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Bilayer surfaces composed of oppositely oriented monolayers furnish another
mechanism for shielding tail groups. These occur in a variety of forms including
planar lamellae, spherical vesicles, and variants of the bicontinuous topology [2].
Bilayers of biological surfactants, called phospholipids, are also known to be of
fundamental importance to the structure and function of cell walls [5, 6].

Typical length scales for these microstructures are so small that local interac-
tions due to changes in the alignment of the amphiphilic molecules have a pro-
nounced influence on surface morphology. Cosserat surface theory has been the
preferred continuum model, since surfactant systems do not exist in bulk. Local
effects associated with alignment are represented by assigning elastic resistance to
the configurations of a director field representing molecular orientation. Variants of
this model have been developed byHelfrich [7], Ericksen [8], Jenkins [9], and
Krishnaswamy [10]. The general theory accounts for surface strain, director exten-
sion, and director tilt, the latter being associated with misalignment of the director
and the surface normal. However, there is a preference in the physical-chemistry
and cell-biology literatures for a simpler model based on surface geometry alone [7,
11]. This is justified by the belief that local Van der Waal’s and electrostatic forces
tend to act in such a way as to suppress misalignment and maintain roughly fixed
tail lengths, particularly in bilayers [7, 12].

In this work I discuss a purely mechanical Cosserat theory incorporating lo-
cal constraints on the director field. The film is assumed to be a material surface
consisting of a fixed set of mass particles. Two essentially equivalent models are
envisaged according to whether or not films are presumed to possess material sym-
metry. In the affirmative case an appropriate concept of fluidity is introduced based
on ideas ofNoll [13] and their adaptation to material surfaces byMurdoch &
Cohen [14]. The relevant Legendre-Hadamard inequality for energy-minimizing
equilibria is obtained and used to motivate a simple proposal for the description of
bilayer response.

2. Equilibrium of elastic films

I use the nonlinear Kirchhoff-Love theory of shells to obtain a simple model
for material fluid-film equilibria. The Kirchhoff-Love shell may be interpreted as
a one-director Cosserat surface [15] with the director field constrained to coincide
with the local orientation field. For amphiphilic bilayer films, the director can be
thought of as a line segment formed by two hydrophobic molecular tails connecting
opposed hydrophilic heads, each located at a lateral interface with the adjoining
bulk fluid. The constraint is intended to represent the suppression of director tilt and
extension or contraction in accordance with the generally accepted phenomenology.

The basic theory has been developed in a variety of ways. Traditionally, varia-
tional principles were used to obtain the field equations and Kirchhoff edge condi-
tions [9, 16–19].Naghdi [15] advanced an alternative approach based on a set of
balance, invariance, and constitutive postulates distinct from those for a Cosserat
shell. I [20] recently obtained the Kirchhoff-Love theory from Naghdi’s postu-
lates for Cosserat surfaces together with local constraints on the director field and
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its gradient. The same theory may also be obtained by regarding the shell as an
elastic surface with an energy per unit mass that responds to the first and second
gradients of a map from a parameter plane to a surface in 3-space. The second
gradient contributes both a curvature and a metric gradient. If the influence of the
latter is suppressed the Kirchhoff-Love theory can be recovered via a variational
argument [21].

The well-known equilibrium equations for elastic Kirchhoff-Love shells are
summarized here using the notation of [20]. Thus, letr (θα) be the Euclidean posi-
tion of a particlex with convected coordinatesθα; α = 1, 2, on a surfaceω. In this
work I am mainly concerned with the local equations of the theory and therefore
freely exploit the local equivalence of surfaces and parametrized surfaces. Wher-
ever global equations are discussed it will be assumed that the relevant patch of
surface either admits of a single coordinate chart or that it can be covered by the
union of such patches.

Local equilibrium of forces may be expressed concisely as

Tα
;α + ρf = 0, (2.1)

whereρ is the mass of the film measured per unit area ofω, f is the distributed
force per unit mass,Tα are stress vectors that contribute to the tractions transmitted
across material curves, and the semi-colon is used to denote the surface covariant
derivative using the metric of the coordinates induced byr (θα) [20]. The stress
vectors are given by

Tα = Nα + Sαn, (2.2)

whereNα are constitutively determined tangential vector fields,Sα is a contravariant
vector field to be specified, and

n =1
2εαβaα × aβ (2.3)

is the local orientation ofω. Here,aα = r ,α are the tangent vectors induced by the
coordinates, commas denoting partial derivatives,εαβ = a−1/2eαβ is the permuta-
tion tensor density,eαβ (= eαβ) is the unit alternator (e12 = +1), anda = det(aαβ)

whereaαβ = aα · aβ is the induced metric, non-negative definite in general and
assumed here to be positive definite. It is well known that the surface divergence
in (2.1) may be writtenTα

;α = a−1/2(a1/2Tα),α, allowing one to avoid Christoffel
symbols.

The constitutively determinate term in (2.2) is expressible in the form [20]

Nα = Nβαaβ, (2.4)

with

Nβα = σβα + bβ
µMµα, (2.5)

where

σβα = ρ

(
∂9

∂aαβ

+ ∂9

∂aβα

)
, Mβα = ρ

2

(
∂9

∂bαβ

+ ∂9

∂bβα

)
, (2.6)
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andbαβ = n · r ,αβ are the symmetric coefficients of the second fundamental form
onω. The sign convention forMβα differs from that commonly used in shell theory
[15, 20], and the mixed componentsbα

β in (2.5) are related tobαβ throughbαβ =
aαλb

λ
β . Further, the coordinate-dependent function9(aαβ, bαβ) is the Galilean-

invariant energy per unit mass of the film. I temporarily suppress the dependence of
9 on the particlex. The formof this function is such that itsvaluesare independent
of the coordinate system as the energy is required to be an absolute scalar field [15,
Section 13].

The local mass conservation law is

ρ0 = Jρ, whereJ = (a/A)1/2; (2.7)

A andρ0 are the values ofa andρ respectively on a fixed reference surface�.

Many writers study the response of fluid films subject to the two-dimensional
incompressibility constraintJ = 1.This implies that deformations preserve surface
area, and may be added to the list of constraints already imposed to obtain the local
Kirchhoff-Love response functions from those of the Cosserat theory, as explained
in [20]. The procedure used in that work yields equations identical to those obtained
by using the formal Lagrange multiplier rule

9 = 9̄(aαβ, bαβ) − γ /ρ, (2.8)

in (2.6), where9̄ is a constitutive function andγ (θα) is a constitutively indetermi-
nate scalar field.

In the absence of distributed couples the normal components of (2.2) are given
by

Sα = −M
αβ

;β . (2.9)

From the viewpoint of the constrained Cosserat theory, this follows from a director
balance law which furnishes the values of the constitutively-indeterminate vector
field Sα a posteriori[20].

In the present version of the theory, the moment-of-momentum balance is
satisfied as an identity in accordance with conventional finite elasticity theory.
Naghdi [15, 22] used this balance law to determine the skew part of the coefficient
matrix in (2.4).

The foregoing equations are well known in principle but rarely stated in forms
that illuminate the underlying physics. In interpreting the various terms, it is helpful
to relate them to the tractions and moments transmitted across material curves. To
this end letθα(s) be an arclength parametrization of such a curve onω and letτ be
the unit tangent in the direction of increasings. Then,ν = τ × n is the rightward
unit normal as the curve is traversed in the same direction. This has components
να = εαβτβ whereτα = dθα/ds are the components ofτ andεαβ = a1/2eαβ are the
covariant components of the permutation tensor density. The traction transmitted
by the material on the right to the material on the left is then given by [20]

t = Tανα − (Mβανατβn)′, (2.10)
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whereτα = aαβτβ and the prime denotes the derivative with respect tos. This
furnishes the force per unit arclength. One then uses (2.2) to interpretSανα as a
transverse shear traction across the curve. The moment per unit length is [20]

m = r × t − Mτ , where M = Mβανβνα (2.11)

is the bending couple.
Global forms of the equations for a simply-connected regionr ⊂ ω are obtained

by using Stokes’ theorem in the form∫
r

Tα
;αda =

∫
∂r

Tαναds (2.12)

together with (2.1) and (2.10). The resulting force balance is [20]∫
r

ρf da +
∫

∂r

tds +
∑

gi = 0, (2.13)

where

g = Mβα[νατβ ]n (2.14)

is the force acting at a vertex of∂r if the latter is piecewise smooth with a finite
number of points whereτ andν are discontinuous; the sum ranges over all the
vertices; and the notation [·] is used to denote the forward jump as a vertex is
traversed in the sense of increasings. Equation (2.13) is derived by regarding
the second term on the right in (2.10) as a distributional derivative. Further, a
straightforward but involved calculation [20] yields the global identity∫

r

ρr × f da +
∫

∂r

mds +
∑

r i × gi = 0, (2.15)

which may be regarded as the specialization to equilibrium of the moment-of-
momentum balance.

Most treatments [9, 17] of the Kirchhoff-Love equations are based on stationary-
or minimum-energy considerations in the spirit of Kirchhoff’s original work [16]. I
record here an energy functional which is rendered stationary by films coexisting in
equilibrium with bulk fluids in a gravity field. This energy is used in the discussion
of necessary conditions for minimizing states in Section 7. It is sufficient for this
purpose to confine attention to local compactly supported variations defined on a
closed connected regionR consisting of the bulk fluids and a number of films.
These films consist either of compact (closed) surfaces contained entirely within
the interior ofR, or of surfaces that intersect∂R along certain curves. In the latter
case I avoid the complicated and irrelevant boundary terms associated with the
film traction and moment by considering variations that vanish together with their
gradients on∂R.

The appropriate energy functional is

E[y, r ] =
∑

i

∫
vi

[8(%(y))+ gk · y]%dv +
∑
j

∫
ωj

ρ9da, (2.16)
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wherevi andωj respectively are the volumes and surfaces occupied by the bulk
fluids and films inR, 8 is the energy of a bulk fluid phase per unit mass,%(y) is the
associated mass density,gk is the gravitational body force per unit mass (withk a
fixed unit vector), andy is the spatial position of a bulk-fluid particle. The weights
of the films are presumed negligible and the indices have been suppressed in the
integrands to avoid cumbersome notation.

That equilibria render this energy stationary under the stated conditions may
be verified by evaluating the Gˆateaux differential ofE[yε, r ε] with respect to a
parameterε at the valueε = 0 (say) associated with the equilibrium state. Here,yε

andr ε are the parametrized positions of particles of the bulk fluids and the films
respectively. I refer to [23, 24] for details of the lengthy formal argument. In these
works the elastic surface is regarded as being convected by the deformations of
the medium with which it coexists, but the conclusions drawn remain valid under a
weaker restriction appropriate to the system at hand. In particular, the differential of
the bulk energy may be transformed to an expression involving surface integrals of
the fluxesPu · n̂ over the boundaries of the bulk phases, whereP = %2d8/d% is the
pressure,̂n is the exterior unit normal to the boundary of a typical phase, andu = ẏ
is the variation ofy, the superposed dot denoting theε-derivative ofyε at ε = 0
[23]. A typical film ω constitutes part of the boundary between two such phases,
each of which contributes a distinct flux, the associated normals having opposite
senses. Ifn is the orientation field onω, the net flux is[Pu] · n, the bracket denoting
jumps asω is traversed in the direction ofn. For systems with monolayer or bilayer
amphiphilic films, I assume that the bulk phases do not penetrate the films as the
alternative would entail contact between water molecules and the water-repellent
hydrophobic tail groups of the surfactant molecules. This implies thatu± ·n = v · n
wherev = ṙ is the variation ofr on ω andu± are the limits ofu on either side.
Thus[u] · n = 0 onω and the net flux reduces to[P ]v · n. The stated equilibrium
equations then follow from the fundamental lemma whether or not the film is a
material surface with respect to the surrounding fluid as the tangential components
of v need not be related to the tangential components ofu±.

To summarize, (2.16) is stationary atε = 0 if and only if (2.1) is satisfied on
each film withρf = pn, wherep = −[P ], together with

gradP = −%gk (2.17)

in each of the bulk phases [23], where grad(·) is the gradient with respect toy.
A standard formal argument yields the same results in the presence of two- or

three-dimensional incompressibility constraints provided (2.8) and

8(%) = −P̂ (X)/% (2.18)

are used in (2.16) as appropriate, whereP̂ is constitutively indeterminate,

% = %0(X)/ det (Gradχ(X)), (2.19)

χ(X) is a one-to-one deformation function of a bulk phase with valuesy and fixed
domain,%0(X) is the fixed density at particleX, Grad(·) is the gradient with respect
to X, andP = P̂ (χ−1(y)) [25, 26].
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The difference between the functional (2.16) and any other that is rendered
stationary by the local equilibrium equations involves null-Lagrangians that do not
affect the conclusions of Section 7. These have been characterized byBall [27] in
a general context that incorporates the present model.

3. Constitutive Theory

In the foregoing I have mentioned only those concepts that are fundamental to
the equilibrium of material surfaces under the stated hypotheses. In particular I have
not discussed any material symmetry properties that fluid films may possess, since
it appears to me that it is possible to pursue alternative developments according
to whether or not films are assumed to possess such symmetry at the outset. Both
are subsumed under elasticity. These concepts have been confused throughout the
large literature on fluid films. The confusion appears to stem from the widespread
tacit belief that material symmetry is equivalent to Galilean invariance. Further,
from Jenkins’ work [9] and from the analysis presented here, there emerges the
fortuitous fact that films with fluid-like material symmetry have response functions
that are formally the same as those of the alternative class.

Following Noll [13], the idea that material bodies possess symmetry is nor-
mally phrased in terms of restrictions on the energy9 associated with invariance of
response under maps from somefixedlocal configuration to another. This generates
an abstract symmetry group for the material manifold, which may then be used to
obtain, via Noll’s rule, the symmetry group relative to any fixed local configuration.
Noll’s theory has been adapted to material surfaces byMurdoch & Cohen [14]. In
this setting it becomes apparent that his concept is distinct from that of coordinate
form invariance, according to which9, regarded as a function of tensor compo-
nents, is the same function of the components obtained by certain distinguished
coordinate transformations. Form invariance is regarded as the primitive notion of
symmetry inNaghdi’s work on shells [15] and inRivlin’s formulation of finite
elasticity theory [28].

I define fluidity in the framework of the Murdoch-Cohen theory in Section 4 and
proceed to obtain a canonical energy function9 for films that possess symmetry. In
general the energy is defined on the body manifold, which in turn is parametrized by
a global coordinate chartθα. In other words, a one-to-one correspondence may be
established between each pointx of the (simply-connected) body manifold and fixed
values of the pair of coordinates on a rectangular grid. Isometric immersions of this
manifold into 3-space may then be described by thelocal surface parametrizations
r (θα).To ensure that the energy is a scalar field on the body manifold, it is necessary
that the form of the function9 depend on the parametrization in such a way that
its values do not.

One way to accommodate this requirement and the notion of fixed configuration
embodied in the Noll-Murdoch-Cohen theory is to assume that

9(aαβ, bαβ) = 9̂(C, κ), (3.1)
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where9̂ is a coordinate-independent function,

C = aαβAα ⊗ Aβ (3.2)

is the invertible symmetric surface strain tensor, and

κ = bαβAα ⊗ Aβ (3.3)

is the symmetric relative curvature tensor. This is the viewpoint adopted in most
works on elastic surfaces. In these definitionsAα are dual vectors to the induced
tangent vectorsAα = x,α at the particlex, wherex(θα) is the local parametrization
of a reference surface�. Given the parametrization, these tensors, together with
9̂, are functions of the matricesaαβ andbαβ as suggested by the notation of (3.1).

Murdoch & Cohen introduced a primitive notion of material surface that
includes (3.1) as a special case. In their work the local constitutive response is
defined by Galilean-invariant functions of

F = aα ⊗ Aα (3.4)

and its gradient. This maps the tangent space of� to that ofω atx. For hyperelastic
surfaces, their constitutive equations follow from (3.1) if dependence on strain
gradient is suppressed.

The notion that elastic bodies possess symmetry of one kind or another is so
widespread that it seems to be regarded as fundamental. In this work I regard it
simply as a constitutive assumption. What is fundamental is the requirement that
the energy9 be a scalar field on the body manifold, and there are other ways to
ensure this. For example, one notion entirely compatible with the general theory
of material surfaces is that9 is sensitive only to the local configuration of the film
in a neighborhood ofx rather than to the kinematical variables that describe its
deformations.

A similar premise underlies the conventional theory of single-phase liquid-
crystal equilibria [29], in which a director field defining the crystalline orientation
is described by the Euler equations associated with an energy that depends on the
local values of the director and its spatial gradient. There is no dependence on the
kinematics of director deformation or on the deformation of the fluid medium. In-
deed the director configurations are deemed to be independent of the deformations
of the fluid in the commonly accepted formulations [29, 30]. The canonical form of
the energy function is then deduced from Galilean invariance and any additional re-
strictions deemed to be relevant in particular circumstances, but these are unrelated
to symmetry in Noll’s sense.

For films, one may base such a theory on the premise that the energy per unit
mass is a function of the surface densityρ and the symmetric surface curvature
tensor

b = bαβaα ⊗ aβ = −n,α ⊗ aα, (3.5)

where theaα are the duals to theaα on the tangent planes ofω. The energy then
responds only to the local shape and density ofω. Galilean invariance requires
that it be unaffected by the replacement ofb with QbQt for all b in its domain,
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whereQ is orthogonal and the superscriptt is used to denote transposition. Here
I take this domain to consist of all ordered pairs of positive scalars and symmetric
surface tensors defined on the tangent space ofω at the particle in question. For the
invariance condition to make sense it is then necessary to restrictQ such thataα

andQaα span the same vector space. This restriction entails no loss of generality
since the rotational invariance of the energy implies that, at a given particle, the
tangent space obtained by rotatingω may be identified with the tangent space toω

itself insofar as the constitutive response is concerned [14]. TheQ appearing in the
invariance condition should then be interpreted as the projection onto the tangent
space of an arbitrary three-dimensional rotation. As such it is a two-dimensional
rotation if the three-dimensional rotation preserves the local orientation ofω and
a two-dimensional orthogonal transformation in the general case. This form of the
invariance condition is equivalent to that adopted byMoeckel [31, Section 6(c)]
in his thermodynamical theory of interfaces.

Galilean invariance is thus tantamount to the invariance of the energy, re-
garded as a function of a symmetric two-dimensional tensor, under arbitrary two-
dimensional orthogonal transformations. For this it is necessary and sufficient that
the energy be expressible in the form [32]

9(aαβ, bαβ) = F(ρ, H, K), (3.6)

where

H = 1
2tr b, K = det b (3.7)

are the mean and Gaussian curvatures ofω respectively. This in turn may be ex-
pressed as a function of the matricesaαβ andbαβ, as indicated, by using the local
mass conservation law (2.7) and the formulae

H = 1
2aαβbαβ and K = 1

2εαβελµbαλbβµ, (3.8)

where(aαβ) = (aαβ)−1 is the dual metric, εαβ = a−1/2eαβ anda = det(aαβ).

Therefore this alternative constitutive formulation, essentially equivalent to that
introduced byBlinowski [33], also furnishes a model for material surfaces. It is
similar in some respects to a theory proposed byFaetti & Virga [34] for liquid
crystals with surface energy, provided that the fluid orientation is aligned locally
with the surface normal. Related theories had been proposed earlier byJenkins &
Barrat [35] andEricksen [36].

4. Films with material symmetry

Material symmetry theory for surfaces is not settled. This appears to be due
to the difference between form invariance with respect to distinguished coordinate
transformations and Noll’s invariance of response under distinguished compositions
of maps. This distinction is easily overlooked in the conventional theory of simple
materials as the two concepts then lead to mathematically identical problems. For
plate and shell theories, a number of alternative proposals have been advanced,
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some incorporating elements ofNoll’s approach [14, 37, 38]. Among them, I
find that of Murdoch & Cohen [14] to be the most satisfactory extension of
Noll’s concept. This is based on the notion that local configurations of the body
are to be regarded as the restrictions to surfaces of diffeomorphisms of 3-space.
Symmetries are associated with local maps amongfixed surfaces that leave the
energy invariant in a given diffeomorphism. The implications of this idea for elastic
surface-substrate interactions have been examined in [24]. I present a brief summary
of the Murdoch-Cohen theory here, with adaptations tailored to the narrower class
of material surfaces considered.

Preliminary to this, I examine certain local properties of maps between two
fixed surfaces� and�∗, with local parametrizationsx(θα) andx∗(θα) respectively,
occupied by the same material body. Thus, letφ(X) be aC2 orientation-preserving
diffeomorphism of 3-space to itself defined on an open neighborhood of a material
pointx with coordinatesθα. LetN∗ ⊂ �∗ be the intersection of this neighborhood
with �∗, and supposex = φ(x∗) for x∗ ∈ N∗. Then,N = φ(N∗) ⊂ � is the
intersection of the same set of material points with�.

If A∗
α andAα are the tangent vectors induced byθα on�∗ and� atx, then

Aα = (∇φ)A∗
α and Aα,β = (∇∇φ)[A∗

α ⊗ A∗
β ] + (∇φ)A∗

α,β, (4.1)

where∇φ and∇∇φ are the first and second gradients ofφ(X) evaluated atx ∈ N∗.
The operation in the second expression is defined, using Cartesian notation, by

(∇∇φ)[u ⊗ v] = (∂2φi/∂XA∂XB)uAvBei , (4.2)

with {ei} an orthonormal basis for 3-space.
In the remainder of this section I assume the tangent spaces to the various

surfaces occupied by the body to coincide at the particlex. Galilean invariance
implies that this entails no loss of generality in the characterization of constitutive
response [14]. With this adjustment (4.1)1 is then equivalent to

Aα = HA∗
α = Hλ·αA∗

λ, (4.3)

where

H = Aα ⊗ A∗α = Hα·βA∗
α ⊗ A∗β, Hα·β = A∗α · (∇φ)A∗

β, (4.4)

and theA∗α are dual toA∗
α. The properties ofφ ensure thatH is an invertible linear

transformation from the tangent space to itself. Accordingly, there is a tensorR of
the same type such thatRt = H−1, and it is straightforward to show that

Aα = RA∗α. (4.5)

Let N be the orientation of� atx. Then,

µαβN = Aα × Aβ, (4.6)
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whereµαβ = A1/2eαβ is the associated permutation tensor density. I combine this
with a similar formula for the orientationN∗ of �∗ and use (4.3) withµ∗

λγ Hλ·αH
γ
·β =

(detH)µ∗
αβ to derive

µαβN = (detH)µ∗
αβN∗. (4.7)

This result andA/A∗ = (detH)2, which follows from (4.3), yield

detH = ±(A/A∗)1/2

according asN = ±N∗. In particular, detR (= 1/ detH) is positive if and only if
� and�∗ have the same orientation; otherwise it is negative.

Let B be the curvature tensor of� atx. ThenB = BαβAα ⊗ Aβ , whereBαβ =
N · Aα,β . LetB∗, defined similarly, be the curvature tensor of�∗ at the same particle.
The relationship between the two curvatures may be inferred from (4.1)1,2, (4.5)
and the fact that∇φ maps the tangent space to itself:

R−1BR−t = (N · ∇∇φ[Aα ⊗ Aβ ])Aα ⊗ Aβ + (N · (∇φ)N∗)B∗, (4.8)

wherein the first term on the right has the same value regardless of which set of
tangent bases is used.

Consider a configurationω of the film parametrized locally byr (θα), and letC,
κ andC∗, κ∗ be the strains and curvatures ofω relative to� and�∗ respectively.
Since the first and second fundamental forms onω are determined by its parametric
representation, it follows from (3.2), (3.3) and (4.5) that

C = RC∗Rt and κ = Rκ∗Rt . (4.9)

The energy per unit mass is presumed to be a property of the body in a given
state. As such, its values atx are not dependent on the reference surface used to
compute them. In the notation of (3.1),

9̂∗(C∗, κ∗) = 9̂(C, κ) = 9̂(RC∗Rt , Rκ∗Rt ), (4.10)

where9̂ and9̂∗ are constitutive functions defined on� and�∗.
Consider another diffeomorphismξ(X) of the same kind asφ but with the

property thatr = ξ(x) for x ∈ N. This induces atx a strain

C = ((∇ξ)Aα · (∇ξ)Aβ)Aα ⊗ Aβ (4.11)

relative to� and a relative curvature obtained with the aid of the formula

κ = F tbF, (4.12)

which follows from (3.3)–(3.5). With the tangent spaces aligned atx, F plays the
same role in the local map from� to ω as that played byH in the map from�∗ to
�. Accordingly, (4.8) and (4.12) give

κ = (n · ∇∇ξ [Aα ⊗ Aβ ])Aα ⊗ Aβ + (n · (∇ξ)N)B, (4.13)
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wheren is the orientation ofω at x. For definiteness, and (by Galilean invari-
ance) without loss of generality [14], I choose the orientations of the reference and
distorted surfaces to coincide atx. Thus,n = N in (4.13).

To characterize the relationship betweenN and N∗ due to symmetry, it is
necessary to determine the strainC̄ and curvaturēκ relative to�∗ induced atx by
r ∗ = ξ(x∗) for x∗ ∈ N∗. These are given by the obvious modifications to (4.11)
and (4.13) in whichn∗ = N∗. The values of∇ξ and∇∇ξ are the same in both sets
of formulas, and it follows easily that the strains are also equal, butκ̄ andκ differ
in a manner that depends on the relative orientations ofN∗ andN :

C̄ = C, κ̄ =
{

κ + (N · (∇ξ)N)(B∗ − B); detR > 0,

− κ + (N · (∇ξ)N)(B∗ + B); detR < 0.

}
, (4.14)

whereinB andB∗ are connected by the mapφ(X) through (4.8).
Following Noll [13], Murdoch & Cohen [14] regardN andN∗ as being

related by symmetry if they respond identically to thesameξ(X). Then,9̂(C, κ) =
9∗(C̄, κ̄), which, when combined with (4.10), yields

9̂(C, κ) = 9̂(RC̄R
t
, Rκ̄Rt ). (4.15)

This is identically satisfied for allC andκ in the domain of9̂ if φ is the identity
map with∇∇φ = 0 and∇φ = I , the unit tensor for 3-space, andR the projection
of I onto the tangent space atx (detR = 1, N∗ = N, B∗ = B). However, it is
not at all certain that there exist other mapsφ with the required properties for
arbitrary surfaces. General surfaces may therefore be expected to have only trivial
symmetry. Particular surfaces with non-trivial symmetries specific to solid films
have been studied in [24].

Murdoch & Cohen have shown that the pairs(R, B∗ ± B) satisfying (4.15),
with the sign chosen in accordance with (4.14), are elements of a group. Thus,
arguments used in conventional elasticity may be used here to restrict the entries
R to unimodular (surface) tensors(detR = ± 1).

The structure of amphiphilic bilayers and the high degree of in-plane mobility
observed in equilibrium states suggest a definition of fluidity analogous to that of
Noll [13] for conventional bulk fluids. Thus, suppose the embedding geometry of
N∗ ⊂ �∗ is that of a plane, so thatB∗ = 0 at x. For suchN∗, I define fluidity
by the requirement that (4.15) be satisfied for all affineφ(X) (∇∇φ ≡ 0) with the
properties that∇φ is proper unimodular (det∇φ = + 1) and maps the subspaces
T and span{N} to themselves, whereT is the common tangent space atx. The
induced surface tensorR fulfills the requirement|detR| =1, and (4.8) implies that
N is related toN∗ by symmetry only ifB = 0. Accordingly, (4.14)2 simplifies to
κ̄ = ± κ and (4.15) becomes

9̂(C, κ) = 9̂(RCRt , ±R κRt); detR = ± 1. (4.16)

This definition of fluidity is meant to reflect the small-scale three-dimensional
structure of bilayers in configurations in which the interfaces between the bilayer
and the bulk fluid are parallel planes, as depicted, for example, in [5, Figure 1.1]
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and in [12, Figure 4.2]. Its implications for response in arbitrary configurations are
of primary interest here.

To obtain the canonical form of the energy function, I note that surface rota-
tions (R−1 = Rt , detR = +1) are admitted by the definition. The appropriate
specialization of (4.16) is satisfied for all suchR if and only if 9̂ is expressible as
a function of the elements of the hemitropic function basis [32]:

I = {tr C, detC, tr κ, detκ, tr (Cκ), tr (Cκµ)}, (4.17)

whereµ = µαβAα ⊗ Aβ. Invariance under arbitrary proper-unimodular transfor-
mations implies that the energy is expressible as a function of all independent
invariants formed from the list (4.17) that are also proper-unimodular invariants.
That this class of functions is the most general one to fulfill the stated requirement
follows from the fact that invariance under the larger set of transformations implies
invariance under the smaller set. Thus, while any such function is necessarily ex-
pressible in terms of the elements of the setI , it cannot be an arbitrary function of
these elements.

The obvious candidates for inclusion are detC and detκ . Another invariant
having the required property is

σ = (trC)(trκ) − tr (Cκ). (4.18)

To prove this I use the Cayley–Hamilton theorem for arbitrary symmetric surface
tensorsA:

Ã = (trA)1 − A, (4.19)

whereÃ is the adjugate ofA and1 is the unit tensor for the fixed tangent space at
x. Thus,

σ = tr (C̃κ) = tr (Cκ̃). (4.20)

SinceC is presumed invertible, the first alternative givesσ = (detC) tr (C−1κ), in
which the second factor is invariant under the replacementsC → RCRt andκ →
RκRt for all invertible surface tensorsR. The result then follows by the unimodular
invariance of detC. I have not succeeded in generating additional independent
proper-unimodular invariants from the setI and thus conjecture that the three
discussed comprise the maximal set.

It is easily demonstrated that detC = J 2. Granted the truth of the conjecture, it
is thus necessary that

9̂(C, κ) = G(J (C), σ (C, κ), κ(κ); x);
J (C)

.= (detC)1/2, σ (C, κ)
.= tr (C̃κ), κ(κ)

.= detκ,
(4.21)

whereG is scalar valued and parametric dependence on the particle is indicated
explicitly. Conversely, if (4.21) holds, then, sinceκ andσ are even and odd functions
of κ respectively, (4.16) is satisfied for all unimodularR (detR = ± 1) provided
thatG is an even function ofσ . Each of these generates a proper-unimodular∇φ
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through∇φ = R−t±N ⊗ N, with the sign chosen as appropriate. This in turn is
the general form of∇φ compatible with the definition of fluidity and so the bilayer
is fluid if and only if (4.21) holds withσ replaced by|σ |.

A monolayer film may be viewed as half a bilayer. For these an appropriate
definition of fluidity is obtained from that for bilayers by restrictingφ so as to
preserve the local orientation of the surface. In this case the second branch of
(4.16) is not applicable and the necessary and sufficient condition for fluidity is
again given by (4.21), but without the requirement thatG be an even function ofσ.

To determine the response functions relative to arbitrary local reference config-
urations, I re-write (4.21) in the form

9̂λ(Cλ, κλ) = Gλ(Jλ, σλ, κλ; x); Jλ = J (Cλ),

σλ = σ(Cλ, κλ), κλ = κ(κλ),
(4.22)

where the subscriptλ is used to identify the reference configuration. Withω fixed,
the transformation fromλ to an another local reference configuration,µ say, yields
the composition formulaJλ = JµD(x), whereJµ = J (Cµ) and D(x) is the
positive square root of the determinant of the strain ofµ relative toλ at x. Next,
I observe thatκ is related toκ in the same way that the Gaussian curvatureK is
related tob (cf. (3.7) and (3.8)). Thus,

κ = 1
2µαβµλµbαλbβµ = J 2K, (4.23)

and soκλ = κµD2, whereκµ = κ(κµ). The functionσ may likewise be expressed
in terms of the mean curvatureH by using (3.3) andC−1 = aαβAα ⊗Aβ in (4.20).
Comparison of the result with (3.8)1 gives

σ = 2J 2H. (4.24)

Hence,σλ = σµD2, whereσµ = σ(Cµ, κµ).

If 9̂µ is the response function withµ as reference, then

9̂µ(Cµ, κµ) = 9̂λ(Cλ, κλ), (4.25)

and (4.22) furnishes

9̂µ = Gµ(Jµ, σµ, κµ; x), (4.26)

where

Gµ(Jµ, σµ, κµ; x) = Gλ(JµD(x), σµD2(x), κµD2(x); x). (4.27)

This holds without restrictions on the embedding geometry ofµ or its tangent space.
Equation (4.21) therefore implies that the response relative to any local reference
configuration is sensitive to the strain and relative curvature through the associated
values ofJ, σ andκ.
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5. Alternative formulations

Jenkins [9] claimed that (3.6) is the necessary and sufficient condition for a
material film with symmetry to qualify as fluid by a standard which, though concep-
tually different from that used here, nevertheless imposes the same mathematical
restrictions on the energy. To my knowledge he is the only writer on the subject of
films to have investigated the consequences of fluidity as a restriction associated
with material symmetry rather than with Galilean invariance. His analysis com-
bines the elements of coordinate form invariance as advocated byNaghdi [15]
with the well-known procedure used in Noll’s theory of simple elastic materials
to derive the canonical constitutive equation for the energy in compressible bulk
fluids. The latter procedure was also used byCohen & Wang [39] to obtain the
general strain-energy function for fluid membranes with symmetry. Detailed criti-
cism of this procedure in the context of compressible bulk-fluid response has been
given byRivlin & Smith [40]. However, in that theory, as in the present theory of
fluid films, the logical errors in the analysis do not invalidate the conclusions.

Jenkins’ model is based on a constitutive framework whose Galilean-invariant
specialization is equivalent to (3.1). To model fluidity, he assumes the invariance of
the energy per unit mass under coordinate transformations with unimodular matri-
ces of partial derivatives; this he represents by (4.3) with|detH| = 1. For Galilean-
invariant energies, his concept of symmetry, which involves no restrictions on the
local embedding geometry of the reference surface, is then equivalent to (4.16), but
with the plus sign used in the argument of the right-hand side for general unimodu-
lar R. This minor discrepancy is of no consequence here since Jenkins’argument is
based on proper-unimodular transformations; (4.21) was likewise derived by using
the corresponding branch of (4.16). Accordingly, the problem of deriving reduced
forms of the energy that are necessary and sufficient for fluidity is essentially the
same in both theories, granted the Galilean invariance of the energy.

To pursue the question, I note that the tensorF defined by (3.4) possesses a
determinant if the tangent spaces of the reference and distorted surfaces coincide at
x, this then being equal to±J. Then,H = J−1/2F is a proper-unimodular surface
tensor if the surfaces also have the same orientation. It furnishes the basis for
Jenkins’ discussion of necessary and sufficient conditions for fluidity, in which the
response function is not presumed to be Galilean invarianta priori. In the present
context this choice corresponds toR = J 1/2F−t , which I use with (4.12) and the
relevant branch of (4.16) to obtain the apparent necessary condition

9̂(C, κ) = 9̂(J1, Jb)
.= 6(J, b), say, (5.1)

where1 is the fixed unit tensor for the considered tangent space and the relation
C = FtF has been used. The fluid film thus possesses flexural resistance by virtue
of the dependence of its energy on the curvatureb. That (4.21) is consistent with
this conclusion follows from (3.7), (4.23) and (4.24). No further conclusions can be
drawn from (4.16) and (5.1) sinceb is independent of the reference configuration.
Thus, to conclude that (5.1) is equivalent to (3.6) it would appear to be necessary to
subject the function6 to the further requirement of Galilean invariance. Of course,
this reasoning cannot be correct since6 furnishes the values of a Galilean-invariant
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function by definition, and, as such, is automatically invariant. The logical error,
as noted byRivlin & Smith in a similar context, may be traced to the failure
to recognize that, in the discussion of necessary conditions for (4.16),R must be
regarded as afixedtensor if this equation is to be meaningful. Here, the error leads to
the paradoxical conclusion that a Galilean-invariant energy is necessarily a function
of a tensor which is sensitive to superposed rigid rotations.

To correct the argument, I replaceF by F′ = a′
α ⊗ Aα, the gradient of the map

from � to a fixed surfaceω′ that coincides withω in a particular (but arbitrary)
deformation.F′ is equal toF for this deformation, but, unlikeF, is unaffected by
further deformation of the film or by superposed rigid motion. The use of thefixed
proper-unimodular tensorR′=√

J ′(F′)−t in (4.16), whereJ ′ = detF′, then yields
the necessary condition

9̂(C, κ) = 9̂(J ′1′, J ′b′) (5.2)

in place of (5.1), where1′ = aαβa′α ⊗ a′β, b′ = bαβa′α ⊗ a′β and thea′α are dual
to a′

α. These are just the strain and curvature ofω relative toω′, the values ofC
andκ with ω′ as reference. As such they are equal to1 andb in the considered
deformation, but are unaffected by superposed rigid motion. That (5.2) fails to
furnish a sufficient condition for the first branch of (4.16) to be satisfied may be
demonstrated by choosingR = R̄R

′
with R̄ proper unimodular. Then, from (5.2),

the relevant branch of (4.16) is seen to be equivalent to

9̂(J ′1′, J ′b′) = 9̂(J ′R̄1
′
R̄t , J ′R̄b

′
R̄t ) (5.3)

for arbitrary proper-unimodular̄R. This representation problem has the same so-
lution as that for9̂(C, κ) since the values of the functionsJ (·), σ (·, ·) andκ(·),
defined in (4.21), remain unaltered if� is replaced byω′.

The more recent work ofKrishnaswamy [10], which contains an extensive
discussion and evaluation of the empirical literature on the phenomenology of
biological bilayer response, is based onNaghdi’s [15] version of the Kirchhoff-
Love theory together with what appears to be a hybrid constitutive assumption
incorporating elements of the present models for films with and withouta priori
material symmetry. This study is perhaps the most comprehensive to date on the
mechanics of biological fluid films and related structures. In itKrishnaswamy
discusses unimodular transformations in relation to material symmetry but does
not use them to obtain restrictions on response functions. His assumptions are
apparently equivalent to those used to obtain (3.6), subject to the further requirement
that the energy be a form-invariant function of thereferencecurvature with respect to
affine coordinate transformations having arbitrary orthogonal coefficient matrices.
In the notation of the present work this additional restriction is equivalent to the
requirement that the energy be invariant under replacement ofB with RBRt , where
R is an arbitrary orthogonal surface tensor. However, even ifB is included explicitly
as a parameter in the constitutive function, it does not seem possible to reconcile
this assumption with the present theory unless restrictions are imposed on those
surfaces that can be related by symmetry. To show this I note, with reference to
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(4.8), that Nanson’s formula, which may be deduced directly from (4.1) and (4.6),
yields

N = (A∗/A)1/2(adj∇φ)N∗, (5.4)

where adj(·) is the adjugate. From this and (4.8) it is evident thatB |= RB∗Rt in
general. Affine rotations are among those maps for whichA∗ = A in accordance
with the restriction to unimodularR; for these it follows that(∇φ)N∗ = N, and,
therefore, thatB = RB∗Rt , but there is no reason to suppose that such maps fur-
nish symmetry transformations for arbitrarily curved surfaces. Consistency with
the present work is restored in the specialization to locally plane surfaces associ-
ated with the foregoing definition of fluidity, but Krishnaswamy’s theory is then
equivalent to the alternative model discussed in Section 3.

The propensity to identify the primitive concept of fluidity with isotropic re-
sponse functions ofb (cf. (3.6)) at the outset appears to have its roots in the work of
some investigators [e.g., 7, 41, 42] who adapted the quadratic strain-energy function
of Kirchhoff’s classical (isotropic) linear plate bending theory to model biological
fluid films with bending resistance. This practice remains widespread in the cur-
rent literature on the phenomenology of surfactant systems [1, 2, 43]. There the
energy is usually expressed as a linear combination ofK and(2H)2, which may be
consistently confused with the isotropic invariants detκ and(trκ)2 respectively in
the applications envisaged for the original theory. However, when these variables
are confused in the extension to finite deformations, such a formalism maintains
its relevance to fluidity in the sense ofNoll only because the variables used are
then unimodular invariants. The general issue is further complicated by the fact
that solid-like response has been associated with films in highly condensed gel
phases that exhibit long-range order as distinct from the high degree of in-plane
mobility associated with fluid phases [2, 44]. For these it is probable that a variant
of the present symmetry theory based on orthogonalR is relevant, the transition to
fluidity then being associated with response functions belonging to the class (3.6),
or, equivalently, with a spontaneous enlargement of the symmetry group for the
function (3.1), the latter being perhaps the more logically appealing framework.
For bulk continua, the issue of symmetry as it relates to phase transition has been
elucidated byRajagopal [45].

6. Model equations

Explicit component forms of the equilibrium equations for films belonging to
the class (3.6) were derived byJenkins [9] using a variational method. Formally,
this class subsumes (4.21) and thus Jenkins’ equations incorporate those for fluid
films with symmetry. To show this I use (4.23), (4.24) and the local conservation
of mass to write (4.22) in the form

9 = G′
λ(ρ, H, K; ρλ(x), x)

.= G′′
λ(ρ, H, K; x), (6.1)

whereρλ is the density at particlex in the reference configurationλ. From (4.22) it
follows that the energy per unit mass atx may be regarded as a function ofρ, H and
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K for any choice of reference configuration; in particular, relative to configuration
µ,

9 = G′
µ(ρ, H, K; ρµ(x), x)

.= G′′
µ(ρ, H, K; x), (6.2)

where

G′
µ(ρ, H, K; ρµ(x), x)

.= G′
λ(ρ, H, K; ρµ(x)D(x), x). (6.3)

Thus, it may be viewed as a member of the class of functionsF in equation (3.6),
in which parametric dependence onx is permitted.

In the remainder of this section I obtain reduced equilibrium equations from
the formulae of Sections 2 and 3. In light of Jenkins’ analysis I will be brief. The
reduction is facilitated by the fact that the divergence of the adjugate of the curvature
tensor vanishes. To demonstrate this, letb̃αβ be the contravariant components of
the adjugate of the symmetric surface tensorb. Using (3.8)2, taking account of the
skew-symmetry ofεαβ , and regardingb12 andb21 as being independent, I obtain

b̃αβ = ∂K

∂bαβ

= εαλεβγ bλγ . (6.4)

The Mainardi–Codazzi equations

εαλbγλ;α = 0, (6.5)

the symmetry ofbλγ , and the identityεαβ

;γ = 0 then yield

b̃
αβ

;α ≡ 0, (6.6)

as claimed. In view of this result it is advantageous to write the curvature in terms
of its adjugate in expressions for the response functions. The appropriate formula
follows from (6.4) andNaghdi’s treatise [15, equations (A.2.22) and (A.2.23)], or,
directly from the Cayley–Hamilton theorem:

bαβ = 2Haαβ − b̃αβ . (6.7)

Here,bαβ are the contravariant components ofb.

To derive explicit forms of the response functions, it is necessary to evaluate the
derivatives ofρ, H, andK with respect toaαβ andbαβ, regarded as independent
matrices. Further, the off-diagonal entries of each of these matrices are regarded as
being independent in accordance with (2.6). For example, ifa = det(aαβ), then

∂a

∂aαβ

= aaαβ, (6.8)

and combining this with (2.7) gives

∂ρ

∂aαβ

= −ρ

2
aαβ and

∂ρ

∂bαβ

= 0. (6.9)
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From (3.8)1, the derivatives ofH are

∂H

∂aαβ

= −1

2
bαβ and

∂H

∂bαβ

= 1

2
aαβ, (6.10)

the first of these having been obtained with the aid of the formula

∂aλµ

∂aαβ

= ελαεµβ − aλµaαβ, (6.11)

which follows by differentiatingaλµ = ελαεµβaαβ, with a12 anda21 regarded as
being independent, and using (6.8). Finally, the derivatives ofK are given by (6.4)
and

∂K

∂aαβ

= −Kaαβ, (6.12)

which follows from (4.23) and (6.8).
The response functions (2.6) are now easily shown to be

σβα = −ρ(ρFρ + 2KFK + 2HFH )aβα + ρFH b̃βα

and

Mβα = ρ(1
2FH aβα + FKb̃βα),

(6.13)

where (6.7) has been used, the subscripts denote partial derivatives, and the symme-
tries ofaαβ andb̃αβ have been used to condense the final results. Equations (6.13)
may be combined with (2.5) and

bβ
µb̃µα = Kaβα (6.14)

to derive

Nβα = −ρ(ρFρ + KFK + HFH )aβα + 1
2ρFH b̃βα, (6.15)

which is symmetric in the present theory.
Expressions for tractions and bending couples may be derived by substituting

the foregoing formulae into (2.10) and (2.11).
I obtain explicit equilibrium equations by projecting (2.1) onto the tangent and

normal spaces ofω atx and using the Weingarten and Gauss equations

n,α = −bβ
αaβ and aα;β = bαβn. (6.16)

Thus,

N
βα

;α − Sαbβ
α = 0, Sα

;α + Nβαbβα + p = 0, (6.17)

where, from (2.8), (6.8) and (6.13)2,

−Sα = (1
2ρFH ),µaαµ + (ρFK),µb̃αµ. (6.18)
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The foregoing formulae may be used to reduce (6.17)2 to the final form

p = (1
2ρFH );αβaαβ + (ρFK);αβ b̃αβ + 2Hρ(ρFρ + KFK) + ρ(2H 2 − K)FH .

(6.19)

This coincides with its counterpart inJenkins’ work, which contains a minor ty-
pographical error.

The tangential equations (6.17)1 reduce, after some effort, to

aβα[(ρ2Fρ),α + ρ(FKK,α + FH H,α)] = 0, (6.20)

which is equivalent to the vanishing of the expression in brackets by virtue of the
definiteness of the metric. In the classical theory of capillarity in whichFK andFH

vanish identically, this yields the well-known result that the surface pressureρ2Fρ

is uniform. In the general case, (6.20) is equivalent to

(ρFρ),α + Fρρ,α + FKK,α + FH H,α = 0, (6.21)

which in turn may be written

(ρFρ + F),α = ∂F/∂θα, (6.22)

where the right-hand side is associated with the explicit dependence ofF onx. This
result was obtained byJenkins for homogeneous films with no such dependence,
and in that context furnishes an integral of the equations which generates a one-
parameter relationship amongρ,H andK. For films with material symmetry, (6.1)–
(6.3) imply that homogeneity, if it exists, is a property of the reference configuration.
Homogeneity is not preserved under transformations from one to another, unless
they are density preserving orD(x) is constant.

In the general case, (6.22) is integrable in any simply-connected region of the
surface if and only ifeαβIα,β = 0, whereeαβ is the unit alternator andIα = ∂F/∂θα

is the inhomogeneity. Exceptionally, (6.22) is satisfied identically by solutions of
the classical theory without restrictions on the inhomogeneity. In any event, (6.19)
and the integrability condition for (6.22) furnish an underdetermined system for
the components of the three-vector fieldr (θα). Thus, as in the classical theories
of capillary and bulk-fluid equilibria, the equilibrium equations do not suffice to
determine the locations of material particles. This is in accord with the intuitive
idea of fluidity.

Finally, I note that all the equations of this section remain valid in the presence of
the two-dimensional incompressibility constraint providedF(ρ, H, K) is replaced
by

F = F̄ (H, K) − γ /ρ, (6.23)

whereF̄ is a constitutive function andγ = ρ2Fρ is the constitutively-indeterminate
surface pressure (cf. (2.8)).
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7. Energy minimizers

I obtain the quasiconvexity condition and related algebraic inequalities asso-
ciated with necessary conditions for energy minimizers. Although the minimum
energy test is inconclusive with respect to the dynamical stability of equilibria, it
nevertheless furnishes a formal necessary condition for asymptotic stability if the
associated dynamics are strictly dissipative [46, 47]. Granted this it is then also
necessary that stable equilibria furnish non-negative values of the second variation
of the energy. Thus, as in Section 2, let superposed dots denote derivatives with
respect to a parameterε that labels configurations, evaluated at the equilibrium state
ε = 0. The second variation of the energy functional (2.16) may then be written

Ë =
∑

i

∫
Vi

(Ü + %0gk · χ̈)dV +
∑
j

∫
�j

ẄdA, (7.1)

whereVi and�j are fixed reference configurations of the bulk fluids and the films,
andU = %08 andW = ρ09 are the bulk and film energies per unit reference
volume and area respectively. The first of these is a function of the bulk fluid
deformation functionχ(X;ε), as discussed in Section 2; the second, a function of
the metric and curvature induced by the parametrizationr (θα; ε).

The second variation at anequilibriumstate is a homogeneous quadratic func-
tional of thefirst-orderderivativesχ̇ andṙ . Using this state as reference, I write

Ë =
∑

i

∫
vi

A(gradu)dv +
∑
j

∫
ωj

B(ȧαβ, ḃαβ)da, (7.2)

whereu(y) = χ̇ ,

ȧαβ = aα · v,β + aβ · v,α, ḃαβ = n · v;αβ (7.3)

wherev(θα) = ṙ , and the covariant derivative is based on the metric induced by
r (θα) atε = 0 [24]. Further,A(·) andB(·, ·) are homogeneous quadratic functions
involving the second derivatives ofU andW with respect to their arguments. Equa-
tion (7.2) applies whether or not the two- or three-dimensional incompressibility
constraints are operative [25, 26].

To obtain the quasiconvexity condition I consider variations of the form

u(y) = curlw(y); w(y) = δ3ŵ(z(y)), and v(θα) = δ2v̂(η(θα)), (7.4)

where

z(y) = δ−1(y − r 0) and η(θα) = z(r (θα)). (7.5)

Here,δ is a positive number and the functionsŵ(·), v̂(·) have compact support in
a three-dimensional regionD containing a pointr0 on one of the films,ω0 say. I
assumeδ to be small enough that the intersection ofD with any other film is empty.
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Sinceu(y) is solenoidal, it automatically satisfies the variational form of the
incompressibility constraint in the bulk fluid. Further, the requirement that there be
no flux of fluid across the film (Section 2) implies that

u · n |ω0
= v · n .= v(θα), (7.6)

wheren is the local orientation field onω0. If the film is incompressible in the sense
that local surface area is preserved, then the surface divergence ofv vanishes [23],
and the representationv = vαaα + vn yields

vα
;α = 2Hv, (7.7)

whereH is the mean curvature ofω0.
Local normal coordinates [15] may be used with (7.4)1 to reduce (7.6) to the

form

εαβwβ;α = v, (7.8)

wherewβ(θα) = aβ · w |ω0
andv vanishes on the curvec = ∂D ∩ ω0. With v

prescribed, the existence of a covariant vector field satisfying this equation may be
proved by writingεαβwβ = aαβφ,β, which has a unique solutionwα. Then, for a
given parametrization ofω0, (7.8) reduces to a second-order linear elliptic equation
for φ. For sufficiently smooth Dirichlet data onc the existence of a unique solution
follows from [48, Theorem 21(I)]. Unfortunately such a scheme does not yield the
existence ofvα satisfying (7.7) for incompressible films. For example, settingvα =
aαβφ,β , I again obtain a linear elliptic equation forφ, but the additional requirement
thatvα vanish onc entails the simultaneous specification of homogeneous Dirichlet
and Neumann data forφ. Exceptionally, ifω0 is a minimal surface (H ≡ 0) in a
neighborhood ofr0, thenvα may be any divergence-free vector field that vanishes
onc. Alternatively, one may specify a vector fieldvα which vanishes together with
its divergence onc and use (7.7) to calculatev at points whereH |= 0, but in the
absence of detailed information about the surfaceω0 it may not be feasible to ensure
thatv then possesses the properties required to generate the Legendre-Hadamard
condition from the quasiconvexity inequality. This is due to the fact that it is the
component ofv normal to the tangent plane atr0, rather thanv, that is relevant, as
shown below.

Let ∇(·) and∇ × (·) denote the gradient and curl with respect toz. Then,

u(y) = δ2∇ × ŵ(z), gradu(y) = δ∇(∇ × ŵ),

v,α = δ(∇v̂)aα and v,αβ = (∇∇v̂)[aα ⊗ aβ ] + δ(∇v̂)aα,β .
(7.9)

Now, letuα be smooth extensions of the coordinatesθα onto the plane tangent toω0
at r0. I take these to beaffinecoordinates such that∂η/∂uα = åα, the superposed
circle identifying the values of functions atr0. Thus,∂2η/∂uα∂uβ = 0, and it
follows that

(∇∇v̂)[åα ⊗ åβ ] = v̂,αβ, (7.10)

where, here and henceforth, commas denote derivatives with respect touα.
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I change variables in accordance with (7.5)1 and use (7.3), (7.9) and (7.10).
Holding D fixed, I divide the second-variation inequality byδ2 and pass to the
limit to obtain the quasiconvexity condition for the film:

Bαβλµ

∫
ω∗

w,αβw,λµda = 0, (7.11)

wherew = n̊ · v̂, ω∗ is the intersection ofD with the tangent plane ofω0 at r0, and

Bαβλµ = ρ
∂29

∂bαβ∂bλµ

(7.12)

is evaluated atr0 in the configurationω0. The symmetries inherent in this tensor
ensure that (7.11) is equivalent to the inequality obtained by replacing the integrand
with w,αβw̄,λµ, wherew is now complex-valued and̄w is its conjugate. The result-
ing inequality is in standard form for generating the relevant Legendre-Hadamard
condition (e.g., [49, pp. 229–231]). Forw, I choose

w(uα) = aφ(uβ) exp[iτ (ςαuα)], (7.13)

wherea, τ(> 0) andςα are real constants andφ is a realC∞ function supported
in ω∗. Then,

w,αβw̄,λµ = a2φ2ςαςβςλςµ + O(τ−1), (7.14)

and passing to the limitτ → ∞ in (7.11) yields the necessary condition

Bαβλµςαςβςλςµ = 0 (7.15)

for all ςα. I conjecture that this condition is also necessary in the presence of the
two-dimensional incompressibility constraint. A similar inequality was obtained
by Hilgers & Pipkin [21] for elastic plates isolated from other media.

For fluid films the associated restriction on minimizing states follows by using
(3.6), (6.4) and (6.10) to reduce (7.15) to the form

1
4FHH + 2xFHK + x2FKK = 0 where x = b̃αβςαςβ. (7.16)

In this expression the first-order derivative ofF with respect toH does not appear
becauseH is a linear function of the matrixbαβ; the first-order derivative with
respect toK does not appear because the second derivatives ofK with respect to
this matrix involve the permutation tensor density in such a way as to make no
contribution to (7.15).

For incompressible films (cf. (6.23)), several forms of the functionF̄ (H, K)

compatible with (7.16) have been proposed. Among them,Helfrich’s function [7]

ρF̄ = α(H − H0)
2 + βK, with α > 0, (7.17)

has been the most widely applied and studied. Thespontaneous curvatureH0 is a
parameter introduced to render the energy an non-even function of the curvature
tensor. The resulting formulation is thought to furnish an appropriate model for
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monolayer films such as those associated with oil-in-water or water-in-oil emul-
sions [1]. Bilayer response is recovered by settingH0 = 0. Some writers model
morphological phase transformations by allowingH0 to depend on amphiphile
concentration, which in turn is the principal factor influencing local film chemistry
[50].

Existence theory for the local equilibrium equations based on Helfrich’s func-
tion and related functions has been discussed byNitsche [51]. However, from the
viewpoint of variational theory, Helfrich’s model is deficient in the sense that the
energy of a given film is generally not bounded below. This is easily seen with
reference to compact orientable films by applying the Gauss-Bonnet formula∫

ω

Kda = 4π(1 − g), (7.18)

whereg is the genus [52]. Forβ > 0, the second term in (7.17) contributes a term
to the total film energy that decreases without bound asg increases. The same term
contributes only a fixed constant to the energy in the presence of the topological
constraints imposed by some writers [7, 11].

A simple alternative model for bilayers, as yet unexplored, may be based on
the assumption that̄F is a function ofK depending parametrically on temperature
and amphiphile concentration. At fixed concentration and temperature, the graph
of such a function might exhibit local minima atK > 0, = 0, and< 0. These
correspond to points of convexity of the energy in accordance with (7.16). The
first alternative promotes the formation of spherical vesicles interspersed in the
bulk fluid; the second, developable surfaces, including the cylindrical and lamellar
phases; and the third, the bicontinuous phases associated with compact orientable
surfaces having large genus [3, 4]. In the latter case the minimizing value ofK

cannot be achieved at all points of the film as there are no surfaces in 3-space
with constant negative Gaussian curvature [53]. Nevertheless it is appropriate to
conjecture that configurations with high genus are promoted by a sufficiently deep
and wide energy-well spanning an interval of the domain ofF̄ in which K < 0.

The structure of the energy-wells might depend on concentration and temperature
in such a way as to favor some of these structures over others in accordance with
the observed phase behavior of the particular system at hand.
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