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Fluid Films with Curvature Elasticity

D. ]J. STEIGMANN

1. Introduction

The phenomenology of surfactant fluid-film microstructures interspersed in
bulk fluids poses significant challenges to continuum theory. By using simple mod-
els of elastic surfaces, chemical physicists have been partially successful in describ-
ing the qualitative features of the large variety of equilibrium structures observed
[1, 2]. The basic constituent of such a surface 1s a polar molecule composed of hy-
drophilic head groups attached to hydrophobic tail groups. At low concentrations
in a bulk fluid such as water, the surfactant molecules, or amphiphiles, migrate to
free surfaces and arrange themselves as monomolecular films with the tail groups
shielded from the bulk phase. This process is associated with a dramatic reduction
of the apparent surface tension, and continues with increasing amphiphile concen-
tration until the critical micelle concentration is reached and the molecules begin
to form microstructures interspersed in the bulk [2]. These can assume a variety
of forms, due to the range of mechanisms available for shielding the tail groups.
The prevalent morphologies are strongly influenced by amphiphile concentration
and, to a lesser degree, by temperature, but the precise factors responsible for their
formation are apparently not well understood.

The basic component of these fluid microstructures is the monolayer. At fixed
temperature and at amphiphile concentrations exceeding the critical value, the
monolayers typically form rod-like cylinders or spherical micelles. The latter struc-
ture is also associated with surfactant-stabilized microemulsions of immiscible flu-
1ds such as water and oil, in which small droplets of one fluid are suspended in the
bulk phase of the other. The interfaces separating the fluids consist of amphiphilic
monolayers with the tail groups directed away from the water phase. Emulsifica-
tion inversion, in which the interior and exterior phases are exchanged, 1s thought
to be facilitated by the emergence of an intermediate bicontinuous microstructure
conceived by ScrRIVEN [3, 4]. This consists of compact oriented films of high genus
having a spongy or porous structure.



Bilayer surfaces composed of oppositely oriented monolayers furnish another
mechanism for shielding tail groups. These occur in a variety of forms including
planar lamellae, spherical vesicles, and variants of the bicontinuous topology [2].
Bilayers of biological surfactants, called phospholipids, are also known to be of
fundamental importance to the structure and function of cell walls [5, 6].

Typical length scales for these microstructures are so small that local interac-
tions due to changes in the alignment of the amphiphilic molecules have a pro-
nounced influence on surface morphology. Cosserat surface theory has been the
preferred continuum model, since surfactant systems do not exist in bulk. Local
effects associated with alignment are represented by assigning elastic resistance to
the configurations of a director field representing molecular orientation. Variants of
this model have been developediigLrricH [7], ERICKSEN [8], JENKINS [9], and
Krisunaswamy [10]. The general theory accounts for surface strain, director exten-
sion, and director tilt, the latter being associated with misalignment of the director
and the surface normal. However, there is a preference in the physical-chemistry
and cell-biology literatures for a simpler model based on surface geometry alone [7,
11]. This is justified by the belief that local Van der Waal's and electrostatic forces
tend to act in such a way as to suppress misalignment and maintain roughly fixed
tail lengths, particularly in bilayers [7, 12].

In this work | discuss a purely mechanical Cosserat theory incorporating lo-
cal constraints on the director field. The film is assumed to be a material surface
consisting of a fixed set of mass particles. Two essentially equivalent models are
envisaged according to whether or not films are presumed to possess material sym-
metry. In the affirmative case an appropriate concept of fluidity is introduced based
on ideas ofNotrL [13] and their adaptation to material surfacesNdyrpocH &

CoHEN [14]. The relevant Legendre-Hadamard inequality for energy-minimizing
equilibria is obtained and used to motivate a simple proposal for the description of
bilayer response.

2. Equilibrium of elastic films

| use the nonlinear Kirchhoff-Love theory of shells to obtain a simple model
for material fluid-film equilibria. The Kirchhoff-Love shell may be interpreted as
a one-director Cosserat surface [15] with the director field constrained to coincide
with the local orientation field. For amphiphilic bilayer films, the director can be
thought of as a line segment formed by two hydrophobic molecular tails connecting
opposed hydrophilic heads, each located at a lateral interface with the adjoining
bulk fluid. The constraintis intended to represent the suppression of director tilt and
extension or contraction in accordance with the generally accepted phenomenology.

The basic theory has been developed in a variety of ways. Traditionally, varia-
tional principles were used to obtain the field equations and Kirchhoff edge condi-
tions [9, 16—19]NacHDI [15] advanced an alternative approach based on a set of
balance, invariance, and constitutive postulates distinct from those for a Cosserat
shell. | [20] recently obtained the Kirchhoff-Love theory from Naghdi's postu-
lates for Cosserat surfaces together with local constraints on the director field and



its gradient. The same theory may also be obtained by regarding the shell as an
elastic surface with an energy per unit mass that responds to the first and second
gradients of a map from a parameter plane to a surface in 3-space. The second
gradient contributes both a curvature and a metric gradient. If the influence of the
latter is suppressed the Kirchhoff-Love theory can be recovered via a variational
argument [21].

The well-known equilibrium equations for elastic Kirchhoff-Love shells are
summarized here using the notation of [20]. Thust (6t) be the Euclidean posi-
tion of a particlex with convected coordinat®$'; « = 1, 2, on a surface. In this
work | am mainly concerned with the local equations of the theory and therefore
freely exploit the local equivalence of surfaces and parametrized surfaces. Wher-
ever global equations are discussed it will be assumed that the relevant patch of
surface either admits of a single coordinate chart or that it can be covered by the
union of such patches.

Local equilibrium of forces may be expressed concisely as

T + pf =0, 2.1)

wherep is the mass of the film measured per unit areapf is the distributed

force per unit masg,“ are stress vectors that contribute to the tractions transmitted
across material curves, and the semi-colon is used to denote the surface covariant
derivative using the metric of the coordinates induced @) [20]. The stress
vectors are given by

T = N® 4 §%n, 2.2)

whereN* are constitutively determined tangential vector fiefsis a contravariant
vector field to be specified, and

n=3c"a, x ag (2.3)

is the local orientation ab. Here,a, = r ,, are the tangent vectors induced by the
coordinates, commas denoting partial derivatig€8,= a~1/2¢f is the permuta-
tion tensor density® (= e4p) is the unit alternatoref? = +1), anda = det(ayp)
whereaqs = a, - ag is the induced metric, non-negative definite in general and
assumed here to be positive definite. It is well known that the surface divergence
in (2.1) may be writteT®, = a~2(a/2T) ,, allowing one to avoid Christoffel
symbols.

The constitutively determinate term in (2.2) is expressible in the form [20]

N* = NFag, (2.4)
with
NP = P 4 b e, (2.5)
where
AV ow A ow
O'ﬁa:p< —|— >, M'Bazﬁ( + ), (26)
dagg  Oagy 2 \0bgg  0bgg



andbyg = n - r 4 are the symmetric coefficients of the second fundamental form
onw. The sign convention fak/#* differs from that commonly used in shell theory
[15, 20], and the mixed componerh§ in (2.5) are related to,g throughb,s =

aakbg. Further, the coordinate-dependent functibtu,g, bag) is the Galilean-
invariant energy per unit mass of the film. | temporarily suppress the dependence of
W on the particlec. The formof this function is such that itgaluesare independent
of the coordinate system as the energy is required to be an absolute scalar field [15,
Section 13].

The local mass conservation law is

po=Jp, whereJ = (a/A)Y?; 2.7)

A andpg are the values af andp respectively on a fixed reference surfaee

Many writers study the response of fluid films subject to the two-dimensional
incompressibility constraint = 1. This implies that deformations preserve surface
area, and may be added to the list of constraints already imposed to obtain the local
Kirchhoff-Love response functions from those of the Cosserat theory, as explained
in [20]. The procedure used in that work yields equations identical to those obtained
by using the formal Lagrange multiplier rule

v = \il(aa/g, bag) — v /P, (2.8)

in (2.6), wherel is a constitutive function angd(6%) is a constitutively indetermi-
nate scalar field.
In the absence of distributed couples the normal components of (2.2) are given

by
$* =M. (2.9)

From the viewpoint of the constrained Cosserat theory, this follows from a director
balance law which furnishes the values of the constitutively-indeterminate vector
field S¢ a posteriori[20].

In the present version of the theory, the moment-of-momentum balance is
satisfied as an identity in accordance with conventional finite elasticity theory.
NaGHDI [15, 22] used this balance law to determine the skew part of the coefficient
matrix in (2.4).

The foregoing equations are well known in principle but rarely stated in forms
thatilluminate the underlying physics. In interpreting the various terms, it is helpful
to relate them to the tractions and moments transmitted across material curves. To
this end lep* (s) be an arclength parametrization of such a curve@md letr be
the unit tangent in the direction of increasingrhen,v = t x n is the rightward
unit normal as the curve is traversed in the same direction. This has components
vy = eqptP Wherer® = dg® /ds are the components efande,s = a*/?e,z arethe
covariant components of the permutation tensor density. The traction transmitted
by the material on the right to the material on the left is then given by [20]

t =T%, — (MPYvtgn)Y, (2.10)



wheret, = (laﬂfﬂ and the prime denotes the derivative with respect. tbhis
furnishes the force per unit arclength. One then uses (2.2) to intefprgtas a
transverse shear traction across the curve. The moment per unit length is [20]

m=rxt—Mz, where M = MP*vgv, (2.11)

is the bending couple.
Global forms of the equations for a simply-connected regianw are obtained
by using Stokes’ theorem in the form

/Tf’ada =/ T%veds (2.12)
ro ar

together with (2.1) and (2.10). The resulting force balance is [20]

/pfda +/ tds+ Y g =0, (2.13)
r ar

where
9 =M"*[ve7g]n (2.14)

is the force acting at a vertex 6f if the latter is piecewise smooth with a finite
number of points where andv are discontinuous; the sum ranges over all the
vertices; and the notation][is used to denote the forward jump as a vertex is
traversed in the sense of increasingEquation (2.13) is derived by regarding
the second term on the right in (2.10) as a distributional derivative. Further, a
straightforward but involved calculation [20] yields the global identity

/prxfda—i—/ mds + Y 1 x g =0, (2.15)
r or

which may be regarded as the specialization to equilibrium of the moment-of-
momentum balance.

Mosttreatments [9, 17] of the Kirchhoff-Love equations are based on stationary-
or minimum-energy considerations in the spirit of Kirchhoff’s original work [16]. |
record here an energy functional which is rendered stationary by films coexisting in
equilibrium with bulk fluids in a gravity field. This energy is used in the discussion
of necessary conditions for minimizing states in Section 7. It is sufficient for this
purpose to confine attention to local compactly supported variations defined on a
closed connected regioR consisting of the bulk fluids and a number of films.
These films consist either of compact (closed) surfaces contained entirely within
the interior of R, or of surfaces that intersegR along certain curves. In the latter
case | avoid the complicated and irrelevant boundary terms associated with the
film traction and moment by considering variations that vanish together with their
gradients ord R.

The appropriate energy functional is

Ey.r =Y [ 10w+ gk yiedo+ Y [ pwda. (2.16)
i v j wij

)



wherev; andw; respectively are the volumes and surfaces occupied by the bulk
fluids and films inR, @ is the energy of a bulk fluid phase per unit magy, is the
associated mass densig¥k is the gravitational body force per unit mass (whitka
fixed unit vector), ang is the spatial position of a bulk-fluid particle. The weights
of the films are presumed negligible and the indices have been suppressed in the
integrands to avoid cumbersome notation.

That equilibria render this energy stationary under the stated conditions may
be verified by evaluating the @&8aux differential ofE[y,, r.] with respect to a
parametet at the value = 0 (say) associated with the equilibrium state. Hgge,
andr. are the parametrized positions of particles of the bulk fluids and the films
respectively. | refer to [23, 24] for details of the lengthy formal argument. In these
works the elastic surface is regarded as being convected by the deformations of
the medium with which it coexists, but the conclusions drawn remain valid under a
weaker restriction appropriate to the system at hand. In particular, the differential of
the bulk energy may be transformed to an expression involving surface integrals of
the fluxesPu - fi over the boundaries of the bulk phases, wheee 02d®/dg is the
pressuref) is the exterior unit normal to the boundary of a typical phase asady
is the variation ofy, the superposed dot denoting thelerivative ofy, ate = 0
[23]. A typical film w constitutes part of the boundary between two such phases,
each of which contributes a distinct flux, the associated normals having opposite
senses. Ifis the orientation field ow, the net fluxig Pu] - n, the bracket denoting
jumps asw is traversed in the direction of For systems with monolayer or bilayer
amphiphilic films, | assume that the bulk phases do not penetrate the films as the
alternative would entail contact between water molecules and the water-repellent
hydrophobic tail groups of the surfactant molecules. This impliesthat = v - n
wherev = is the variation of on w andu4 are the limits ofu on either side.
Thus[u] - n = 0 onw and the net flux reduces {@]v - n. The stated equilibrium
equations then follow from the fundamental lemma whether or not the film is a
material surface with respect to the surrounding fluid as the tangential components
of v need not be related to the tangential components.of

To summarize, (2.16) is stationarysat= 0 if and only if (2.1) is satisfied on
each film withpf = pn, wherep = —[P], together with

gradP = —pgk (2.17)

in each of the bulk phases [23], where grad the gradient with respect to
A standard formal argument yields the same results in the presence of two- or
three-dimensional incompressibility constraints provided (2.8) and

®(0) = —P(X)/o (2.18)
are used in (2.16) as appropriate, wheres constitutively indeterminate,
¢ = oo(X)/ det (Grag (X)), (2.19)

x (X) is a one-to-one deformation function of a bulk phase with vajuesd fixed
domain,oo(X) is the fixed density at partick, Grad() is the gradient with respect
to X, andP = P(x1(y)) [25, 26].



The difference between the functional (2.16) and any other that is rendered
stationary by the local equilibrium equations involves null-Lagrangians that do not
affect the conclusions of Section 7. These have been characteriBed.by27] in
a general context that incorporates the present model.

3. Constitutive Theory

In the foregoing | have mentioned only those concepts that are fundamental to
the equilibrium of material surfaces under the stated hypotheses. In particular | have
not discussed any material symmetry properties that fluid films may possess, since
it appears to me that it is possible to pursue alternative developments according
to whether or not films are assumed to possess such symmetry at the outset. Both
are subsumed under elasticity. These concepts have been confused throughout the
large literature on fluid films. The confusion appears to stem from the widespread
tacit belief that material symmetry is equivalent to Galilean invariance. Further,
from JENkINS’ work [9] and from the analysis presented here, there emerges the
fortuitous fact that films with fluid-like material symmetry have response functions
that are formally the same as those of the alternative class.

Following NoLL [13], the idea that material bodies possess symmetry is nor-
mally phrased in terms of restrictions on the enebggssociated with invariance of
response under maps from sofixedlocal configuration to another. This generates
an abstract symmetry group for the material manifold, which may then be used to
obtain, via Noll's rule, the symmetry group relative to any fixed local configuration.
Noll's theory has been adapted to material surfacédbypocH & CoHEN [14]. In
this setting it becomes apparent that his concept is distinct from that of coordinate
form invariance, according to whiclr, regarded as a function of tensor compo-
nents, is the same function of the components obtained by certain distinguished
coordinate transformations. Form invariance is regarded as the primitive notion of
symmetry inNAGHDI'S work on shells [15] and iR1vLIN’S formulation of finite
elasticity theory [28].

| define fluidity in the framework of the Murdoch-Cohen theory in Section 4 and
proceed to obtain a canonical energy functiofor films that possess symmetry. In
general the energy is defined on the body manifold, which in turn is parametrized by
a global coordinate cha#t . In other words, a one-to-one correspondence may be
established between each poimif the (simply-connected) body manifold and fixed
values of the pair of coordinates on a rectangular grid. Isometric immersions of this
manifold into 3-space may then be described byltleal surface parametrizations
r(6%). To ensure that the energy is a scalar field on the body manifold, it is necessary
that the form of the functionv depend on the parametrization in such a way that
its values do not.

One way to accommodate this requirement and the notion of fixed configuration
embodied in the Noll-Murdoch-Cohen theory is to assume that

W (agp, bag) = W(C, k), (3.1)



whereW is a coordinate-independent function,

C = agpA” @ AP (3.2)
is the invertible symmetric surface strain tensor, and

K = bygA* @ AP (3.3)

is the symmetric relative curvature tensor. This is the viewpoint adopted in most
works on elastic surfaces. In these definitigxfsare dual vectors to the induced
tangent vector, = x o at the particler, wherex(6%) is the local parametrization
of a reference surfac. Given the parametrization, these tensors, together with
U, are functions of the matricegs andb,g as suggested by the notation of (3.1).
MurpocH & CoHEN introduced a primitive notion of material surface that
includes (3.1) as a special case. In their work the local constitutive response is
defined by Galilean-invariant functions of

F=a, ®A” (3.4)

and its gradient. This maps the tangent space wfthat ofw atx. For hyperelastic
surfaces, their constitutive equations follow from (3.1) if dependence on strain
gradient is suppressed.

The notion that elastic bodies possess symmetry of one kind or another is so
widespread that it seems to be regarded as fundamental. In this work | regard it
simply as a constitutive assumption. What is fundamental is the requirement that
the energy’ be a scalar field on the body manifold, and there are other ways to
ensure this. For example, one notion entirely compatible with the general theory
of material surfaces is that is sensitive only to the local configuration of the film
in a neighborhood of rather than to the kinematical variables that describe its
deformations.

A similar premise underlies the conventional theory of single-phase liquid-
crystal equilibria [29], in which a director field defining the crystalline orientation
is described by the Euler equations associated with an energy that depends on the
local values of the director and its spatial gradient. There is no dependence on the
kinematics of director deformation or on the deformation of the fluid medium. In-
deed the director configurations are deemed to be independent of the deformations
of the fluid in the commonly accepted formulations [29, 30]. The canonical form of
the energy function is then deduced from Galilean invariance and any additional re-
strictions deemed to be relevant in particular circumstances, but these are unrelated
to symmetry in Noll’s sense.

For films, one may base such a theory on the premise that the energy per unit
mass is a function of the surface densityand the symmetric surface curvature
tensor

b=bya®®a® =-n,®a, (3.5)

where thea® are the duals to tha, on the tangent planes af. The energy then
responds only to the local shape and densitywofSalilean invariance requires
that it be unaffected by the replacementbofvith QbQ’ for all b in its domain,



whereQ is orthogonal and the superscripis used to denote transposition. Here

| take this domain to consist of all ordered pairs of positive scalars and symmetric
surface tensors defined on the tangent spaaeatthe particle in question. For the
invariance condition to make sense it is then necessary to redtsach thaia®
andQa* span the same vector space. This restriction entails no loss of generality
since the rotational invariance of the energy implies that, at a given particle, the
tangent space obtained by rotatingnay be identified with the tangent spaceusto
itself insofar as the constitutive response is concerned [14]Qlagpearing in the
invariance condition should then be interpreted as the projection onto the tangent
space of an arbitrary three-dimensional rotation. As such it is a two-dimensional
rotation if the three-dimensional rotation preserves the local orientatianawid

a two-dimensional orthogonal transformation in the general case. This form of the
invariance condition is equivalent to that adoptedMbyecker [31, Section 6(c)]

in his thermodynamical theory of interfaces.

Galilean invariance is thus tantamount to the invariance of the energy, re-
garded as a function of a symmetric two-dimensional tensor, under arbitrary two-
dimensional orthogonal transformations. For this it is necessary and sufficient that
the energy be expressible in the form [32]

W (agg, bag) = F(p, H, K), (3.6)
where
H=3trb, K =detb (3.7)

are the mean and Gaussian curvatures oéspectively. This in turn may be ex-
pressed as a function of the matriegg andb,g, as indicated, by using the local
mass conservation law (2.7) and the formulae

H = 3a"byg and K = 3e*P by, bp),, (3.8)

where (a®?) = (aqp)~t is the dual metrice®® = a=1/2¢*f anda = detlagp).
Therefore this alternative constitutive formulation, essentially equivalent to that
introduced byBLinowskI [33], also furnishes a model for material surfaces. It is
similar in some respects to a theory proposedbyrti & Virga [34] for liquid
crystals with surface energy, provided that the fluid orientation is aligned locally
with the surface normal. Related theories had been proposed earliexinys &
BARRAT [35] andERICKSEN [36].

4. Films with material symmetry

Material symmetry theory for surfaces is not settled. This appears to be due
to the difference between form invariance with respect to distinguished coordinate
transformations and Noll’s invariance of response under distinguished compositions
of maps. This distinction is easily overlooked in the conventional theory of simple
materials as the two concepts then lead to mathematically identical problems. For
plate and shell theories, a humber of alternative proposals have been advanced,



some incorporating elements dloLL’s approach [14, 37, 38]. Among them, |

find that of MurpocH & CoHEN [14] to be the most satisfactory extension of
Noll's concept. This is based on the notion that local configurations of the body
are to be regarded as the restrictions to surfaces of diffeomorphisms of 3-space.
Symmetries are associated with local maps anmforep surfaces that leave the
energy invariant in a given diffeomorphism. The implications of this idea for elastic
surface-substrate interactions have been examined in [24]. | present a brief summary
of the Murdoch-Cohen theory here, with adaptations tailored to the narrower class
of material surfaces considered.

Preliminary to this, | examine certain local properties of maps between two
fixed surfaces2 andQ2*, with local parametrizationg0*) andx* (0%) respectively,
occupied by the same material body. Thusglex) be aC? orientation-preserving
diffeomorphism of 3-space to itself defined on an open neighborhood of a material
pointx with coordinate®®. Let N* C Q* be the intersection of this neighborhood
with Q*, and suppose = ¢ (x*) for x* € N*. Then,N = ¢(N*) C Q is the
intersection of the same set of material points vith

If A} andA, are the tangent vectors induceddyon Q* and<2 atx, then

Ae = (VP)A, and Aqp = (VV)IA; ® ALl + (VOIA, 4. (4.1)

whereV¢ andVVe are the first and second gradientg@K) evaluated at € N*.
The operation in the second expression is defined, using Cartesian notation, by

(VVP)[U® V] = (9%¢: /X A0 X p)uavpe:, (4.2)

with {e;} an orthonormal basis for 3-space.

In the remainder of this section | assume the tangent spaces to the various
surfaces occupied by the body to coincide at the particl&alilean invariance
implies that this entails no loss of generality in the characterization of constitutive
response [14]. With this adjustment (4.13 then equivalent to

Ay = HAX = HAAY, (4.3)
where
H=A, @A™ = HYAL @ A, HY% = A* . (Vp)A}, (4.4)
and theA** are dual toA},. The properties op ensure thall is an invertible linear
transformation from the tangent space to itself. Accordingly, there is a ténhebr
the same type such thRf = H~1, and it is straightforward to show that
A% = RA*, (4.5)
Let N be the orientation of2 atx. Then,

;,LaﬂN = Aa X Aﬁ, (4.6)



wherepqs = AY2e,44 is the associated permutation tensor density. | combine this
with a similar formula for the orientatiod* of Q* and use (4.3) Witmy H, HA’;} =
(detH)M;ﬁ to derive

1apN = (detH) s N*. 4.7)
This result andd/A* = (detH)?, which follows from (4.3), yield
detH = £(A/A%)1/?

according ad?N = £N*. In particular, deR (= 1/ detH) is positive if and only if
Q andQ* have the same orientation; otherwise it is negative.

Let B be the curvature tensor @ atx. ThenB = BygA* ® AP, whereB,g =
N - A, . LetB*, defined similarly, be the curvature tensofdfat the same particle.
The relationship between the two curvatures may be inferred fromy (4.14.5)
and the fact thaV¢ maps the tangent space to itself:

R™IBR™ = (N-VVg[A, ® AgDAY ® AP + (N - (V)N*)B*, (4.8)

wherein the first term on the right has the same value regardless of which set of
tangent bases is used.

Consider a configuratiaa of the film parametrized locally by(6¢), and letC,
x andC*, k* be the strains and curvatureswfelative toQ2 andQ* respectively.
Since the first and second fundamental forms@me determined by its parametric
representation, it follows from (3.2), (3.3) and (4.5) that

C=RC*R’' and k = Rc*R'. (4.9)

The energy per unit mass is presumed to be a property of the body in a given
state. As such, its values atare not dependent on the reference surface used to
compute them. In the notation of (3.1),

U*(C*, k*) = W(C, k) = ¥ (RC*R!, Rc*RY), (4.10)

whereW andW* are constitutive functions defined éhand2*.
Consider another diffeomorphisg(X) of the same kind ag but with the
property that = & (x) for x € N. This induces at a strain

C=((VEA, - (VE)AHA®" ® AP (4.11)
relative to$2 and a relative curvature obtained with the aid of the formula
k = F'bF, (4.12)

which follows from (3.3)—(3.5). With the tangent spaces aligned & plays the
same role in the local map frof to w as that played bid in the map fron2* to
Q. Accordingly, (4.8) and (4.12) give

K =(n-VVE[A, ® AgDAY @ AP + (n- (VE)N)B, (4.13)



wheren is the orientation ofv at x. For definiteness, and (by Galilean invari-
ance) without loss of generality [14], | choose the orientations of the reference and
distorted surfaces to coincidexatThus,n = N in (4.13).

To characterize the relationship betweN¥nand N* due to symmetry, it is
necessary to determine the str@imnd curvature relative toQ2* induced atc by
r* = £(x*) for x* € N*. These are given by the obvious modifications to (4.11)
and (4.13) in whicln* = N*. The values oV andV V¢ are the same in both sets
of formulas, and it follows easily that the strains are also equalg lautd« differ
in a manner that depends on the relative orientationg*oiind N :

C=C, k= , (4.14)
— ke + (N- (VEN)(B* 4+ B); detR <O0.

_ !K +(N-(VEN)(B* —B);  detR > 0,
whereinB andB* are connected by the mggX) through (4.8).
Following NoLL [13], MurpocH & CoHEN [14] regardN and NA* as being
related by symmetry if they respond identically to sizene (X). Then, W (C, «) =
W*(C, k), which, when combined with (4.10), yields

U(C, k) = V(RCR', RkRY). .
C RCR’, RiR! 4.15

This is identically satisfied for alf and« in the domain ofl’ if ¢ is the identity

map withVVve¢ = 0andV¢ = I, the unit tensor for 3-space, aRdthe projection

of | onto the tangent space at(detR =1, N* = N, B* = B). However, it is

not at all certain that there exist other mapsith the required properties for
arbitrary surfaces. General surfaces may therefore be expected to have only trivial
symmetry. Particular surfaces with non-trivial symmetries specific to solid films
have been studied in [24].

MurpocH & CoHEN have shown that the pai(R, B* £+ B) satisfying (4.15),
with the sign chosen in accordance with (4.14), are elements of a group. Thus,
arguments used in conventional elasticity may be used here to restrict the entries
R to unimodular (surface) tensofdetR = + 1).

The structure of amphiphilic bilayers and the high degree of in-plane mobility
observed in equilibrium states suggest a definition of fluidity analogous to that of
Notr [13] for conventional bulk fluids. Thus, suppose the embedding geometry of
N* C Q*is that of a plane, so th&* = 0 atx. For suchN*, | define fluidity
by the requirement that (4.15) be satisfied for all affiX) (VV¢ = 0) with the
properties thaV¢ is proper unimodular (déf¢ = + 1) and maps the subspaces
T and spafN} to themselves, wher@ is the common tangent spacexatThe
induced surface tens& fulfills the requirementdetR| =1, and (4.8) implies that
N is related toN* by symmetry only ifB = 0. Accordingly, (4.14) simplifies to
k = +k and (4.15) becomes

U(C, k) = W(RCR!, Rk R'); detR ==+1. (4.16)

This definition of fluidity is meant to reflect the small-scale three-dimensional
structure of bilayers in configurations in which the interfaces between the bilayer
and the bulk fluid are parallel planes, as depicted, for example, in [5, Figure 1.1]



and in [12, Figure 4.2]. Its implications for response in arbitrary configurations are
of primary interest here.

To obtain the canonical form of the energy function, | note that surface rota-
tions (R™! = R!, detR = 41) are admitted by the definition. The appropriate
specialization of (4.16) is satisfied for all sughf and only if U is expressible as
a function of the elements of the hemitropic function basis [32]:

I = {tr C, detC, trk, detk, tr (Ck), tr (Ckp)}, (4.17)

wherep = uagA* ® AP Invariance under arbitrary proper-unimodular transfor-
mations implies that the energy is expressible as a function of all independent
invariants formed from the list (4.17) that are also proper-unimodular invariants.
That this class of functions is the most general one to fulfill the stated requirement
follows from the fact that invariance under the larger set of transformations implies
invariance under the smaller set. Thus, while any such function is necessarily ex-
pressible in terms of the elements of the Egt cannot be an arbitrary function of
these elements.

The obvious candidates for inclusion are @eand detc. Another invariant
having the required property is

o= (trC)(trk) — tr(Ck). (4.18)

To prove this | use the Cayley—Hamilton theorem for arbitrary symmetric surface
tensorsA:

A=({rA)l—A, (4.19)

whereA is the adjugate oA and1 is the unit tensor for the fixed tangent space at
x. Thus,

o = tr(Ck) = tr (Ck). (4.20)

SinceC is presumed invertible, the first alternative gives: (detC)tr (C~1k), in
which the second factor is invariant under the replacem@nts RCR’ andkx —
RkR! for all invertible surface tensoR. The result then follows by the unimodular
invariance of deC. | have not succeeded in generating additional independent
proper-unimodular invariants from the sktand thus conjecture that the three
discussed comprise the maximal set.

Itis easily demonstrated that d@t= J2. Granted the truth of the conjecture, it
is thus necessary that

W(C, k) = G(J(C), a(C, k), k(K); x);

. 4.21
J(C) = (detC)Y?, o (C, k) =tr(Ck), K(k) = detk, (4.21)

whereG is scalar valued and parametric dependence on the particle is indicated
explicitly. Conversely, if (4.21) holds, then, sincando are even and odd functions

of « respectively(4.16) is satisfied for all unimoduld® (detR = £ 1) provided
that G is an even function of. Each of these generates a proper-unimodular



throughV¢ = R™"£N ® N, with the sign chosen as appropriate. This in turn is
the general form oV ¢ compatible with the definition of fluidity and so the bilayer
is fluid if and only if (4.21) holds withr replaced byo|.

A monolayer film may be viewed as half a bilayer. For these an appropriate
definition of fluidity is obtained from that for bilayers by restrictiggso as to
preserve the local orientation of the surface. In this case the second branch of
(4.16) is not applicable and the necessary and sufficient condition for fluidity is
again given by (4.21), but without the requirement #idie an even function af.

To determine the response functions relative to arbitrary local reference config-
urations, | re-write (4.21) in the form

U,(Ci, 13) = Gu(Jn, o, ka3 X); Jo = J(Cy),

(4.22)
o). =0(Cy, k), Ky =k(Ky),

where the subscript is used to identify the reference configuration. Witlfixed,
the transformation from to an another local reference configuratiarsay, yields
the composition formulal, = J,D(x), whereJ, = J(C,) and D(x) is the
positive square root of the determinant of the straipg€lative tox at x. Next,
| observe thak is related tac in the same way that the Gaussian curvatkires
related tab (cf. (3.7) and (3.8)). Thus,

K = 2 by b, = JPK, (4.23)
and saq;, = KHDZ, wherex,, = k (k). The functions may likewise be expressed
in terms of the mean curvatufé by using (3.3) an€ ! = a*#A,, ®Agin (4.20).
Comparison of the result with (3.8Yives

o =2J%H. (4.24)

Henceo; = 0, D?, wheres, = o(C,, k).
If W, is the response function with as reference, then

U, (Cp, ) = W0(Cy, 1e2), (4.25)
and (4.22) furnishes
U, = GulUy, o, ks X), (4.26)
where
Gu(Jus 0y K X) = Gu(JuD(x), 0,D?(x), k,, D*(x); x). (4.27)

This holds without restrictions on the embedding geometpyafits tangent space.
Equation (4.21) therefore implies that the response relative to any local reference
configuration is sensitive to the strain and relative curvature through the associated
values ofJ, o andk.



5. Alternative formulations

JENKINS [9] claimed that (3.6) is the necessary and sufficient condition for a
material film with symmetry to qualify as fluid by a standard which, though concep-
tually different from that used here, nevertheless imposes the same mathematical
restrictions on the energy. To my knowledge he is the only writer on the subject of
films to have investigated the consequences of fluidity as a restriction associated
with material symmetry rather than with Galilean invariance. His analysis com-
bines the elements of coordinate form invariance as advocatédhbypr [15]
with the well-known procedure used in Noll's theory of simple elastic materials
to derive the canonical constitutive equation for the energy in compressible bulk
fluids. The latter procedure was also useddwnen & WaNG [39] to obtain the
general strain-energy function for fluid membranes with symmetry. Detailed criti-
cism of this procedure in the context of compressible bulk-fluid response has been
given byRivLIN & SMmiTH [40]. However, in that theory, as in the present theory of
fluid films, the logical errors in the analysis do not invalidate the conclusions.

Jenkins’ model is based on a constitutive framework whose Galilean-invariant
specialization is equivalent to (3.1). To model fluidity, he assumes the invariance of
the energy per unit mass under coordinate transformations with unimodular matri-
ces of partial derivatives; this he represents by (4.3) Wi¢hH| = 1. For Galilean-
invariant energies, his concept of symmetry, which involves no restrictions on the
local embedding geometry of the reference surface, is then equivalent to (4.16), but
with the plus sign used in the argument of the right-hand side for general unimodu-
lar R. This minor discrepancy is of no consequence here since Jenkins’argument is
based on proper-unimodular transformations; (4.21) was likewise derived by using
the corresponding branch of (4.16). Accordingly, the problem of deriving reduced
forms of the energy that are necessary and sufficient for fluidity is essentially the
same in both theories, granted the Galilean invariance of the energy.

To pursue the question, | note that the tensatefined by (3.4) possesses a
determinant if the tangent spaces of the reference and distorted surfaces coincide at
x, this then being equal t&J. Then,H = J~Y/2F is a proper-unimodular surface
tensor if the surfaces also have the same orientation. It furnishes the basis for
Jenkins’ discussion of necessary and sufficient conditions for fluidity, in which the
response function is not presumed to be Galilean invadaomtori. In the present
context this choice correspondsRo= JY/2F~*, which | use with (4.12) and the
relevant branch of (4.16) to obtain the apparent necessary condition

U(C, k)= W1, Jb) =%(J, b), say, (5.1)

wherel is the fixed unit tensor for the considered tangent space and the relation
C = F'F has been used. The fluid film thus possesses flexural resistance by virtue
of the dependence of its energy on the curvatur€hat (4.21) is consistent with

this conclusion follows from (3.7), (4.23) and (4.24). No further conclusions can be
drawn from (4.16) and (5.1) sindeis independent of the reference configuration.
Thus, to conclude that (5.1) is equivalent to (3.6) it would appear to be necessary to
subject the functiorx to the further requirement of Galilean invariance. Of course,
this reasoning cannot be correct sincéurnishes the values of a Galilean-invariant



function by definition, and, as such, is automatically invariant. The logical error,
as noted byRivLIN & SmITH in a similar context, may be traced to the failure

to recognize that, in the discussion of necessary conditions for (R8st be
regarded asfixedtensor if this equation is to be meaningful. Here, the error leads to
the paradoxical conclusion that a Galilean-invariant energy is necessarily a function
of a tensor which is sensitive to superposed rigid rotations.

To correct the argument, | replaBeby F' = &, ® A%, the gradient of the map
from Q to afixed surfacew’ that coincides withy in a particular (but arbitrary)
deformationF’ is equal toF for this deformation, but, unliké, is unaffected by
further deformation of the film or by superposed rigid motion. The use dixkd
proper-unimodular tens®'=+/J'(F)~* in (4.16), where/’ = detF’, then yields
the necessary condition

U(C, k) =W, J'D) (5.2)

in place of (5.1), wher@’ = .38 ® a#, b’ = bypa® ® a’f and thea™ are dual

to &,. These are just the strain and curvaturevafelative tow’, the values ofC
andkx with o’ as reference. As such they are equaltandb in the considered
deformation, but are unaffected by superposed rigid motion. That (5.2) fails to
furnish a sufficient condition for the first branch of (4.16) to be satisfied may be
demonstrated by choosii)= RR’ with R proper unimodular. Then, from (5.2),
the relevant branch of (4.16) is seen to be equivalent to

b1, 7o) = $(J'RIR!, J'RO'R) (5.3)

for arbitrary proper-unimoduldR. This representation problem has the same so-
lution as that ford (C, k) since the values of the functions:), o (-, -) andk (),
defined in (4.21), remain unalterecifis replaced by»'.

The more recent work dKrisunaswamy [10], which contains an extensive
discussion and evaluation of the empirical literature on the phenomenology of
biological bilayer response, is based NaGHprI's [15] version of the Kirchhoff-

Love theory together with what appears to be a hybrid constitutive assumption
incorporating elements of the present models for films with and withquriori
material symmetry. This study is perhaps the most comprehensive to date on the
mechanics of biological fluid films and related structures. IKatsHNASWAMY
discusses unimodular transformations in relation to material symmetry but does
not use them to obtain restrictions on response functions. His assumptions are
apparently equivalentto those used to obtain (3.6), subject to the further requirement
thatthe energy be a form-invariant function of teerencesurvature with respect to
affine coordinate transformations having arbitrary orthogonal coefficient matrices.
In the notation of the present work this additional restriction is equivalent to the
requirement that the energy be invariant under replaceméith RBR?, where

R is an arbitrary orthogonal surface tensor. However, evBiidincluded explicitly

as a parameter in the constitutive function, it does not seem possible to reconcile
this assumption with the present theory unless restrictions are imposed on those
surfaces that can be related by symmetry. To show this | note, with reference to



(4.8), that Nanson’s formula, which may be deduced directly from (4.1) and (4.6),
yields

N = (A*/A)Y?(adj Vo)N*, (5.4)

where adj() is the adjugate. From this and (4.8) it is evident tBat: RB*R’ in
general. Affine rotations are among those maps for whith= A in accordance

with the restriction to unimoduldar; for these it follows thatV¢)N* = N, and,
therefore, thaB = RB*R’, but there is no reason to suppose that such maps fur-
nish symmetry transformations for arbitrarily curved surfaces. Consistency with
the present work is restored in the specialization to locally plane surfaces associ-
ated with the foregoing definition of fluidity, but Krishnaswamy'’s theory is then
equivalent to the alternative model discussed in Section 3.

The propensity to identify the primitive concept of fluidity with isotropic re-
sponse functions df (cf. (3.6)) at the outset appears to have its roots in the work of
some investigators [e.g., 7, 41, 42] who adapted the quadratic strain-energy function
of Kirchhoff’s classical (isotropic) linear plate bending theory to model biological
fluid films with bending resistance. This practice remains widespread in the cur-
rent literature on the phenomenology of surfactant systems [1, 2, 43]. There the
energy is usually expressed as a linear combinatidh ahd(2H )2, which may be
consistently confused with the isotropic invariantsidand(tr ) respectively in
the applications envisaged for the original theory. However, when these variables
are confused in the extension to finite deformations, such a formalism maintains
its relevance to fluidity in the sense NbLL only because the variables used are
then unimodular invariants. The general issue is further complicated by the fact
that solid-like response has been associated with films in highly condensed gel
phases that exhibit long-range order as distinct from the high degree of in-plane
mobility associated with fluid phases [2, 44]. For these it is probable that a variant
of the present symmetry theory based on orthogBnialrelevant, the transition to
fluidity then being associated with response functions belonging to the class (3.6),
or, equivalently, with a spontaneous enlargement of the symmetry group for the
function (3.1), the latter being perhaps the more logically appealing framework.
For bulk continua, the issue of symmetry as it relates to phase transition has been
elucidated byRasagoraL [45].

6. Model equations

Explicit component forms of the equilibrium equations for films belonging to
the class (3.6) were derived bynkins [9] using a variational method. Formally,
this class subsumes (4.21) and thus Jenkins’ equations incorporate those for fluid
films with symmetry. To show this | use (4.23), (4.24) and the local conservation
of mass to write (4.22) in the form

U =G (p, H, K; pp(x), x) =G (p, H, K; x), (6.1)

wherep;, _is the density at particle in the reference configuration From (4.22) it
follows that the energy per unit massianay be regarded as a functiongfH and



K for any choice of reference configuration; in particular, relative to configuration
l‘Ll

\II = G;,L(pv H, Kv /O,LL(-X)7 -x) = GZ(,O» H, Kv X), (62)
where
G (p. H, K3 pu(x), x) = G; (p, H, K; pu(x)D(x), x). (6.3)

Thus, it may be viewed as a member of the class of functiomsequation (3.6),
in which parametric dependence oiis permitted.

In the remainder of this section | obtain reduced equilibrium equations from
the formulae of Sections 2 and 3. In light of Jenkins’ analysis | will be brief. The
reduction is facilitated by the fact that the divergence of the adjugate of the curvature
tensor vanishes. To demonstrate this At be the contravariant components of
the adjugate of the symmetric surface tertsddsing (3.8, taking account of the
skew-symmetry 0£%#, and regarding1» andb»1 as being independent, | obtain

- oK
baﬁ = = &‘ak{;‘ﬁybky. (64)
0byp
The Mainardi—Codazzi equations
e"*bysq =0, (6.5)

the symmetry ob,,, and the identityef‘f = 0 then yield

~p
b.,

0, (6.6)

as claimed. In view of this result it is advantageous to write the curvature in terms
of its adjugate in expressions for the response functions. The appropriate formula
follows from (6.4) andNaGHDI's treatise [15, equations (A.2.22) and (A.2.23)], or,
directly from the Cayley—Hamilton theorem:

b*P = 2Ha"P — pP. (6.7)

Here,b*# are the contravariant componentsbof
To derive explicit forms of the response functions, it is necessary to evaluate the
derivatives ofo, H, andK with respect tai,s andbyg, regarded as independent
matrices. Further, the off-diagonal entries of each of these matrices are regarded as
being independent in accordance with (2.6). For exampte=fdet(a,g), then
da p

= , 6.8
o = (6.8)

and combining this with (2.7) gives

0 _ _Puap ang 9P

dagg 2 dbag

0. (6.9)



From (3.8), the derivatives of{ are

aH 1 oH 1
=—-b** and = Za*P, (6.10)
8610,/3 2 abaﬁ 2

the first of these having been obtained with the aid of the formula

dart

= ghtghb _ ghhgoh, (6.11)
8610,/3

which follows by differentiatingi** = e**¢*#a,g, with a1 andaz regarded as
being independent, and using (6.8). Finally, the derivatives afe given by (6.4)
and

K

= —Ka*P, (6.12)
3aa,3

which follows from (4.23) and (6.8).
The response functions (2.6) are now easily shown to be

0P = —p(pF, + 2K Fx + 2H F)a?® + p Fy b5
and (6.13)
MP® = p(3FnaP® + FxbP),

where (6.7) has been used, the subscripts denote partial derivatives, and the symme-
tries ofa®? andb*? have been used to condense the final results. Equations (6.13)
may be combined with (2.5) and

bhbH = KaP® (6.14)
to derive
NP = —p(oF, + K Fx + HFp)a® + L pFybP, (6.15)

which is symmetric in the present theory.

Expressions for tractions and bending couples may be derived by substituting
the foregoing formulae into (2.10) and (2.11).

| obtain explicit equilibrium equations by projecting (2.1) onto the tangent and
normal spaces ab atx and using the Weingarten and Gauss equations

Ne =—bfag and ag.p = bagn. (6.16)
Thus,
NP —s%pf =0, 8%+ NPbpy + p =0, (6.17)
where, from (2.8), (6.8) and (6.13)

—8% = (3pFn) ua®" + (pFg) b (6.18)



The foregoing formulae may be used to reduce (6.10}he final form

P = GPFr).apa®® + (pF).apb™ + 2Hp(0F, + K Fx) + p(2H? — K)Fyy.
(6.19)

This coincides with its counterpart iiENkINs' work, which contains a minor ty-
pographical error.
The tangential equations (6.1 #educe, after some effort, to

aP[(p%Fp) ¢ + p(FkK o + FuHg)] =0, (6.20)

which is equivalent to the vanishing of the expression in brackets by virtue of the
definiteness of the metric. In the classical theory of capillarity in witighand Fy
vanish identically, this yields the well-known result that the surface pregguig

is uniform. In the general case, (6.20) is equivalent to

(pr),a + Fpp,a + FgxK o+ FgHy = 0, (6-21)
which in turn may be written
(0Fp+ F) o =3F/06%, (6.22)

where the right-hand side is associated with the explicit dependeiiternt. This
result was obtained hienkins for homogeneous films with no such dependence,
and in that context furnishes an integral of the equations which generates a one-
parameter relationship amopgH andK . For films with material symmetry, (6.1)—
(6.3) imply that homogeneity, if it exists, is a property of the reference configuration.
Homogeneity is not preserved under transformations from one to another, unless
they are density preserving @r(x) is constant.

In the general case, (6.22) is integrable in any simply-connected region of the
surfaceifand only %/ 1, 5 = 0, wheree®” is the unitalternator ant}, = 9 F/36*
is the inhomogeneity. Exceptionally, (6.22) is satisfied identically by solutions of
the classical theory without restrictions on the inhomogeneity. In any event, (6.19)
and the integrability condition for (6.22) furnish an underdetermined system for
the components of the three-vector fiel@*). Thus, as in the classical theories
of capillary and bulk-fluid equilibria, the equilibrium equations do not suffice to
determine the locations of material particles. This is in accord with the intuitive
idea of fluidity.

Finally, I note that all the equations of this section remain valid in the presence of
the two-dimensional incompressibility constraint providg@, H, K) isreplaced

by
F=F(H, K)—vy/p, (6.23)

whereF is a constitutive function ang = p?F, is the constitutively-indeterminate
surface pressure (cf. (2.8)).



7. Energy minimizers

| obtain the guasiconvexity condition and related algebraic inequalities asso-
ciated with necessary conditions for energy minimizers. Although the minimum
energy test is inconclusive with respect to the dynamical stability of equilibria, it
nevertheless furnishes a formal necessary condition for asymptotic stability if the
associated dynamics are strictly dissipative [46, 47]. Granted this it is then also
necessary that stable equilibria furnish non-negative values of the second variation
of the energy. Thus, as in Section 2, let superposed dots denote derivatives with
respect to a parametethat labels configurations, evaluated at the equilibrium state
& = 0. The second variation of the energy functional (2.16) may then be written

E:Z/VI(U-FQng,X)dV—i-Z/Q. WdA, (7.1)
i ! J J

whereV; and<; are fixed reference configurations of the bulk fluids and the films,
andU = po® and W = poV¥ are the bulk and film energies per unit reference
volume and area respectively. The first of these is a function of the bulk fluid
deformation functiory (X;¢), as discussed in Section 2; the second, a function of
the metric and curvature induced by the parametrizatiéfi; ¢).

The second variation at aguilibriumstate is a homogeneous quadratic func-
tional of thefirst-order derivativesy andr. Using this state as reference, | write

E= Z/ A(gradu)dv + Zf B(aop, bap)da, (7.2)
i Vi Jj j

whereu(y) = x,

daﬁ =ay-Vp+apg- -V, baﬂ =NV (7.3)

wherev(6%) = f, and the covariant derivative is based on the metric induced by
r(6%) ate = 0[24]. FurtherA(-) andB(-, -) are homogeneous quadratic functions
involving the second derivatives bf andW with respect to their arguments. Equa-
tion (7.2) applies whether or not the two- or three-dimensional incompressibility
constraints are operative [25, 26].

To obtain the quasiconvexity condition | consider variations of the form

u@y) =curlw(y); w(y) =53 (z(y)), and v(6*) = sN@©%),  (7.4)
where
2(y) =871y —rg) and n@*) = z(r (6*)). (7.5)
Here,s is a positive number and the functioWs.), V(-) have compact support in

a three-dimensional regiob containing a pointg on one of the filmswg say. |
assume to be small enough that the intersectionpivith any other film is empty.



Sinceu(y) is solenoidal, it automatically satisfies the variational form of the
incompressibility constraint in the bulk fluid. Further, the requirement that there be
no flux of fluid across the film (Section 2) implies that

Uu-njy, =v-n=v(), (7.6)

wheren is the local orientation field og. If the film is incompressible in the sense
that local surface area is preserved, then the surface divergenc@oishes [23],
and the representation=v“a, + vn yields

vf"a = 2Hv, (7.7)

whereH is the mean curvature afp.
Local normal coordinates [15] may be used with (7.#) reduce (7.6) to the
form

aaﬂw}g;a =, (7.8)

wherewg (0%) = ag - W |, andv vanishes on the curve = 9D N wp. With v
prescribed, the existence of a covariant vector field satisfying this equation may be
proved by writinge®?wg = a*# ¢ g, which has a unique solution,. Then, for a
given parametrization @dop, (7.8) reduces to a second-order linear elliptic equation
for ¢. For sufficiently smooth Dirichlet data efthe existence of a unique solution
follows from [48, Theorem 21(1)]. Unfortunately such a scheme does not yield the
existence ob” satisfying (7.7) forincompressible films. For example, settfhg=
a“ﬁqb,,g, | again obtain a linear elliptic equation fer but the additional requirement
thatv® vanish ore entails the simultaneous specification of homogeneous Dirichlet
and Neumann data fa¥. Exceptionally, ifwg is @ minimal surfacelf = 0) in a
neighborhood of g, thenv® may be any divergence-free vector field that vanishes
onc. Alternatively, one may specify a vector field which vanishes together with
its divergence om and use (7.7) to calculateat points whered = 0, but in the
absence of detailed information about the surtagi may not be feasible to ensure
thatv then possesses the properties required to generate the Legendre-Hadamard
condition from the quasiconvexity inequality. This is due to the fact that it is the
component off normal to the tangent planem, rather tharv, that is relevant, as
shown below.

Let V(-) andV x (-) denote the gradient and curl with respecttdhen,

u@y) = 82V x W(z), gradu(y) =8V (V x W),

7.9
Vo =8(VV)a, and vgs = (VVV)[a, ® ag]l +8(V)a, g. (7.9)

Now, letu® be smooth extensions of the coordinat®&®nto the plane tangent ta
atrg. | take these to baffinecoordinates such thaty/ou® =3, the superposed
circle identifying the values of functions ag. Thus,82y/du®du? = 0, and it
follows that

(VVI)[&y @ 8g] = V4, (7.10)

where, here and henceforth, commas denote derivatives with respéct to



| change variables in accordance with (7.8nd use (7.3), (7.9) and (7.10).
Holding D fixed, | divide the second-variation inequality By and pass to the
limit to obtain the quasiconvexity condition for the film:

B“ﬂ)‘“/ W oW 3uda 2 0, (7.11)
w*

wherew = - ¥, »* is the intersection ob with the tangent plane @fg atrg, and

2

B — pa—\p (7.12)
3bapgdby,

is evaluated atg in the configurationog. The symmetries inherent in this tensor

ensure that (7.11) is equivalent to the inequality obtained by replacing the integrand

with w ogw 5., Wherew is now complex-valued and is its conjugate. The result-

ing inequality is in standard form for generating the relevant Legendre-Hadamard

condition (e.qg., [49, pp. 229-231)). Fer, | choose

wu®) = ap Py explit(cou®)], (7.13)

wherea, (> 0) and¢, are real constants amndis a realC function supported
in w*. Then,

w,aﬂw,ku = az¢2§a§ﬂ§A§/4 + O(f_l)a (7-14)
and passing to the limit — oo in (7.11) yields the necessary condition
B gycp6icu 2 0 (7.15)

for all ¢,. | conjecture that this condition is also necessary in the presence of the
two-dimensional incompressibility constraint. A similar inequality was obtained
by HiLGERrs & PipkiN [21] for elastic plates isolated from other media.

For fluid films the associated restriction on minimizing states follows by using
(3.6), (6.4) and (6.10) to reduce (7.15) to the form

%FHH +2xFyg + x°Fgk >0 where x = E“ﬂgagﬁ. (7.16)

In this expression the first-order derivativeofwith respect taH does not appear
becausef is a linear function of the matrik.g; the first-order derivative with
respect tok does not appear because the second derivativ&swith respect to
this matrix involve the permutation tensor density in such a way as to make no
contribution to (7.15).

For incompressible films (cf. (6.23)), several forms of the funciiti#l, K)
compatible with (7.16) have been proposed. Among thémrricH’s function [7]

oF = a(H — Hp)®> + BK, with « > 0, (7.17)

has been the most widely applied and studied. §entaneous curvaturey is a
parameter introduced to render the energy an non-even function of the curvature
tensor. The resulting formulation is thought to furnish an appropriate model for



monolayer films such as those associated with oil-in-water or water-in-oil emul-
sions [1]. Bilayer response is recovered by setthig—= 0. Some writers model
morphological phase transformations by allowiflg to depend on amphiphile
concentration, which in turn is the principal factor influencing local film chemistry
[50].

Existence theory for the local equilibrium equations based on Helfrich’s func-
tion and related functions has been discusseNivycHe [51]. However, from the
viewpoint of variational theory, Helfrich’s model is deficient in the sense that the
energy of a given film is generally not bounded below. This is easily seen with
reference to compact orientable films by applying the Gauss-Bonnet formula

/ Kda =4n(1-g), (7.18)

whereg is the genus [52]. Fo8 > 0, the second term in (7.17) contributes a term

to the total film energy that decreases without boungliasreases. The same term
contributes only a fixed constant to the energy in the presence of the topological
constraints imposed by some writers [7, 11].

A simple alternative model for bilayers, as yet unexplored, may be based on
the assumption that is a function ofK depending parametrically on temperature
and amphiphile concentration. At fixed concentration and temperature, the graph
of such a function might exhibit local minima & > 0, = 0,and < 0. These
correspond to points of convexity of the energy in accordance with (7.16). The
first alternative promotes the formation of spherical vesicles interspersed in the
bulk fluid; the second, developable surfaces, including the cylindrical and lamellar
phases; and the third, the bicontinuous phases associated with compact orientable
surfaces having large genus [3, 4]. In the latter case the minimizing val&e of
cannot be achieved at all points of the film as there are no surfaces in 3-space
with constant negative Gaussian curvature [53]. Nevertheless it is appropriate to
conjecture that configurations with high genus are promoted by a sufficiently deep
and wide energy-well spanning an interval of the domaiafh which K < 0.

The structure of the energy-wells might depend on concentration and temperature
in such a way as to favor some of these structures over others in accordance with
the observed phase behavior of the particular system at hand.
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