ms+1 m=1,m =i Q 0 (ρ m0 ) Ms k=1 c 0 (l, k)v 0 (k, m), ( 29 
)
where c 0 (l, k) is the (l, k)-entry of C -1 0 . We are now ready to report our main result on the M/PH/1/K under Threshold Policy.

Proposition 3 (M/PH/1/K under Threshold Policy) The joint transform of

B 1 , S 1 , L c
1 ,and L o 1 in the M/PH/1/K queue operating under the threshold policy is given by

E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = Ms+1 i=1 z1-β(i) r m-2 i0 Q0(ρi0) Ms +1 j=1,j =i (ρj0-ρi0) Ms+1 i=1 z1-β(i) r m-1 i0 Q0(ρi0) Ms +1 j=1,j =i (ρj0-ρi0) , ( 30 
)
where, r i0 and r i1 are given in Lemma 2, Q 0 (w) is the denominator of ξ 0 (w), and β(i) is given in (29).

Proof By analogy with Proposition 2 the joint transform B 1 , S 1 , L c 1 , and L o 1 for the M/PH/1/K queue can be written as follows:

E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = z 1 e 1 ⊗ sQ -1 K e T 1 ⊗ S o 0 , ( 31 
)
where in this case Q K has the following structure:

Q K = F 00 F 01 F 10 F 11 .
The matrix F ll , l = 0, 1, is a block tridiagonal matrix with upper diagonal blocks equal to E 0l = -q l λ l I, diagonal blocks equal to E 1l = wI + λ l (1p l z 2 )I -S l and lower-diagonal blocks equal to E 2l = -z 1 S o l s. Note that F 00 is an (m -1)-by-(m -1) block matrix and F 11 is an (Km + 1)-by-(Km + 1) block matrix. Moreover, the (Km + 1, Km + 1)-block entry of F 11 is equal to E * 11 = wI + λ 1 (1z 3 )I -S 1 . The matrix F 01 is a block matrix with all its blocks equal to the zero matrix except the (m -1, 1)-block that is E 00 = -q 0 λ 0 I. Finally, the matrix F 10 is a block matrix with all blocks equal to the zero matrix except the (1, m -1)-block that is E 21 = -z 1 S o 1 s. Therefore, F 00 , F 10 , F 10 , and F 11 have the following canonical form:

F 00 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ E 10 E 00 0 • • • • • • E 20 E 10 E 00 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . E 00 0 • • • 0 E 20 E 10 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , F 01 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 • • • • • • • • • • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • • • • • • • 0 E 00 0 • • • • • • • • • 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , ques9213_source
.tex; 24/01/2011; 11:58 p. 14 

F 10 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 • • • • • • • • • 0 E 21 0 • • • • • • • • • 0 0 . . . .
0 • • • • • • • • • 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , F 11 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ E 11 E 01 0 • • • • • • E 21 E 11 E 01 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . E 11 E 01 0 • • • 0 E 21 E * 11 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ .
Equations ( 11) and (31) yield that

E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = z 1 e 1 ⊗ s F 00 -F 01 F -1 11 F 10 -1 e T 1 ⊗ S o 0 = z 1 e 1 ⊗ s F 00 -q 0 λ 0 z 1 F -1 11 (1, 1)S o 1 sU T U -1 e T 1 ⊗ S o 0 ,( 32 
)
where U is a row vector of blocks with all entries equal to zero except the last that is I and F -1 11 (1, 1) is the (1, 1)-block entry of F -1 11 . We shall now derive an expression for

z 1 F -1 11 (1, 1)S o 1 . Note that z 1 F -1 11 (1, 1)S o 1 is a column vector with size Ms. Let v := z 1 F -1 11 (1, 1)S o 1 .
First, observe that F 11 has the same structure as the matrix Q K in [START_REF] Takács | Introduction to the theory of queues[END_REF] with K replaced by Km + 1, λ by λ 1 , S by S 1 , and S o s by S o 1 s. Second, note that the l-th entry of v can be written as follows

v(l) = z 1 e 1 ⊗ e l (F 11 ) -1 e T 1 ⊗ S o 1 , l = 1, • • • , Ms. ( 33 
)
Therefore, by analogy with the proof of Proposition 2 we find that v(l) satisfies ( 27). Note that F 00q 0 λ 0 vsU T U has the same structure as the matrix Q K in ( 15) with andE * 1 = E 10q 0 λ 0 vs. Moreover, (32) has the same form as [START_REF] Rosenlund | The queue G/M/m/N: busy period and cycle, waiting time under reverse and random order service[END_REF]. By analogy with the proof of Proposition 2 we find that

K = m -1, E 0 = E 00 , E 1 = E 10 , E 2 = E 20 ,
m-1 i=1 a i x i S o 0 = -x x -z 1 ξ 0 (ρ 0 ) (z 1 a 1 S o 0 -x)ξ 0 (ρ 0 ) + λ 0 q 0 x m-1 Ms j=1 a m-1j xξ j 0 (ρ 0 ) -v(j)ξ 0 (ρ 0 ) , where a = (a 1 , • • • , a m-1 ) := e 1 ⊗ s F 00 -q 0 λ 0 vsU T U -1 , a m-1 = (a (m-1)1 , • • • , a (m-1)
Ms ), and ρ 0 = w + λ 0 (1q 0 xp 0 z 2 ). Recall that r i0 , i = 0, • • • , Ms + 1, are the roots of xz 1 ξ 0 (w + λ 0 (1q 0 xp 0 z 2 )). The analyticity of where that N is an Ms-by-Ms matrix that has the following canonical form

K i=1 a i x i S o 0 gives that z 1 a 1 S o 0 ξ 0 (ρ i0 ) + λ 0 q 0 r m-1 i0 Ms j=1 a m-1j r i0 ξ j 0 (ρ i0 ) -v(j)ξ 0 (ρ i0 ) = r i0 ξ 0 (ρ i0 ), where i = 1, • • • , Ms + 1 and ρ i0 = w + λ 0 (1 -q 0 r i0 -p 0 z 2 ). Cramer's rule yields that E e -wB1 z S1 1 z L c 1 2 z L o 1 3 = z 1 a 1 S o 0 = Ms+1 i=1 ξ0(ρi0)(-1) i r m-1 i0 det N Ms+1 i=1 ξ0(ρi0)(-1) i r m i0 det N = Ms+1 i=1 (-1) i r m-2 i0 det N Ms+1 i=1 (-1) i r m-1 i0 det N , ( 34 
N = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ξ 1 0 (ρ 10 ) -v(1)/z 1 • • • ξ Ms 0 (ρ 10 ) -v(Ms)/z 1 . . . . . . . . . ξ 1 0 (ρ (i-1)0 ) -v(1)/z 1 • • • ξ Ms 0 (ρ (i-1)0 ) -v(Ms)/z 1 ξ 1 0 (ρ (i+1)0 ) -v(1)/z 1 • • • ξ Ms 0 (ρ (i+1)0 ) -v(Ms)/z 1 . . . . . . . . . ξ 1 0 (ρ (Ms+1)0 ) -v(1)/z 1 • • • ξ Ms 0 (ρ (Ms +1)0 ) -v(Ms)/z 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
Let M 0 (i, 1) denote the following matrix:

M 0 (i, 1) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ξ 1 0 (ρ 10 ) • • • ξ Ms 0 (ρ 10 ) . . . . . . . . . ξ 1 0 (ρ (i-1)0 ) • • • ξ Ms 0 (ρ (i-1)0 ) ξ 1 0 (ρ (i+1)0 ) • • • ξ Ms 0 (ρ (i+1)0 ) . . . . . . . . . ξ 1 0 (ρ (Ms +1)0 ) • • • ξ Ms 0 (ρ (Ms +1)0 ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
It is easily seen that N can be decomposed as follows

N = M 0 (i, 1) - 1 z 1 e T v.
Since ξ l 0 (w) = P l 0 (w)/Q 0 (w), l = 1, • • • , Ms, are rational functions with common denominator Q 0 (w) the decomposition of M 0 (i, 1) gives

M 0 (i, 1) = D(i)V 0 (i)C 0 ,
where D(i) is an Ms-by-Ms diagonal matrix with j-th diagonal element, j = 1, • • • , Ms + 1 and j = i, equal to 1/Q 0 (ρ j0 ), V 0 (i) is a Vandermonde matrix of the following canonical from:

V 0 (i) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 ρ 10 . . . (ρ 10 ) Ms . . . . . . . . . 1 ρ (i-1)0 . . . (ρ (i-1)0 ) Ms 1 ρ (i+1)0 . . . (ρ (i+1)0 ) Ms . . . . . . . . . 1 ρ (Ms+1)0 . . . (ρ (Ms+1)0 ) Ms ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, and C 0 is the matrix with (j, l)-entry equal to the coefficient of w j-1 of the polynomial P l 0 (w). By Sylvester's determinant we have that

det N = 1 z 1 det M 0 (i, 1) z 1 -vM 0 (i, 1) -1 e T = 1 z 1 det M 0 (i, 1) z 1 -vC -1 0 V 0 (i) -1 D(i) -1 e T . ( 35 
)
By analogy with Lemma 4 in Appendix II we find that Let β(i) := vC -1 0 V 0 (i) -1 d, where d = D(i) -1 e T . Therefore, d is a column vector of dimension Ms with j-th entry equal to Q 0 (ρ j0 ), j = 1, • • • , Ms + 1 and j = i. Let v 0 (k, l) denote the (k, l)-entry of V 0 (i) -1 . Note that the inverse of a Vandermonde matrix is known in closed-form, see e.g. [START_REF] Macon | Inverses of Vandermonde matrices[END_REF]. We deduce from [START_REF] Macon | Inverses of Vandermonde matrices[END_REF] the values of v 0 (k, l) that are given in (28). Let us denote c 0 (i, j) the (i, j)-entry of C -1 0 then it is easily seen that β(i) is given by (29). Substituting β(i) and det M 0 (i, 1) into (35) gives det N . Inserting det N into (34) completes the proof.

det M 0 (i, 1) = det C 0 (-1) i-1 Ms j=1 Ms+1 k=j+1 (ρ k0 -ρ j0 ) Ms+1 j=1 Q 0 (ρ j0 ) Q 0 (ρ i0 ) Ms+1 j=1,j =i (ρ j0 -ρ i0

PH/M/1/K Queue

For the level independent PH/M/1/K we have that

-S i = S o i s i = μ, i = 1, • • • , K, F i = F and F o i f i = F o f , i = 1, • • • , K. Let φ(w) = f (wI -F) -1
F o denote the LST of the inter-arrival times. Moreover, we assume that q i = q, i = 1, • • • , K -1, and q K = 0.

Lemma 3 The function x -(q + xpz 2 )φ w + μ(1 -z 1 x) has Ma + 1 distinct non-null roots o 1 , • • • , o Ma+1 , such that 0 < |o 1 | < |o 2 | < • • • < |o Ma+1 |.
Proof By analogy with Lemma 1.

Before reporting our result on the PH/M/1/K queue, let us introduce some notations.

Let D δ denote the circle with center at the origin and with radius equal to δ with q p|z2| < δ < |o 1 |. o 1 is the root with the smallest absolute value defined in Lemma 3.

Let f (δ), g(δ), h(δ), and I(δ) denote the following contour integrations:

f (δ) = 1 2πi D δ 1 x n-1 1 q + pz 2 x 1 w + μ(1 -z 1 x) dx x -(q + pz 2 x)φ w + μ(1 -z 1 x) , (36) 
g(δ) = 1 2πi D δ 1 x n-1 1 q + pz 2 x dx x -(q + pz 2 x)φ w + μ(1 -z 1 x) , ( 37 
)
h(δ) = 1 2πi D δ q + (pz 2 -z 3 )x x K (q + pz 2 x) dx x -(q + pxz 2 )φ w + μ(1 -z 1 x) , ( 38 
)
I(δ) = 1 2πi D δ q + (pz 2 -z 3 )x x K (q + pz 2 x) 1 w + μ(1 -z 1 x) dx x -(q + pxz 2 )φ w + μ(1 -z 1 x) . (39) Finally, let R denote R = - (μz 1 ) n (w + μ) n-1 1 qμz 1 + p(w + μ)z 2 1 (w + μ)(1 -pz 2 ) -qμz 1 . ( 40 
)
We are now ready to report our result on the PH/M/1/K queue. 

E e -wBn z Sn 1 z L c n 2 z L o n 3 = (w + μ)(1 -pz 2 ) -qμz 1 R + f (δ) + g(δ)I(δ) h(δ) ,
where f (δ), g(δ), h(δ), I(δ), and R are given in ( 36)-(40).
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Proof Due to the exponential service times we have that sn = 1 and S o 1 = μ . Then, according to Theorem 1, the joint transform Bn, Sn, L c n , and L o n in this case can be written as follows:

E e -wBn z Sn 1 z L c n 2 z L o n 3 = μz 1 en ⊗ f Q -1 K e T 1 ⊗ e, ( 41 
)
where Q K in this case has the same structure as in [START_REF] Takács | Introduction to the theory of queues[END_REF] with

E 0 = -qF o f , E 1 = (w + μ)I -F -pz 2 F o f , E * 1 = (w + μ)I -F -z 3 F o f , and E 2 = -z 1 μI. Let b = (b 1 , • • • , b K ) := en ⊗ f Q -1
K . Note that each of the entries of the row vector b is in its turn a row vector of dimension Ma and is a function of w, z 1 , z 2 , and z 3 . Eq. ( 41) in terms of b rewrites

E e -wBn z Sn 1 z L c n 2 z L o n 3 = μz 1 b 1 e T = μz 1 Ma j=1 b 1j . ( 42 
)
By analogy with the derivation of (18) we find that

K i=1 b i x i = μz 1 b 1 -x n f + x K (qx + pz 2 -z 3 )b K F o f F -θI + (qx + pz 2 )F o f -1
, 

where θ := w + μ(1 -z 1 /x
F * + (qx + pz 2 )F o f -1 = F -1 * - qx + pz 2 1 + (qx + pz 2 )tF -1 * F o F -1 * F o f F -1 * . (43)
Multiplying to the right of K i=1 b i x i with the column vector F o and using (43) gives

K i=1 b i x i F o = 1 1 + (qx + pz 2 )f F -1 * F o μ 1 z 1 b 1 -x n f +x K (qx+pz 2 -z 3 )b K F o f F -1 * F o . ( 44 
)
From [START_REF] Abramov | On a property of refusal systems[END_REF] we have that f

F -1 * F o = -φ(θ) and F -1 * F o = -φ 1 (θ), • • • , φ Ma (θ) T ,
where

φ i (θ) = e i (θI -F) -1 F o . Therefore, φ(θ) = f (φ 1 (θ), • • • , φ Ma (θ) T is a linear combination of φ i (θ), i = 1, • • • , Ma. Inserting f F -1 * F o and F -1 * F o into (44) yields K i=1 b i x i F o = - x K (qx + pz 2 -z 3 )φ(θ)b K F o + μ 1 z 1 Ma j=1 b 1j φ j (θ) -x n φ(θ) 1 -(qx + pz 2 )φ(θ) , (45) 
where b 1 = (b 11 , • • • , b 1Ma ). Note that b i F o is a joint transform function. For this reason, the l.h.s. of ( 45) is analytical for any finite x and the poles on the r.h.s. of (45) are removable. Note that the roots of 1 -(qx + pz 2 )φ w + μ(1z 1 /x) are equal to the inverse of the roots of x -(q + xpz 2 )φ w + μ(1z 1 x) . Therefore, Lemma 3 and the analyticity of 

K i=1 b i x i F o gives that q + (pz 2 -z 3 )o i o K+1 i φ(θ i )b K F o + μ 1 z 1 Ma j=1 b 1j φ j (θ i ) = 1 o n i φ(θ i ), i = 1, • • • , Ma + 1
L c n 2 z L o n 3 = μz 1 b 1 e T = μz 1 Ma j=1 b 1j = - det(H) det(K) , ( 47 
)
where K is given by

K = ⎛ ⎜ ⎜ ⎜ ⎝ q+(pz2-z3)o1 o K+1 1 φ(θ 1 ) φ 1 (θ 1 ) • • • φ Ma (θ 1 ) . . . . . . . . . . . . q+(pz2-z3)oM a +1 o K+1 Ma+1 φ(θ Ma+1 ) φ 1 (θ Ma+1 ) • • • φ Ma (θ Ma+1 ) ⎞ ⎟ ⎟ ⎟ ⎠
, and H is given by

H = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ q+(pz2-z3)o1 o K+1 1 φ(θ 1 ) φ 1 (θ 1 ) • • • φ Ma (θ 1 ) 1 o n 1 φ(θ 1 ) . . . . . . . . . . . . . . . q+(pz2-z3)oM a+1 o K+1 Ma+1 φ(θ Ma+1 ) φ 1 (θ Ma+1 ) • • • φ Ma (θ Ma+1 ) 1 o n Ma+1 φ(θ Ma+1 ) 0 1 • • • 1 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
The Laplace expansion of the determinant along the first column of K and H gives that

E e -wBn z Sn 1 z L c n 2 z L o n 3 = - Ma+1 i=1 q+(pz2-z3)oi o K+1 i φ(θ i )(-1) i+1 det H(i, 1) Ma+1 i=1 q+(pz2-z3)oi o K+1 i φ(θ i )(-1) i+1 det K(i, 1) = - Ma+1 i=1 1 o K i q+(pz2-z3)oi q+pz2oi (-1) i+1 det H(i, 1) Ma+1 i=1 1 o K i q+(pz2-z3)oi q+pz2oi (-1) i+1 det K(i, 1) , ( 48 
)
where the matrices H(i, 1) and K(i, 1) are obtained by deleting the i-th row and the first column of the matrices H and K, and the second equality follows from φ(θ i ) = o i /(q + pz 2 o i ). Note that φ(w) is a rational function with denominator, Q φ (w), of degree equal Ma and numerator of degree < Ma. By analogy with the determinant of M(i, 1) that is given in Lemma 4 in Appendix II we find that det where C k is a constant that is a function of the polynomials parameters of the numerators of φ

K(i, 1) = C k (-1) i-1 Ma j=1 Ma+1 k=j+1 (θ k -θ j ) Ma+1 j=1 Q φ (θ j ) Q φ (θ i ) Ma+1 j=1,j =i (θ j -θ i ) = C k (-1) Ma+i-1 Ma j=1 Ma+1 k=j+1 (θ k -θ j ) Ma+1 j=1 Q φ (θ j ) ×Reso i 1 x -(q + xpz 2 )φ w + μ(1 -z 1 x) , ( 49 
i (w), i = 1, • • • , Ma. Assume that q/|pz 2 | < δ < |o 1 |. We find that Ma+1 i=1 1 o K i q+(pz2-z3)oi q+pz2oi (-1) i+1 det K(i, 1) = C k (-1) Ma Ma j=1 Ma +1 k=j+1 (θ k -θj) Ma +1 j=1 Q φ (θj ) -h(δ) ,
where h(δ) is given in (38). Note that the minus sign that is next to h(δ) is due to the fact that the sum of all residues of the function

q + (pz 2 -z 3 )x x K (q + pz 2 x) 1 x -(q + pxz 2 )φ w + μ(1 -z 1 x) ,
including the residue at infinity, which is equal to zero (K ≥ 1), is zero. We shall refer to the latter property of complex functions as the Inside-Outside property.

The expansion of the determinant of H(i, 1) along the last column yields det

H(i, 1) = Ma+1 j=1,j =i 1 o n-1 j (-1) Ma+j+1 q + pz 2 o j det J , ( 50 
)
where J is obtained by deleting the j-th row and the last column of the matrix H(i, 1). It is easily seen that J is an Ma-by-Ma matrix with the l-th row equal to (φ

1 (θ l ), • • • , φ Ma (θ l )), l = 1, • • • , Ma + 1 and l = i, j
, and the last row is equal to e. By analogy with the determinant of M(i, 1) we find that

det J = C J Q φ (0) Ma+1 l=1,l =i,j θ l Q φ (θ l ) Ma l=1,l =i,j Ma+1 k=l+1,k =i,j (θ k -θ l ) = C J Q φ (0) Ma+1 l=1,l =i,j θ l Q φ (θ l ) (-1) i+j-1 Ma l=1 Ma+1 k=l+1 (θ k -θ l ) Ma+1 l=1,l =i (θ l -θ i ) Ma+1 l=1,l =i,j (θ l -θ j ) = C J (-1) i+j-1 Q φ (0) Ma+1 l=1 θ l Ma l=1 Ma+1 k=l+1 (θ k -θ l ) Ma+1 l=1 Q φ (θ l ) Q φ (θ i ) θ i Ma+1 l=1,l =i (θ l -θ i ) Q φ (θ j ) θ j Ma+1 l=1,l =i,j (θ l -θ j ) , where Q φ (0) is due to the last row of J which is equal to e = (1, • • • , 1) = P 1 φ (0)/Q 1 φ (0) , • • • , P Ma φ (0)/Q Ma φ (0)
. It follows from the definitions of the matrices J and K that where the second equality follows from the fact that o l , l = 1, • • • , Ma + 1, are the roots of x -(q + xpz 2 )φ w + μ(1z 1 x) and φ(w) = P φ (w)/Q φ (w), and the last from

C J = C k . We note that Ma+1 l=1 θ l = (μz 1 ) Ma+1 Ma+1 l=1 w + μ μz 1 -o l = (μz 1 ) Ma+1 w+μ μz1 Q φ (0) -(q + pz 2 w+μ μz1 )P φ (0) (-μz 1 ) Ma = (-1) Ma Q φ (0) (w + μ)(1 -pz 2 ) -qμz 1 ,
φ(0) = 1. Inserting det J and Ma+1 l=1 θ l into (50) yields det H(i, 1) = Ma+1 j=1,j =i 1 o n-1 j (-1) Ma+j+1 q + pz 2 o j det J = C J (-1) i (w + μ)(1 -pz 2 ) -qμz 1 Ma l=1 Ma+1 k=l+1 (θ k -θ l ) Ma+1 l=1 Q φ (θ l ) Q φ (θ i ) θ i Ma+1 l=1,l =i (θ l -θ i ) Ma+1 j=1,j =i 1 o n-1 j 1 q + pz 2 o j Q φ (θ j ) θ j Ma+1 l=1,l =i,j (θ l -θ j ) . ( 51 
)
Note that, for p > 0 and n = 1, . . . , K, we have that

Ma+1 j=1,j =i 1 o n-1 j 1 q + pz 2 o j Q φ (θ j ) θ j Ma+1 l=1,l =i,j (θ l -θ j ) = (-1) Ma Ma+1 j=1 1 o n-1 j 1 q + pz 2 o j (θ i -θ j )Q φ (θ j ) θ j Ma+1 l=1,l =j (θ j -θ l ) = (-1) Ma θ i Ma+1 j=1 1 o n-1 j 1 q + pz 2 o j 1 θ j Reso j 1 x -(q + pz 2 x)φ w + μ(1 -z 1 x) - Ma+1 j=1 1 o n-1 j 1 q + pz 2 o j Reso j 1 x -(q + pz 2 x)φ w + μ(1 -z 1 x) = (-1) Ma+1 θ i (f (δ) + R) + g(δ) ,
where the last equality follows for p > 0 from the Inside-Outside property of the integrands of f (δ) and g(δ) that are given in (36) and (37),

R = Resw+μ μz 1 1 x n-1 1 q + pz 2 x 1 w + μ(1 -z 1 x) 1 x -(q + pz 2 x)φ w + μ(1 -z 1 x) = - (μz 1 ) n (w + μ) n-1 1 qμz 1 + p(w + μ)z 2 1 (w + μ)(1 -pz 2 ) -qμz 1 . ( 52 
)
Substituting ( 49) and ( 51) into (47) yields

E e -wBn z Sn 1 z L c n 2 z L o n 3 = (w + μ)(1 -pz 2 ) -qμz 1 R + f (δ) + g(δ)I(δ) h(δ) ,
where I(δ) is given in (39), which completes the proof.

Remark 4 For the G/M/1/K queue, note that Rosenlund [START_REF] Rosenlund | The queue G/M/m/N: busy period and cycle, waiting time under reverse and random order service[END_REF] obtained the four variate transform of B 1 , S 1 , L 1 , and the busy cycle defined as the time duration between two consecutive arrivals to an empty system. Restricting Rosenlund's result to the PH/M/1/K queue Proposition 4 extends his result in two ways. First, it gives the four variate joint transform of Bn, Sn, L c n , and L o n , for the case when n ≥ 1. Second, it allows the dropping of customers even when the queue is not full. Note that in the particular case with n = 1 and p = 1q = 0, we have that f (δ) = 0, g(δ) = 1, and R = -1/ w+μ(1-z 1 ) . Inserting these values into the joint transform in Proposition 4 yields that E e -wB1 z S1 .

We note that the last equation is in agreement with [START_REF] Ramaswami | The N/G/1 queue and its detailed analysis[END_REF] in [START_REF] Rosenlund | The queue G/M/m/N: busy period and cycle, waiting time under reverse and random order service[END_REF].

3 Discussion: non-distinct roots Until now we have assumed that the roots in Lemma 1-3 are distinct. We shall now relax these assumptions and show that the results in Propositions 2-4 still hold. In the following, we shall focus on extending the result in Proposition 2. Similarly this can be done for Proposition 3 and 4.

Let us consider that r i+l = r i +l , > 0, i ∈ {1, . . . , Ms+1} and l = 0, . . . , L-1, and take the limit in our final result for → 0. This means that r i is a root of multiplicity L. In order to show that the results in Proposition 2 hold in this case, it is readily seen that one needs to prove that First, note that when r i is a root of multiplicity L the complex residue reads where ρ = w + λ(1qxpz 2 ), ρ i = w + λ(1qr ipz 2 ), and the last equality follows from the following identity for the analytical function f (x) around x 0 :

Resr i 1 x K-1 1 qx + pz 2 -z 3 1 x -z 1 ξ(w + λ(1 -qx -pz 2 )) = 1 (L -1)! d L-1 dx L-1 1 x K-1 (qx + pz 2 -z 3 ) (x -r i ) L x -z 1 ξ(w + λ(1 -qx -pz 2 )) x=ri = 1 (-λq) L-1 (L -1)! d L-1 dx L-1 1 x K-1 (qx + pz 2 -z 3 ) Q ξ (ρ) Ms+1 j=1,j =i,••• ,i+L-1 (ρ -ρ j ) x=ri = 1 (-λq) L-1 (L -1)! lim →0 1 L-1 L-1 l=1 L -1 l (-1) L-1-l (r i + l ) K-1 (q(r i + l ) + pz 2 -z 3 ) × Q ξ (ρ i -λql ) Ms+1 j=1,j =i,••• ,i+L-1 (ρ i -λql -ρ j ) , ( 54 
d n dx n f (x) x0 = lim →0 1 n n i=0 n i (-1) n-i f x 0 + i .
Note that the latter equation follows right away using the Taylor series of f (x 0 + i ) around x 0 and the binomial series of (x -1) n and its derivatives. The r.h.s. of (53) rewrites

lim →0 L-1 l=0 1 r K-1 i+l 1 qr i+l + pz 2 -z 3 Q ξ (ρ i+l ) Ms+1 j=1,j =i+l (ρ i+l -ρ j ) = lim →0 L-1 l=0 1 (r i + l ) K-1 1 q(r i + l ) + pz 2 -z 3 Q ξ (ρ i -λql ) Ms+1 j=1,j =i+l (ρ i -λql -ρ j ) , (55)
where,

Q ξ (ρ i + l 0 ) Ms+1 j=1,j =i+l (ρ i + l 0 -ρ j ) = (-1) L-1-l Q ξ (ρ i + l 0 ) L-1 0 l!(L -1 -l)! Ms+1 j=1,l =0,••• ,L-1 (ρ i + l 0 -ρ j ) = L -1 l (L -1)! (-1) L-1-l Q ξ (ρ i + l 0 ) L-1 0 Ms+1 j=1,l =0,••• ,L-1 (ρ i + l 0 -ρ j )
, with 0 = -λq . Inserting the last equation into (55) yields that the r.h.s. and l.h.s. of (53) are equal, which completes the proof.

Appendix I

In this Appendix, we give the definition and the structure of some key matrices that we shall refer to frequently. The matrix A is a K-by-K upper bidiagonal block matrix with i-th upper diagonal element equal to q i (F o i f i ) ⊗ I and i-th diagonal element equal to F i ⊗ I + I ⊗ S i , i.e., 

q K-1 (F o K-1 f K-1 ) ⊗ I 0 • • • • • • • • • 0 F K ⊗ I + I ⊗ S K ⎞ ⎟ ⎟ ⎟ ⎠ .
The matrix B is a K-by-K lower diagonal matrix with i-th lower diagonal element equal to I ⊗ (S o i s i ). Therefore, B has the following canonical form: 

B = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 
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Proposition 4 (

 4 PH/M/1/K Queue) The joint transform of Bn, Sn, L o n , and L c n for the PH/M/1/K queue with p > 0 (p=1-q) and n = 1, • • • , K is given by

Resr i 1 x K- 1 1 1

 111 qx + pz 2z 3 1 xz 1 ξ(w + λ(1qxpz 2 )) qr i+l + pz 2z 3 Q ξ (ρ i+l ) Ms+1 j=1,j =i+l (ρ i+lρ j ). (53)

F 1 ⊗ 0 F 2 ⊗

 102 I + I ⊗ S 1 q 1 (F o 1 f 1 ) ⊗ I 0 . . . . . . 0 I + I ⊗ S 2 q 2 (F o 2 f 2 ) ⊗ I 0 . . .

  )
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  Note that under the condition that Re(ρ) ≥ 0 the matrix S * is nonsingular. Hence, the Sherman-Morrison formula, see, e.g., [3, Fact 2.14.2, p. 67], yields that

	.tex; 24/01/2011; 11:58	p. 10

where ρ := w + λ(1qxpz 2 ). Let S * := S -ρI.

  )
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  ). Let F * := F -θI. Note that under the condition that Re(θ) ≥ 0 the matrix F * is nonsingular. Hence, the Sherman-Morrison formula, see, e.g., [3, Fact 2.14.2, p. 67], yields

  := w + μ(1z 1 o i ).The system of equations in (46) has Ma + 1 equations with Ma + 1 unknowns which are b K F o , b 11 , • • • , b 1Ma . Using Cramer's rule we find that E e -wBn z Sn 1 z

	ques9213_source.tex; 24/01/2011; 11:58	p. 18
	where θ	
		, (46)

i

  )
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The matrix C is a K-by-K diagonal matrix with i-th diagonal element, i = 1, . . . , K -1, equal to p i (F o i f i ) ⊗ I and K-th element equal to 0, i.e., 

The matrix D is a K-by-K zero block matrix with (K, K)-block element equal to (F o K f K ) ⊗ I. Therefore, D has the following canonical form:

The matrix U 1 is an infinite size block diagonal matrix with diagonal blocks equal to C, i.e.,

The matrix U 00 is an infinite size block diagonal matrix with diagonal blocks equal to D. Therefore, U 00 has the following canonical form:

The matrix U 0 is an infinite size block diagonal matrix with diagonal blocks equal to U 00 , i.e.,

Appendix II

The matrix M(i, 1) is an Ms-by-Ms matrix with j-th row equal to ξ 1 (ρ j ), • • • , ξ Ms (ρ j ) for j = 1, • • • , Ms + 1 and j = i. Therefore, M(i, 1) has the following canonical form: Q ξ (ρ), of degree equal to Ms and numerator of degree < Ms. In addition, ξ i (ρ), i = 1, • • • , Ms, are also rational functions with denominator of degree ≤ Ms and numerator of degree smaller than the denominator. Therefore, it is easily seen that

is the denominator of ξ(ρ). Let C denote the matrix with (j, i)-entry equal to the coefficient of ρ j-1 of the polynomial P i (ρ).

Lemma 4

The determinant of M(i, 1) is given by

where C = det(C).

Proof We decompose M(i, 1) as follows:

where D is the diagonal matrix with j-th diagonal entry equal to 1/Q ξ (ρ j ), j = 1, . . . , Ms and j = i, V(i) is the Vandermonde matrix of the following form:

Note that the determinant of M(i, 1) reads, det M(i, 1) = det(D)det V(i) det(C).

It is well-known that the determinant of the Vandermonde matrix is given by, see, e.g., [START_REF] Buck | A generalized Vandermonde determinant[END_REF],

det

.

Since D is the diagonal matrix with j-th diagonal entry equal to 1/Q ξ (ρ j ), j = 1, . . . , Ms and j = i, it is readily seen that det(D) = 1 Ms+1 j=1,j =i Q ξ (ρ j )

.

Substituting the latter two equations into det M(i, 1) yields right away (56), which completes the proof.