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Abstract

In this article we present a consistent derivation of a density-functional theory (DFT) based em-

bedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-

based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Chem. Phys.

131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged

quasienergy formalism, makes use of the variation Lagrangian techniques to allow the use of non-

variational (in particular: coupled cluster) wave function-based methods. We show how, in the

time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and

WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the

special case in which coupled cluster theory is used to obtain the density and excitation energies

of the active subsystem. A sample application is given to demonstrate the method.
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I. INTRODUCTION

Non-empirical electronic structure methods, and their implementations in sophisticated

computer programs, have become viable tools to study the molecular basis of natural phe-

nomena. By carrying out calculations on quantum chemical models of varying size and

complexity one may, e.g., investigate in detail how interactions between the constituents of

a biochemical system determine its function. An attractive feature of this modelling is that

one is not restricted to reproduce experimental observations but may also carry out numer-

ical experiments to make predictions about the effect of modifications in a system. These

experiments may then be used to aid in tuning the behaviour of artificial or biochemically

modified natural systems.

In order to be useful, a given method should be able to provide reliable numerical data

with a reasonable computational effort. Methods that have proven to work well in appli-

cations on small, isolated, molecules may be difficult to scale up for models of condensed

phase systems. This is due to the steep computational scaling with the number of atoms in

the system that most methods exhibit. Methods are typically based on Density Functional

Theory (DFT) or on post-Hartree-Fock (HF) wave function (WFT) approaches that have

cubic or worse scaling of computational costs with system size. For conventional algorithms

this leads to a limitation in system size of '10s of atoms (or '100s of atoms in the case of

HF or DFT) that is only slowly increased by advances in computer technology.

One way to push the limit of applicability of these methods forward is to utilize techniques

in which long-range interactions are treated in a simplified and therefore more efficient

manner. This is facilitated by the density fitting or resolution-of-identity (RI) approach

and allows for accurate calculations of medium-sized molecules by coupled cluster (CC)

techniques [1–3]. While such linear scaling implementations are essential for benchmark and

highly accurate studies, they are still too demanding for standard applications. Another

complication of such global descriptions is the interpretation of results in terms of qualitative

models. This typically requires an additional analysis step in which the wave function and

molecular properties are decomposed into local contributions.

An alternative is to employ a subsystem approach, in which the total system is a priori

divided into small, chemically meaningful, units that are considered separately. One may

thereby easily approximate less important parts of the system by a computationally efficient
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approximate method like molecular mechanics (MM). The most popular realization of such

a scheme is the two-level QM/MM method [4–7], but more general methods in which an ar-

bitrary number of computational methods are combined are also in use [8, 9]. The flexibility

to combine the most suitable methods (including, e.g., specialized implementations) for the

different tasks has lead to a multitude of implementations of multilevel approaches. One

may thereby distinguish between so-called embedding approaches, in which the accurate de-

scription is intended only for one part of the system, and the true subsystem approaches that

build a global property of the system from local properties. In the embedding schemes one

may furthermore distinguish between methods that treat the environment as an unstructured

continuum and methods that allow for atomistic detail and include specific interactions with

environment. Techniques to calculate molecular properties by DFT, HF and CC methods

have been successfully combined with both specific (polarizable force-field) and non-specific

(dielectric continua) models of the environment by Christiansen, Mikkelsen, Kongsted and

coworkers [10–14].

While these approaches are very attractive in terms of computational efficiency, they do

rely on the chosen parameterization of the environment—which is a drawback, if there is

only a limited amount of experimental data available to parameterize the force fields or the

continuum description, or when simple parametrizations are difficult due to the nature of

the interactions. An alternative is then to resort to ab-initio methods in which also the

environment is modelled as consisting of a collection of interacting units that are each calcu-

lated using an appropriate quantum mechanical method. Such discrete quantum-mechanical

(QM/QM) methods are, however, considerably more expensive than QM/MM approaches

and require efficient approximations in the less interesting ”environmental” region of the

system. A promising method is the so-called frozen-density embedding (FDE) scheme by

Wesolowski and Warshel [15], following an approach originally proposed by Senatore and

Subbaswamy [16] and later Cortona [17] for solid-state calculations. In FDE all subsystems

and their interactions are described by DFT, with computational savings resulting from the

fact that typically only one system of interest is fully optimized. The other subsystems are

described using a suitably chosen frozen electron density. The method is formally exact if

a number of boundary conditions on the initial subsystem densities are fulfilled [18, 19]. In

practice, the quality of results depends on the employed non-additive parts of the kinetic

and exchange-correlation energy functionals and derivatives thereof [20–22] to describe the
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interaction between the chosen subsystems. With the currently available functionals one

may describe primarily electrostatic and hydrogen bonded interactions rather well [23–25],

whereas coordination or covalent bond still present a major problem [26, 27]. While the

FDE ansatz has been mostly applied in the embedding regime (one small active system

surrounded by a large frozen environment) one may also formulate this model as a special

case of a more general subsystem DFT approach [28, 29]. One then writes the total density

as a sum of subsystem densities

ρtot =
∑
i

ρi , (1)

that are each optimized separately with the density of the other fragments fixed.

The formulation of response theory within the FDE framework was first proposed by

Casida and Wesolowski [30], but only reached its full potential when Neugebauer [31, 32]

extended the formalism to a general subsystem DFT response approach and provided an

efficient implementation in the ADF program package [33]. His formulation does not only

recover important environment contributions [34] on polarizabilities and excitation energies

in dimers, but also allows for the coupling of local excitations in a complete model [35]. A

growing number of applications shows the promise of subsystem DFT in both the (frozen-

density) embedding mode [36–40] as well as in the (fully self-consistent) subsystem mode

[41] to describe molecular properties.

Notwithstanding the success of the applications mentioned, DFT-in-DFT embedding ap-

proaches will always be constrained by the limitations of DFT itself. One may encounter

cases in which present-day functionals fail to provide a quantitatively correct description of

one or more of the subsystems. In such cases we would like to employ WFT approaches,

and progress through one of its well-defined hierarchy of methods [42] to improve and check

the reliability of the calculated results.

A very useful feature of FDE is the fact that the embedding potential that is used to

obtain the density of the embedded system is local. This absence of nonlocal projection

operators facilitates the integration of DFT and WFT-based methods in one overall model.

In order to include WFT in FDE we need to consider a subsystem j for which the energy is

obtained by optimizing the parameters of a many-electron wave function Ψj. This system

should then interact with the other subsystems only via its density

Ψ∗jΨj → ρj, (2)
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as in the DFT-in-DFT case. Such a WFT-in-DFT embedding scheme has been pursued

by Carter and coworkers [43–47], who combined DFT and variational methods such as

Hartree-Fock, CASSCF or (multireference) CI . Their approach has so far mainly been used

to describe localized excitations in solids or surfaces, e.g. for the calculation of excitation

energies of CO adsorbed on a platinum surface [48, 49]. Some of us [50] implemented

furthermore an approximate scheme to employ non-variational WFT methods (based on

coupled cluster theory) for the calculation of the low-lying spectra of solvated acetone and

the f–f spectra of the Neptunyl ion embedded in a Cs2UO2Cl4 crystal.

None of these approaches have so far gone beyond the use of an embedding potential

constructed for the ground state in the determination of the excited-state energies or response

properties such as polarizabilities. For such applications, one needs to consider the change

in interaction energy caused by changes in the active system as well as by responses of the

environment. A straightforward way of taking those changes into account is to choose a

state-specific determination of the embedding potential, as recently proposed by Khait and

coworkers [51]. This has as drawback, however, that multiple calculations are required if

one is interested in more than one excited state. Problematic is also the inclusion of non-

variational methods such as (multireference) coupled cluster in which the wave function and

the corresponding density are not explicitly calculated. For such methods it is convenient to

formulate the environment contribution to molecular properties and electronic excitations

in terms of response theory, as this provides a natural connection to the techniques used in

non-variational WFT methods.

Our goal in this paper is to work out a novel and rigorous FDE response theory frame-

work with which it is possible to calculate molecular properties within a general subsystem

formulation—capable of handling both DFT-in-DFT and WFT-in-DFT embedding. We will

make use of the time-averaged quasienergy formalism [52, 53] which provides a natural way

to treat variational and non-variational electronic structure methods in the same fashion.

After providing the necessary background on the FDE energy expressions we will start by

discussing response theory in a subsystem formulation and show how this reduces to the

standard formulation in the case of non-interacting subsystems. Next we will recast the

DFT-in-DFT formalism of Neugebauer [31, 32] into the time-averaged quasienergy formal-

ism and define key quantities for the WFT-in-DFT approach. This case is first considered

for Hartree-Fock, and then for the case of non-variational coupled cluster methods. We
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will briefly discuss possible approximations, related to the extent one wishes to consider the

coupling of the different subsystems in the time-dependent treatment. With the working

equations available we finish by addressing the similarities and differences between the for-

malism discussed here and the QM/MM response theory schemes proposed by Christiansen,

Mikkelsen, Kongsted and coworkers [10–14].

II. SUBSYSTEM DFT

For the optimization of a particular density ρI, it is convenient to sum the other densities

to an frozen environment density ρII and rewrite the density partitioning of Eq. (1) as

ρtot = ρI +
∑
i 6=I

ρi = ρI + ρII . (3)

The total energy of the system, Etot[ρtot], can then be written as

Etot[ρI + ρII] = EI[ρI] + EII[ρII] + Eint[ρI, ρII] , (4)

with the internal energy of each of the subsystems i given as

Ei[ρi] =

∫
ρi(r)vinuc(r)dr +

1

2

∫ ∫
ρi(r)ρi(r

′)

|r− r′|
dr dr′ + Exc[ρi] + Ts[ρi] + Ei

nuc , (5)

with vinuc the nuclear potential due to the set of atoms associated with subsystem i and Ei
nuc

the nuclear repulsion energy. The interaction energy is similarly given by the expression

Eint[ρI, ρII] =

∫
ρI(r)vII

nuc(r)dr +

∫
ρII(r)vI

nuc(r)dr + EI,II
nuc

+

∫ ∫
ρI(r)ρII(r

′)

|r− r′|
dr dr′ + Enadd

xc [ρI, ρII] + T nadd
s [ρI, ρII] , (6)

where non-additive contributions are defined as (see e.g. Ref. [29])

Xnadd[ρI, ρII] = X[ρI + ρII]−X[ρI]−X[ρII] . (7)

All interaction energies are defined solely in terms of the subsystem densities that are either

determined by a Kohn-Sham (KS) approach or by optimization of the wave function for an

interacting system (WFT approach) [50, 54]. We note that orbitals of different subsystems

always belong to independent subsets that are therefore in general non-orthogonal.

Eq. (4) is the starting point for the response formulation in which we will first consider

different parameterizations of the subsystem densities. We note that the internal energy
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of the environment does not depend on the active density ρI so that minimizing the total

energy of the system with respect to ρI yields the Euler-Lagrange equation

δEI[ρI]

δρI

+
δEint[ρI, ρII]

δρI

= µ , (8)

with the Lagrange multiplier µ introduced to keep the number of electrons in system I

constant. While this constraint can be avoided in the context of DFT-in-DFT embedding as

shown recently by Elliot et al. [55, 56], in WFT-in-DFT embedding it can only be relaxed in

the DFT subsystems [57], because wave function-based methods can only provide accurate

densities for systems with an integer number of electrons. In our general formulation the

fixed electron number approximation is applied to all subsystems, offering also the possibility

of treating all subsystems with WFT.The derivative of the interaction energy functional that

carries the intersystem dependence is the embedding potential that can be decomposed into

the Coulomb interactions with the environment (nuclei and frozen electron density) plus

derivatives of the non-additive parts of the exchange-correlation and kinetic energy

vI
emb(r) =

δEint[ρ]

δρI(r)
= vII

nuc(r) +

∫
ρII(r

′)

|r− r′|
dr′ + vnadd

xc [ρI, ρII] +
δT nadd

s [ρ]

δρ(r)

∣∣∣∣
ρI

. (9)

Regardless of the chosen density parameterization, and methods for evaluating the subsys-

tem energy, Enadd
xc and T nadd

s are always calculated using a density functional. In this article

we will not discuss details of these density functionals (and their derivatives), benchmarks

of various kinetic energy functionals for use in FDE are well available [23–25, 58]. We note

that improved functionals can nowadays be easily implemented via automatic differentiation

techniques [59].

The conventional way to obtain the density of a subsystem i is to construct a non-

interacting reference system and employ the Kohn-Sham equation for a constrained electron

density (KSCED) [15]. In this equation,

FKSφpi(r) =

[
−1

2
∆ + vinuc(r) +

∫
ρi(r

′)

|r− r′|
dr′ + vxc[ρi](r) + viemb(r)

]
φpi(r)

= εKS
pi
φpi(r) , (10)

the local embedding potential of Eq. (9) is seen to represent the environment. The subsystem

energy is then calculated according to Eq. (5) if desired.

The alternative way to obtain the density is to employ WFT and consider a constrained

minimization of the total energy of the system as a function of the free parameters in the
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wave function used to model the electrons contained in system i. In this minimization the

contribution from the derivative of the interaction energy is identical to the DFT expression

given above in Eq. (9), but the terms coming from the subsystem energy itself depend

on the chosen wave-function model and parameterization thereof. If we take the simplest

wave function model, the single-determinant (SD) Hartree-Fock wave function, we find the

Hartree-Fock analog of the KSCED equation:

FHFφpi(r) =

[
−1

2
∆ + vinuc(r) +

∫
ρi(r

′)

|r − r′|
dr′ + viemb(r)

]
φpi(r)−

∫
γi(r

′, r)φpi(r
′)

|r − r′|
dr′

= εHF
pi
φpi(r) . (11)

The resulting orbitals may be used to evaluate the subsystem Hartree-Fock energy. Note

that this energy should not contain the interaction energy contribution, even though for both

Hartree-Fock and Kohn-Sham, the definition of canonical orbitals includes the embedding

potential:

FpIqI → FpIqI + 〈pI|vI
emb|qI〉 = δpIqIεpI . (12)

The density-only expression of Eq. (6) is applicable for all methods and the total energy

is given according to Eq. (4), independent of the precise method used to determine Ei and

ρi. Since one cannot straightforwardly calculate the interaction energy contribution as an

expectation value of the embedding potential (due to the partially non-linear dependence

of the energy on the density [53, 60, 61]), the subsystem DFT scheme differs from most

other embedding approaches (see Sec. VI). Another point that should be mentioned at this

stage is that we always assume that the wave-function method is capable of providing the

exact subsystem density and energy. This is only rigorously true for a full configuration

interaction method in a complete basis, but compensating for missing electron correlation

contributions in WFT by adding a correlation functional [62, 63] is a notoriously difficult

problem that we will not attempt to solve in this work.

III. QUASIENERGY RESPONSE THEORY

In our derivation of subsystem response theory we follow the work on frequency-dependent

response functions of Christiansen et al. [52] which is restricted in its time-averaged for-

mulation to time-periodic perturbations. For the sake of completeness and to introduce the
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notation, we repeat the most important definitions and equations. For a general discussion

concerning the applicability of the quasienergy formalism and DFT, see e.g. Ref. [53]. Let

Ĥ t be a general, time-dependent Hamiltonian

Ĥ t = Ĥ + V̂ t , (13)

where V̂ t is the time-dependent perturbation operator which is given as

V̂ t =
N∑

k=−N

exp(−iωkt)
∑
x

εx(ωk)X̂ . (14)

with εx(ωx) parameters that denote the strength of the perturbing fields. The linear response

function is defined via the time evolution of the expectation value of an operator X̂:

〈X〉(t) = 〈X〉0

+
∑
k1

exp(−iωk1t)
∑
y

〈〈X;Y 〉〉ωk1 εy(ωk1) + . . . (15)

The quasienergy Q(t) and its time-average {Q(t)}T are defined as

Q(t) = 〈Õ|
(
Ĥ t − i ∂

∂t

)
|Õ〉 , (16)

{Q(t)}T =
1

T

∫ T/2

−T/2
Q(t) dt , (17)

respectively, where T is the period of the perturbation in Eq. (14) and the tilde denotes the

phase-isolated form of the wave function. For variational methods such as Hartree-Fock or

DFT, the calculation of the linear response function proceeds directly from the quasienergy

itself. In this treatment, the linear response function is obtained as the second derivative of

the time-averaged quasienergy. For non-variational wave functions first a Lagrangian

L(λ, λ̇, λ̄) = Q(λ, λ̇) + λ̄ e(λ, λ̇) (18)

with appropriate constraints e(λ, λ̇) and Lagrange multipliers λ̄ needs to be introduced

before proceeding to derive the response functions.

Lagrangian-based formulations can be extended to incorporate environment effects [64],

and will be central to our development. For the subsystem treatment, we define a total

quasienergy Lagrangian consisting of the quasienergy expressions of the subsystems as well

as their interaction:

Ltot(t) =
∑
i

Li(t) +Qint(t) . (19)
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While Eq. (19) allows an arbitrary number of subsystems, it is more convenient to again

restrict the derivation to the case of two subsystems. Thus, in the following subsystem I

represents the “active” subsystem of interest, whereas subsystem II consists of the sum of

all other subsystems and represents the “environment” . The total quasienergy expression

in Eq. (19) then reduces to

Ltot(λ, λ̇, λ̄;λII, λ̇II, λ̄II) =
[
Q(λ, λ̇) + λ̄e(λ, λ̇)

]
+Qint(λ, λ̇, λ̄;λII, λ̇II, λ̄II)

+
[
QII(λII, λ̇II) + λ̄IIeII(λII, λ̇II)

]
, (20)

where we make the dependence of Ltot(t) on the wave function parameters and constraints

explicit. Note that all intersystem dependencies are contained in the interaction energy.

In the following we will assume that the environment is optimized with DFT, which is

variational, so that we can omit the multipliers λ̄II.

The time-dependent Lagrangian can then be expanded in orders of the perturbation,

L(t) = L(0) + L(1)(t) + L(2)(t) + . . . , (21)

and Fourier transformed to the frequency domain. We may similarly expand the parameters

in terms of the perturbation strength, obtaining e.g. the first-order expression

λ(1)(ωk1) =
∑
x

εx(ωk1)λ
X . (22)

Response functions are obtained as derivatives of the time-averaged quasienergy Lagrangian

of n-th order {L(n)}T with respect to the field-strength variables, e.g. for second order:

〈〈X;Y 〉〉ωk1 =
d2{L(2)}T

dεx(ω0)dεy(ωk1)
, where ωk1 = −ω0 . (23)

Using the abbreviations given in Tab. I and the fact that the contributions from second-

order parameters such as λ(2)(t), λ̄(2)(t), and λ
(2)
II (t) are zero due to the 2n + 1 rule, the

second derivative becomes

d2{L(2)
tot}T

dεx(ω0)dεy(ωk1)
=

d2{L(2)
I }T

dεx(ω0)dεy(ωk1)
+

d2{Q(2)
II }T

dεx(ω0)dεy(ωk1)
+

d2{Q(2)
int}T

dεx(ω0)dεy(ωk1)
, (24)

where the first two terms are obtained similar to Eq. (3.28) of Ref. [52]:

d2{L(2)
I }T

dεx(ω0)dεy(ωk1)
= P (X(ω0),Y (ωk1))×

{[
ηX +

1

2
FλX(ω0)

]
λY (ωk1)

+ λ̄
X

(ω0)

[
1

2
J λ̄

Y
(ωk1) + ξY + AλY (ωk1)

]}
, (25)

d2{Q(2)
II }T

dεx(ω0)dεy(ωk1)
= P (X(ω0),Y (ωk1))×

{[
IIηX +

1

2
II,IIFλXII (ω0)

]
λYII(ωk1)

}
, (26)
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while the interaction term reads

d2{Q(2)
int}T

dεx(ω0)dεy(ωk1)
= P (X(ω0),Y (ωk1))×

{
λ̄
X

(ω0) Aint λY (ωk1)

+
1

2

[
Fint λX(ω0)λY (ωk1) + Jint λ̄

X
(ω0)λ̄

Y
(ωk1)

]
+ I,IIFint λX(ω0)λYII(ωk1) + λ̄

X
(ω0) I,IIAint λYII(ωk1)

}
. (27)

P (X(ω0),Y (ωk1)) ensures symmetry with respect to the interchange of X and Y and asso-

ciated frequencies ω0 and ωk1 . Throughout the paper we use supermatrix notation where

vectors and matrices are multiplied in order—a notation useful especially for higher order

response properties.

For the present purpose we need only the first-order perturbed quantities. These are

obtained by requiring stationarity of the Lagrangian with respect to variations in first-order

multipliers λ̄
X

, first-order amplitudes λX , and first-order parameters of the environment

λXII , yielding a set of coupled linear response equations for frequency ωy:
0

0

0

 =


ξY

ηY

IIηY

+


A(ωy) J I,IIA

F A(−ωy) I,IIF

I,IIF I,IIA II,IIF(ωy)




λY (ωy)

λ̄
Y

(ωy)

λYII(ωy)

 . (28)

It is convenient to separate contributions from the subsystems Lagrangian and their inter-

action explicitly by decomposing the matrix above as
A(ωy) 0 0

F A(−ωy) 0

0 0 II,IIF(ωy)

 +


Aint Jint

I,IIAint

Fint Aint
I,IIFint

I,IIFint
I,IIAint

II,IIFint

 . (29)

The J-term drops out when the 2n + 2 rule based on decoupled response equations for λX

and λ̄
X

can be applied [10, 52] but contains a non-zero contribution due to the interaction.

The response equations (28) allow to write the expression for the total response function as:

〈〈X;Y 〉〉ωy =
1

2
C±ω P (X(ωx),Y (ωy))×

{
1

2
J λ̄

X
(ωx)λ̄

Y
(ωy)

+

 ηX

ηXII

T

+
1

2

 λX(ωx)

λXII (ωx)

T  F(ωy)
I,IIF(ωy)

I,IIF(ωy)
II,IIF(ωy)

 λY (ωy)

λYII(ωy)

 . (30)
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The operator C±ω enforces symmetrization with respect to simultaneous complex conjuga-

tion and inversion of the sign of the frequencies [52]. Alternatively, we can rewrite Eq. (30)

in terms of the individual (“uncoupled”) subsystems as well as the coupling contribution:

〈〈X;Y 〉〉ωy = 〈〈X;Y 〉〉unc,I
ωy + 〈〈X;Y 〉〉unc,II

ωy + 〈〈X;Y 〉〉I,IIωy . (31)

The individual subsystem contributions can be extracted from Eq. (30) and are given as

[52, 53, 65]:

〈〈X;Y 〉〉unc,I
ωy =

1

2
C±ωP (X(ωx),Y (ωy))

×
{

1

2
J λ̄

X
(ωx)λ̄

Y
(ωy) +

[
ηX +

1

2
FλX(ωx)

]
λY (ωy)

}
, (32)

〈〈X;Y 〉〉unc,II
ωy =

1

2
C±ωP (X(ωx),Y (ωy))

[
IIηX +

1

2
II,IIFλXII (ωx)

]
λYII(ωy) . (33)

If only these are included, the result will be denoted “uncoupled”—implying that the re-

sponse of the interaction energy is included in the “intra-subsystem” blocks in Eq. (28) but

that the “inter-subsystem” blocks are neglected. The full, i.e. coupled, result includes also

the inter-subsystem response function

〈〈X;Y 〉〉I,IIωy = C±ωP (X(ωx),Y (ωy))
{

I,IIFintλ
X(ωx)λ

Y
II(ωy)

}
. (34)

In the limit of non-interacting subsystems, all interaction contributions vanish and the total

response function reduces to the sum of the isolated subsystems.

For variational wave functions we can remove contributions of Lagrangian multipliers and

the environment in Eq. (28), and the linear response function then takes the form [52]:

〈〈X;Y 〉〉ωy = −ηX (F(ωy))
−1 ηY . (35)

The excitation energies are finally calculated from the poles of Eq. (35), whereas properties

are obtained from the evaluation of the linear response function at a given frequency ωy. Due

to the computational cost, however, instead of calculating the inverse in Eq. (35), typically

the linear set of equations,

F(ωy)λ
Y (ωy) = −ηY , (36)

is solved [53, 66], from which the linear response function and thus properties such as, e.g.,

frequency-dependent dipole-dipole polarizabilities are calculated as:

〈〈X;Y 〉〉ωy = ηX · λY (ωy) . (37)
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With separate coupling contributions, it is possible to devise computational strategies

adapted to the properties of interest [35]. For instance, in cases where the coupling is

important, such as excitation energies or polarizabilities, these can be approximated, and in

the cases where these are less important, such as local excitations or NMR chemical shifts,

these can be dropped. Furthermore, it offers the possibility to operate mostly with the

quantities for the isolated subsystems, thus avoiding the formation and handling of matrices

and vectors with the dimension of the supermolecular basis [31, 32]. In the subsequent

sections, we will derive explicit working expressions for the components of the quasienergy

Lagrangian, as well as the different matrices and vectors needed.

IV. REVISITING DFT-IN-DFT RESPONSE THEORY

In this section we discuss DFT-in-DFT FDE response theory using the quasienergy for-

malism. In order to reformulate subsystem Kohn-Sham theory in the formalism of second

quantization, we follow closely the notation used by Saue and Helgaker [67]. We start by

introducing the parameterization of a closed-shell Kohn-Sham determinant of one subsystem

in terms of an unitary exponential orbital-rotation operator:

|0i〉 = exp(κ̂i )|0̃i〉 with κ̂i =
∑
pi>qi

(κpiqiEpiqi − κ∗piqiEqipi). (38)

In the framework of FDE the subsystem orbitals are to be considered as two independent sets

of auxiliary quantities that serve to provide the exact density and its responses. This implies

that admixture of orbitals from a subsystem i into the orbitals of a different subsystem j is

to be excluded, and the orbital rotations fulfil the condition

κpiqj = δijκpiqi . (39)

The density of a given subsystem can be written as

ρi(r,κi) = 〈0i| exp(−κ̂I)ρ̂i(r) exp(κ̂I)|0i〉 =
∑
piqi

ρpiqi(r)Dpiqi(κi) , (40)

where ρ̂(r) is the density operator, given in second quantization as:

ρ̂i(r) =
∑
piqi

ρpiqi(r)Epiqi , (41)

ρpiqi(r) = φ∗pi(r)φqi(r) . (42)
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In order to calculate the density response, the density matrix D(κi) is expanded in orders

of orbital rotation parameters using the Baker-Campell-Hausdorff (BCH) formula:

Dpiqi(κi) = 〈0i|Epiqi |0i〉+ 〈0i|[κ̂i,Epiqi ]|0i〉+
1

2!
〈0i|[κ̂i, [κ̂i,Epiqi ]]|0i〉+O(κ3

i ) . (43)

For convenience, we also introduce the (response) density matrices Γ for a single-determinant

(SD) exponential parameterization:

ΓSD
xiyi;piqi

=

(
∂D

SD (1)
xiyi

∂κ
(1)
piqi

)
= 〈0i|[Epiqi ,Exiyi ]|0i〉 , (44)

ΓSD
xiyi;piqi,risi

=

(
∂2D

SD (2)
xiyi

∂κ
(1)
piqi∂κ

(1)
risi

)
=

1

2
〈0i|[Epiqi , [Erisi ,Exiyi ]]|0i〉 . (45)

Note that the number of indices indicates the order of the derivatives.

A. DFT response theory for isolated subsystems

We first consider DFT response theory using the quasienergy formalism and second quan-

tization [53, 65] for a single isolated subsystem. Starting point is the DFT quasienergy

expression

Q[ρ](t, ε) = Ts[ρ] + V t[ρ] + Vnuc[ρ] + J [ρ] + Exc[ρ(r, t)]−
{
〈0̃|i ∂

∂t
|0̃〉
}
T

, (46)

where J [ρ] denotes the Coulomb contribution. The energy expression is obtained as the

(time-independent) zeroth-order quasienergy:

Q(0)[ρ(0)] = Ts[ρ
(0)] + Vnuc[ρ

(0)] + J [ρ(0)] + Exc[ρ
(0)] . (47)

In order to calculate the linear response, we adopt the adiabatic approximation, assum-

ing that the time dependence of the exchange-correlation potential may be fully described

through the time evolution of the density. For a single subsystem, only expressions for F

and ηY in terms of the single-determinant Kohn-Sham ansatz are needed [52, 53, 68]:

Fpq,rs(ωy) =
∂2{Q(2)}T

∂κ
(1)
pq (ωx)∂κ

(1)
rs (ωy)

= E
[2]
DFT;pq,rs − ωyS

[2]
pq,rs , (48)

ηYpq =
∂2{Q(2)}T

∂κ
(1)
pq (ωx)∂εY (ωy)

= 〈0|[Ŷ ,Epq]|0〉 , (49)
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and the Hessian E
[2]
DFT for the closed-shell case reads:

E
[2]
DFT =

 A B

B∗ A∗

 , (50)

Aia,jb = δijδab(ε
KS
a − εKS

i ) + 2(ia|bj) + (ia|wxc|bj) , (51)

Bia,jb = 2(ia|jb) + (ia|wxc|jb) . (52)

Throughout the article round brackets denote charge-cloud notation for two-electron inte-

grals.

B. DFT-in-DFT response theory

To the contributions from the isolated subsystems considered above we may next add the

contributions from the interaction term Qint. Starting point is the expansion:

Qint = E
[0]
int + E

[1]
int;IκI + E

[1]
int;IIκII

+
1

2!

(
E

[2]
int;I,I κI κI + E

[2]
int;II,II κII κII + E

[2]
int;II,I κII κI + E

[2]
int;I,II κI κII

)
+O(κ3) . (53)

In order to evaluate the derivatives of a functional E[ρ(κ)], the functional chain rule [60](
∂E[ρ(r,κ)]

∂κpq

)
=

∫ (
δE[ρ]

δρ(r′)

)(
∂ρ(r′,κ)

∂κpq

)
dr′ (54)

is employed. We furthermore use the short-hand notation for the first [ Eq. (9) ] and second

functional derivative, respectively:

viemb(r′) =
δEint[ρ]

δρi(r′)
and wijemb(r′, r′′) =

δ2Eint[ρ]

δρi(r′)δρj(r′′)
. (55)

As this interaction between system I and the sum of the other systems can be considered

an embedding of system I, we will denote the potential and the kernel arising from the

interaction term as the “embedding potential” and “embedding kernel”, respectively. The

first-order contribution of the interaction term can be formulated as∑
risi

E
[1]
int;risi

κrisi =
∑
risi

∑
xiyi

ΓSD
xiyi;risi

〈xi|viemb|yi〉κrisi . (56)

Utilizing the definition of the density matrix in Eq. (44), the non-zero elements for subsystem

I are simply:

E
[1]
int;iIaI

= 〈iI|vI
emb|aI〉 . (57)
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For the diagonal (i = j) second-order term,

E
[2]
int;piqi,risi

=

∫ ∫ (
δ2Eint

δρ(r′)ρ(r′′)

) (
∂ρ(1)(r′)

∂κ
(1)
piqi

)(
∂ρ(1)(r′′)

∂κ
(1)
risi

)
dr′dr′′

+

∫ (
δEint

δρ(r′)

)(
∂2ρ(2)(r′)

∂κ
(1)
piqi∂κ

(1)
risi

)
dr′ , (58)

the second derivative needs to be evaluated, which yields

E
[2]
int;piqi,risi

=
∑

xiyi,tiui

ΓSD
xiyi;piqi

ΓSD
tiui;risi

(xiyi|wiiemb|tiui) +
∑
xiyi

ΓSD
xiyi;piqi,risi

〈xi|viemb|yi〉 . (59)

After evaluation of the density matrices, this gives the non-vanishing elements for subsystem

I:

E
[2]
int;iIaI,bIjI

= (iIaI|wI,I
emb|bIjI) + δiIjI〈aI|vI

emb|bI〉 − δaIbI〈iI|vI
emb|jI〉 , (60)

E
[2]
int;iIaI,jIbI

= (iIaI|wI,I
emb|jIbI) . (61)

The mixed second derivative leads to a coupling between the subblocks of the Hessian

for which only the kernel contributions (wemb) survive:

E
[2]
int;piqi,rjsj

=

∫ ∫
wijemb(r′, r′′)

(
∂ρ

(1)
i (r′)

∂κ
(1)
piqi

)(
∂ρ

(1)
j (r′′)

∂κ
(1)
rjsj

)
dr′dr′′

=
∑

xiyi,tjuj

ΓSD
xiyi;piqi

ΓSD
tjuj ;rjsj

(xiyi|wijemb|tjuj) . (62)

The full embedding kernel contribution can be expressed as:

wijemb(r′, r′′) = wxck(r′, r′′)− δij

[
δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

+
δ2Exc[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

]
+(1− δij)

1

|r′ − r′′|
, (63)

with the delta function indicating that the Coulomb term is only evaluated for the inter-

subsystem interaction (i 6= j). For convenience, we introduce auxiliary kernel contributions

to specify the kinetic energy and exchange-correlation terms in the embedding kernel:

wxck(r′, r′′) =
δ2Exc[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρtot

+
δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρtot

, (64)

wixck(r′, r′′) = wxck(r′, r′′)−

[
δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

+
δ2Exc

δρ(r′)δρ(r′′)

∣∣∣∣
ρi

]
. (65)

16



1. Linear response function

The general response equations in Eq. (28) reduce in the DFT-in-DFT case to λY (ωy)

λYII(ωy)

 = −

 F(ωy)
I,IIF

I,IIF II,IIF(ωy)

−1 ηY

IIηY

 . (66)

Substituting this result into Eq. (30), we obtain

〈〈X;Y 〉〉ωy = −

 ηX

ηXII

T  F(ωy)
I,IIF

I,IIF II,IIF(ωy)

−1 ηY

ηYII

 . (67)

The full matrix F collects the different sub-matrices: F(ωy)
II,IF

I,IIF II,IIF(ωy)

 =

 I,IE[2] II,IE[2]

I,IIE[2] II,IIE[2]

− ωy
 I,Im 0

0 II,IIm

 , (68)

where m stands for metric containing 1 and −1 on the diagonal. With the expressions above

we obtain the Hessian contributions to the matrices i,jFint as:

E
[2]
int;piqi,rjsj

=

 i,jAint i,jBint

i,jBint∗ i,jAint∗

 , (69)

where the diagonal kernel contributions to the elements of Eq. (69) are given (for real

orbitals) by

(iIaI|wI,I
emb,I|jIbI) → I,IAint

iIaI,jIbI
, I,IBint

iIaI,jIbI
. (70)

Adding this contribution to those from Eqs. (48) and (50) we obtain the complete expressions

for the supermatrix F for each of the subsystems, e.g. for subsystem I:

I,IAiIaI,jIbI = δiIjIδaIbI(ε
KS
aI
− εKS

iI
) + 2(iIaI|bIjI) + (iIaI|wxc|bIjI) + (iIaI|wI

xck|bIjI) , (71)

I,IBiIaI,jIbI = 2(iIaI|jIbI) + (iIaI|wxc|jIbI) + (iIaI|wI
xck|jIbI) . (72)

These diagonal blocks are coupled by the pure interaction block

I,IIAint
iIaI,jIIbII

= I,IIBint
iIaI,jIIbII

= 2(iIaI|jIIbII)int + (iIaI|wxck|jIIbII) . (73)

Note that we use the subscript “int” on the right-hand side to emphasize that this Coulomb

term arises due to the interaction energy expression in Eq. (63) which goes back to Eq. (6).
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Note also that the orbital energies include both the effective and the embedding potential

of the subsystem. For DFT-in-DFT, it is therefore convenient to add the non-additive

exchange-correlation contribution (contained in the embedding potential) to the subsystem

exchange-correlation contribution (which then becomes exchange-correlation potential for

the total density). This gives as final equation the simple expression:

I,IAiIaI,jIbI = δiIjIδaIbI(ε
KS
aI
− εKS

iI
) + 2(iIaI|bIjI) + (iIaI|w̌I

xck|bIjI) , (74)

I,IBiIaI,jIbI = 2(iIaI|jIbI) + (iIaI|w̌I
xck|jIbI) , (75)

where the contribution w̌I
xck is defined as

w̌I
xck(r′, r′′) = wxck(r′, r′′)− δ2Ts[ρ]

δρ(r′)δρ(r′′)

∣∣∣∣
ρI

. (76)

Up to this point, the subsystem approach enabled the extraction of explicit interaction

contributions, but the dimensionality of the problem remains the same compared to a su-

permolecular treatment. Only in case of uncoupled excitations it is evident that both the

response equations and the linear response function become decoupled, leading to smaller

dimensions and, thus, significantly reduced computational costs.

As shown by Neugebauer, it is possible to avoid matrices and vectors with supermolecular

dimensions in the coupled treatment [31, 32]. In a first step, the lowest excitation energies

for the different subsystems are calculated. Subsequently, a truncated eigenvalue equation

is set up with reduced dimensions for which a reduced number of coupling elements are

calculated. Therewith, the frozen-density approach significantly speeds up the calculation

of molecular properties, while retaining the accuracy close to a supermolecular calculation.

V. WFT-IN-DFT RESPONSE THEORY

As discussed in the introduction, wave-function based methods present another valid way

to obtain the electron density. Following the typical hierarchy in the wave-function ansatz,

we start with the variational, single-determinant (SD), Hartree-Fock method. Hartree-Fock

should thereby be considered as an approximation and the first step towards coupled-cluster

theory.
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A. HF-in-DFT

1. Density parameterization

Analogously to the DFT-in-DFT embedding we introduce an independent exponential

parameterization for each subsystem:

exp(−κ̂I)|0HF〉 and exp(−κ̂II)|0DFT〉 , (77)

so that the total electron density remains the sum of both subsystems:

ρtot(r, t)
FDE
= ρWFT(r,κI, t) + ρDFT(r,κII, t) . (78)

With all variational parameters expressed in terms of orbital rotations, the full quasienergy

expression reads

Q(t) = 〈0| exp[−κ̂(t)]

(
Ĥ + V̂ t − i ∂

∂t

)
exp[κ̂(t)]|0〉

+Qint[ρHF(t), ρDFT(t)] +Q[ρDFT(t)] . (79)

2. Linear response

The working equations of linear response theory in the HF-in-DFT case are very similar

to the DFT-in-DFT case, with differences due to the exact exchange (see e.g. Ref. [69])

appearing only in the diagonal subsystem blocks. Because the treatment of the interaction

energy remains identical to DFT, the matrix Fint can again be partitioned into A and B

subblocks with the expressions for the matrix elements of those subblocks being the same

as those in Eqs. (70) and (73) (with of course the Hartree-Fock density replacing the DFT

density in subsystem I).

The HF-in-DFT derivation thus yields the following one-electron and two-electron con-

tributions for the matrix AHF:

AHF
iIaI,jIbI

= δiIjIF
HF,I
aIbI
− δaIbIF

HF,I
iIjI

+ [iIaI||bIjI]

+δiIjI〈aI|vI
emb|bI〉 − δaIbI〈iI|vI

emb|jI〉+ (iIaI|wI,I
emb|bIjI) . (80)

where square brackets are defined as antisymmetrized spin-free two-electron integrals:

[pq||rs] = 2(pq|rs)− (ps|rq) . (81)
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Collecting all contributions that belong to the Fock matrix, the expressions simplify to:

AHF
iIaI,jIbI

= δiIjIδaIbI(ε
HF
aI
− εHF

iI
) + [iIaI||bIjI] + (iIaI|wI

xck|bIjI) , (82)

BHF
iIaI,jIbI

= [iIaI||jIbI] + (iIaI|wI
xck|jIbI) , (83)

where we have used the diagonal form of the Fock matrix (including the embedding potential)

and the short-hand notation adapted from Eq. (65). Note that w̌ixck used in Eq. (74) and

wixck used in Eq. (82) differ by the presence of the second term in Eq. (65), which is based

on the fact that the Hartree-Fock part has no exchange-correlation contribution it could

cancel with.

A simple approximation in this WFT-in-DFT approach would be to remove the ma-

trix B from the environment and coupling blocks. Introducing the 3-component acronym

subsystemI-coupling-subsystemII to specify a particular approximation in the coupling

block, the TDHF-TDA-TDA model results in the following form of the supermatrix F:

 F(ωy)
II,IF

I,IIF II,IIF(ωy)

 =


I,IAHF I,IBHF II,IA 0

I,IBHF I,IAHF 0 II,IA

I,IIA 0 II,IIAKS 0

0 I,IIA 0 II,IIAKS

− ωy
 I,Im 0

0 II,IIm

 , (84)

where we have used superscripts HF and KS to denote the way in which the density is

generated. Neglecting also the I,IBHF blocks takes us to a CIS-TDA-TDA model. Such

simplifications may be interesting when large environments are to be considered.

B. Coupled-cluster quasienergy response theory for an isolated system

We now derive the equations for CC-in-DFT frozen-density embedding, as an example

in which we need Lagrangian multipliers to treat a nonvariational wave function. We start

by briefly summarizing conventional coupled-cluster response theory to introduce the La-

grangian technique. For a more detailed discussion see e.g. Refs. [52, 65, 70]. In the

conventional formalism, orbital rotations are not treated explicitly but enter implicitly via

the single-excitation amplitudes [52, 70, 71].

We note that t denotes the time, whereas t denote coupled-cluster amplitudes, which are

included in the cluster operator T̂ , and t̄ Lagrangian multipliers. Since the coupled-cluster
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energy is not variationally optimized, the time-dependent coupled cluster quasienergy

Q(t; t) = 〈HF|Ĥ t exp(T̂ (t))|HF〉 (85)

is combined with the time-dependent cluster amplitude equations

0 = 〈ν| exp(−T̂ (t))

(
Ĥ t − i ∂

∂t

)
exp(T̂ (t))|HF〉 = Ων(t; t) (86)

to give a quasienergy Lagrangian:

LCC(t, t̄; t) = Q(t; t) +
∑
ν

t̄νΩν(t; t) . (87)

In the following, the projection manifold is often not specified to keep the derivation general.

In the presence of a (quasi-) periodic perturbation, the time evolution of the system is

completely determined by the condition that the time average of the quasienergy Lagrangian

is stationary with respect to variations of the cluster amplitudes and the Lagrangian mul-

tipliers. Requiring stationarity of the Lagrangian with respect to the coupled-cluster am-

plitudes, equations for the zeroth-order Lagrangian multipliers t̄(0) are obtained (see also

Ref. [12]). Including both singles and doubles excitations in the cluster operator yields

the CCSD model. Computationally cheaper is the approximated coupled-cluster singles and

doubles model, denoted as CC2 [42, 72]. The CC2 energy and amplitude equations read in

the similarity-transformed formulation using the specific projection manifold [73]:

E∆CC =
∑
ia,jb

(tai t
b
j + tabij )[ia||jb] (88)

Ωai = F̃ai +
∑
kc

(2tacik − tacki)F̃kc +
∑
cdk

(2tcdik − tcdki)(kd|ãc)−
∑
dkl

(2tadkl − tadlk )(ld|kĩ) (89)

Ωai,jb =
∑
c

(tcbijFac + tacij Fbc)−
∑
k

(tabkjFik + tabikFkj) + (̃iã|j̃b̃) (90)

The tilde indicates quantities calculated from T1-transformed molecular orbitals. The CC2

equations are useful to provide an example of CC-in-DFT embedding and can be further

approximated to provide a CCS treatment. Note, that in order to do this, we do not assume

canonical orbitals because we will in the following consider cases in which the embedding

potential is updated relative to the one used in the Hartree-Fock stage of the calculation

(in order to be consistent with the coupled cluster density rather than with an input HF or

DFT density).
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1. Linear response

As for DFT, we refer to the original references for the details of the unembedded CC2

derivation [52]. Adapting Eq. (32) to the coupled-cluster case and applying the 2n+ 2 rule,

the linear response function becomes:

〈〈X;Y 〉〉CC
ωy =

1

2
C±ωP (X(ωx),Y (ωy))

[
ηX +

1

2
F tX(ωx)

]
tY (ωy) , (91)

and the solution of the linear response equations yields:

tY (ωy) = −tt̄A(ωy)
−1ξY , (92)

t̄Y (ωy) = −tt̄A(−ωy)−1(ηY − ttF tY (ωy)) . (93)

Moreover, since tX(ωx) = tX(−ωy) = −tt̄A(−ωy)−1ξX , it can be seen that the response

function has poles at frequencies corresponding to the eigenvalues of the coupled cluster

Jacobian tt̄A (see Tab. II):

tt̄A Rf = ωf Rf . (94)

C. CC-in-DFT

In order to derive working equations for CC-in-DFT, the expansion of the interaction

term has to be carried out in orders of both the coupled-cluster amplitudes and Lagrangian

multipliers:

Qint = E
[0]
int[ρCC(t, t̄), ρDFT(κII)] + E

[1]
int;tt + E

[1]
int;t̄t̄ + E

[1]
int;κII

κII + ... (95)

Similar to the SD cases, the amplitudes and multipliers have not yet been expanded in the

different orders of the perturbation.

1. The coupled cluster electron density

The coupled-cluster electron density ρCC(t, t̄) is now needed, which can be calculated as

an expectation value. One then uses

〈Λ(t)| = 〈HF|+
∑
ν

t̄ν(t)〈ν| exp(−T̂ (t)) (96)
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as bra state and the normal coupled-cluster wavefunction as ket state, so that the norm of

such a bra-ket is conserved during time evolution [74]:

1 = 〈Λ(t)|CC(t)〉 . (97)

The (time-dependent) coupled-cluster electron density can thus be calculated as the expec-

tation value of the electron density operator,

ρ(r; t) = 〈Λ(t)|ρ̂(r)|CC(t)〉 =
∑
pq

φp(r)φq(r)DΛ
pq(t) , (98)

where DΛ is the one-electron coupled-cluster density matrix [75]. The expansion of ρ(r; t)

in orders of perturbation is then carried out by expressing DΛ
pq(t) in orders of perturbation

DΛ(0)
pq (0) = 〈Λ|Epq|CC〉 , (99)

DΛ(1)
pq (t) = 〈Λ|[Epq, T̂ (1)(t)]|CC〉+

∑
ν

t̄(1)
ν (t)〈ν| exp(−T̂ (0))Epq|CC〉 , (100)

DΛ(2)
pq (t) = 〈Λ|[Epq, T̂ (2)(t)] +

1

2
[[Epq, T̂

(1)(t)], T̂ (1)(t)]|CC〉

+
∑
ν

[
t̄(1)
ν (t)〈ν| exp(−T̂ (0))[Epq, T̂

(1)(t)]|CC〉

+t̄(2)
ν (t)〈ν| exp(−T̂ (0))Epq|CC〉

]
, (101)

and so on. Explicit expressions for DΛ(0) can be found in Ref. [73], for example.

2. Energy expression

As an example, we list the CC2-in-DFT ground state contributions. The total energy of

the CC-in-DFT approach is calculated from the zeroth-order Lagrangian,

L(0) = L
(0)
CC +Q

(0)
int +Q

(0)
DFT , (102)

which reads explicitly

L(0) = 〈0HF|ĤI|0HF〉+ E
[0]
∆CC + E

[0]
int + E

[0]
DFT . (103)

Similar to HF-in-DFT, the Hartree-Fock energy contribution denotes the expectation value

of the Hartree-Fock wave function over the Hamiltonian of subsystem I without any explicit

embedding contributions, but with orbitals obtained using the embedding potential in the
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Hartree-Fock equations. The contributions to the amplitude equations are obtained as

derivatives of the Lagrangian with respect to the multipliers:

0 =
∂L(0)

∂t̄
(0)
ν

= Ων +
∂Q

(0)
int

∂t̄
(0)
ν

= Ων + E
[1]
int;t̄;ν , (104)

compare also Tab. II. This yields additional embedding contributions to the normal quan-

tities (see also the discussion in Ref. [76]):

Ωia ← 〈ã|vI
emb|̃i〉+

∑
kc

(2tacik − tacki)〈k|vI
emb|c〉 , (105)

Ωia,jb ←
∑
c

(
tcbij 〈a|vI

emb|c〉+ tacij 〈b|vI
emb|c〉

)
−
∑
k

(
tabkj〈i|vI

emb|k〉+ tabik〈k|vI
emb|j〉

)
.(106)

Note that vI
emb itself is not calculated from T̂1-transformed orbitals and there is no tilde on

the second contribution to the singles amplitude equations. This is in agreement with the

conventional coupled cluster in which effectively only the two-electron contribution of the

latter term is T1-transformed. Eqs. (103) – (106) correspond to the treatment in Ref. [50]

in which the embedding potential was included in the Fock matrix elements and no update

of the density and the embedding potential was carried out.

There are different strategies possible to achieve full self-consistency for amplitudes and

multipliers in case of CC-in-DFT. The simplest is to start from a converged DFT guess for

both subsystem densities [50], and correct for differences between the calculated CC density

and the DFT density (note that this difference only arises in approximate theory, in exact

theory both densities would be identical) by carrying out the following procedure

1. Determine HF and CC parameters and Lagrange multipliers for the WFT subsystem

with a fixed embedding potential.

2. Calculate the coupled-cluster density and correct the embedding potential for differ-

ence between the actual and input active density.

3. If not converged, go back to (1) and update all parameters using the updated potential.

Due to the high computational costs such a fully converged procedure is probably not worth-

while to pursue, but it may be desirable to correct in case large differences are found between

the input (DFT) density and the calculated WFT density. This may both be due to dif-

ferences in the formalism as well as differences in the basis set that is applied in both

calculations (in case the DFT density is obtained using a different program).
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3. Linear response

In order to calculate response contributions arising from the interaction energy, Qint in

Eq. (95), we need to expand and sort with respect to orders of the perturbation. Relevant

for determining {2n+1Q
(2)
int}T is, e.g., the second derivative with respect to amplitudes and

multipliers:

E
[2]
int;tt̄;µ,ν =

∫ ∫
wI,I

emb(r′, r′′)

(
∂ρ(1)(r′)

∂t
(1)
µ

)(
∂ρ(1)(r′′)

∂t̄
(1)
ν

)
dr′dr′′

+

∫
vI

emb(r′)

(
∂2ρ(2)(r′)

∂t
(1)
µ ∂t̄

(1)
ν

)
dr′ (107)

=
∑

xIyI,sIuI

tΓCC
xIyI;µ

t̄ΓCC
sIuI;ν

(xIyI|wI,I
emb|sIuI) +

∑
xIyI

tt̄ΓCC
xIyI;µν

〈xI|vI
emb|yI〉 . (108)

Using the expansion of the electron density, expressions for the intermediate densities are

obtained:

tΓCC
xIyI;µ

=

(
∂D

Λ (1)
xIyI

∂t
(1)
µ

)
= 〈Λ|[ExIyI , τµ]|CC〉 , (109)

t̄ΓCC
xIyI;ν

=

(
∂D

Λ (1)
xIyI

∂t̄
(1)
ν

)
= 〈ν| exp(−T )ExIyI|CC〉 , (110)

tt̄ΓCC
xIyI;µν

=

(
∂2D

Λ (2)
xIyI

∂t
(1)
µ ∂t̄

(1)
ν

)
= 〈ν| exp(−T )[ExIyI , τµ]|CC〉 , (111)

where the expressions for D
Λ (n)
xIyI arise from Eqs. (98)–(101). Furthermore, the following

densities are needed:

ttΓCC
xIyI;µν

=

(
∂2D

Λ (2)
xIyI

∂t
(1)
µ ∂t

(1)
ν

)
= 〈Λ|[[ExIyI , τµ], τν ]|CC〉 , (112)

t̄t̄ΓCC
xIyI;µν

=

(
∂2D

Λ (2)
xIyI

∂t̄
(1)
µ ∂t̄

(1)
ν

)
= 0 , (113)

to express

tt̄Aint
µ,ν =

∑
xIyI,sIuI

tΓCC
xIyI;µ

t̄ΓCC
sIuI;ν

(xIyI|wI,I
emb|sIuI) +

∑
xIyI

tt̄ΓCC
xIyI;µν

〈xI|vI
emb|yI〉 , (114)

ttF int
µ,ν =

∑
xIyI,sIuI

tΓCC
xIyI;µ

tΓCC
sIuI;ν

(xIyI|wI,I
emb|sIuI) +

∑
xIyI

ttΓCC
xIyI;µν

〈xI|vI
emb|yI〉 , (115)

t̄t̄J int
µ,ν =

∑
xIyI,sIuI

t̄ΓCC
xIyI;µ

t̄ΓCC
sIuI;ν

(xIyI|wI,I
emb|sIuI) . (116)
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In order to calculate the contributions to the total linear response function, the interaction

energy has to be expanded not only in orders of the amplitudes and multipliers, but also

in orders of the orbital rotation parameters of subsystem II. Therefore, for the elements

of the coupling matrix, expressions analogous to Eq. (62) are obtained, but now with the

appropriate auxiliary coupled-cluster densities ΓCC replacing ΓSD for subsystem I:

I,IIAµ,rIIsII =
∑

xIyI,tIIuII

t̄ΓCC
xIyI;µI

ΓKS
tIIuII;rIIsII

(xIyI|wI,II
emb|tIIuII) , (117)

I,IIFµ,rIIsII =
∑

xIyI,tIIuII

tΓCC
xIyI;µI

ΓKS
tIIuII;rIIsII

(xIyI|wI,II
emb|tIIuII) . (118)

The superscripts of the embedding kernel indicate that the Coulomb contribution is present

for the inter-subsystem contributions.

The approximate uncoupled linear response function is obtained from Eqs. (28) and (30):

〈〈X;Y 〉〉ωy =
1

2
C±ω P (X(ωx),Y (ωy))×

{
1

2
t̄t̄J t̄X(ωx) t̄Y (ωy)

+

 ηX

IIηX

T

+
1

2

 tX(ωx)

κXII (ωx)

T  ttF 0

0 II,IIF(ωy)

 tY (ωy)

κYII(ωy)

 , (119)

and the perturbed parameters are calculated from the decoupled set of linear response

equations (cmp. Sec. VI):
0

0

0

 =


ξY

ηY

IIηY

+


tt̄A− ωy1 t̄t̄J 0

ttF tt̄A + ωy1 0

0 0 II,IIF(ωy)

 ·


tY (ωy)

t̄Y (ωy)

κYII(ωy)

 . (120)

Therefore, the linear response function can trivially be expressed as the sum of the two

subsystem contributions.

For coupled response properties the full response function in Eq. (31) becomes

〈〈X;Y 〉〉ωy = 〈〈X;Y 〉〉CC
ωy + I,IIF tX(ωx)κ

Y
II(ωy) + 〈〈X;Y 〉〉DFT

ωy , (121)

and can be calculated after solving for the perturbed amplitudes and multipliers according

to Eq. (28):
0

0

0

 =


ξY

ηY

IIηY

+


tt̄A− ωy1 t̄t̄J I,IIA

ttF tt̄A + ωy1
I,IIF

I,IIF I,IIA II,IIF(ωy)

 ·


tY (ωy)

t̄Y (ωy)

κYII(ωy)

 . (122)
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In this case, all three parameter responses (tX , t̄X , and κX) are coupled. Again, as already

discussed for DFT-in-DFT, the computational cost becomes a key issue. Since the coupled-

cluster Jacobian is typically already very large a further increase of the dimension should

be avoided. Here one may first transform to a smaller basis of solutions before considering

the coupling between the systems, similar to the strategy employed for DFT-in-DFT [31].

Additional savings can be obtained by considering approximations in the coupling blocks,

e.g. using the interactions’ locality.

4. Exemplary working equations

The expressions above are valid for a general truncation level, and it is instructive to

consider a few cases for which the actual expressions for the densities ΓCC are rather simple.

For CCS, a fair amount of simplifications apply to Eqs. (114)–(118). The ground-state

density that is to be used to evaluate the kernel integrals becomes then exactly that of

Hartree-Fock. The auxiliaries are, however, different:

tΓCCS
xIyI;iIaI

=

(
∂D

Λ (1)
xIyI

∂taIiI
(1)

)
= 〈Λ|[ExIyI ,EaIiI ]|CC〉 = δiIxIδaIyI , (123)

t̄ΓCCS
xIyI;jIbI

=

(
∂D

Λ (1)
xIyI

∂t̄
bI (1)
jI

)
= 〈bIjI | exp(−T )ExIyI|CC〉 = δjIxIδbIyI , (124)

tt̄ΓCCS
xIyI;iIaI,jIbI

=

(
∂2D

Λ (2)
xIyI

∂t
aI (1)
iI

∂t̄
bI (1)
jI

)
= 〈bIjI | exp(−T )[ExIyI ,EaIiI ]|CC〉

= δiIjIδxIaIδyIbI − δaIbIδxIiIδyIjI . (125)

This leads to the potential and kernel contribution to the coupled-cluster Jacobian:

tt̄ACCS, int
iIaI,jIbI

=
∑

xIyI,sIuI

tΓCCS
xIyI;jIbI

t̄ΓCCS
sIuI;iIaI

(xIyI|wI,I
emb|sIuI) +

∑
xIyI

tt̄ΓCCS
xIyI;iIaI,jIbI

〈xI|vI
emb|yI〉

= δiIjI〈aI|vI
emb|bI〉 − δab〈iI|vI

emb|jI〉+ (iIaI|wI
xck|bIjI) (126)

that are equivalent to the elements of the Hessian in the case of CIS-in-DFT, compare Eq.

(82) and, if neglecting the I,IBHF blocks, Eq. (84). Coupling elements are obtained similarly:

I,IIAiIaI,jIIbII =
∑

xIyI,tIIuII

t̄ΓCC
xIyI;iIaI

ΓKS
tIIuII;jIIbII

(xIyI|wI,II
emb|tIIuII) (127)

= 2(iIaI|bIIjII)int + (iIaI|wxck|bIIjII) . (128)
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This example is of course only presented to illustrate the general theory, typically WFT

descriptions will be aimed at improving upon a DFT description by using a method of at

least CC2 quality.

VI. RELATION TO QM/MM METHODS

The discussion above has mostly been concerned with the formalism and the connection to

prior work within the context of DFT-in-DFT or WFT-in-DFT frozen-density embedding.

Nevertheless, for the “embedding” mode of the formalism it is illustrative to also make

a connection to other related approaches such as the SD/molecular mechanics (SD/MM)

[77] and coupled-cluster/molecular mechanics (CC/MM) [10–13] methods, and the more

recent polarizable embedding (PE) approaches, PE-SD [78] and PE-CC [14], proposed by

Christiansen, Mikkelsen, Kongsted and coworkers.

Conceptually similar is the treatment of Coulombic interactions. The major difference

lies in the continuous electron density in case of FDE, whereas MM and PE use a discrete

multipole expansion. In both cases the quadratic density dependence in the energy transfers

to a linear dependence in the embedding potential. The differences come from the exchange-

correlation and kinetic energy contributions that provide the Pauli repulsion that is lacking

in the classical approaches. These also lead to a nonlinear dependency on changes in the

(partitioned) density due to the perturbing field.

Despite these differences in the physical content in the FDE and CC/MM approaches, the

working equations exhibit a number of similarities. An important example is, for instance,

the matrix J which is absent for the vacuum case. For both FDE and CC/MM or PE-CC, J

is responsible for coupling the response equations determining the perturbed coupled cluster

amplitudes and Lagrangian multipliers [11, 14]. In our formalism, J describes changes in the

response of the coupled-cluster system due to the environment that are caused by changes

in the (intra-subsystem) non-additive exchange-correlation and kinetic energy contributions,

while explicit “inter-subsystem” coupling effects are accounted for by the off-diagonal blocks

of the matrices A and F. In the CC/MM or PE-CC, the “inter-subsystem” contributions

are also present in J, since the interactions with the environment (including its response)

are expressed as “effective” contributions to the QM part.

There is also a relation with respect to pole and residue analysis of the response function
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that is discussed in the context of classical embedding [10–12]. The specific coupling of

the amplitudes and multipliers leads to poles of higher order compared to exact theory in

vacuum. For CC/MM, it has been proposed to ignore the coupling of the t and t̄ responses

so that the same formal expressions for transition properties are obtained compared to the

vacuum case, with the difference that they include the embedding contributions. A similar

approach could be followed here.

VII. NUMERICAL EXAMPLE

Although the present article is mainly concerned with the theoretical aspects of FDE

response formalism, a pilot application is presented to assess the importance of the various

environment contributions. The model system is a solvated water molecule as investigated

by Jacob et al. in the context of evaluating the performance of FDE for ground-state and

reponse properties vs. the Discrete Reaction Field (DRF) method [34].

The formalism presented is implemented in a library currently interfaced to a develop-

ment version of the Dirac program package [79], following up on previous work [50], and

restricting the discussion to HF-in-DFT response. The details of the implementation and

its use in connection to electron correlation methodologies will be addressed in subsequent

publications. In our calculations we employ the PyADF scripting framework [80] in order

to perform FDE calculations with the ADF code [33, 81] (using the PBE functional for Exc

and Enadd
xc , and PW91k for T nadd

s , and a TZ2P basis set augmented with diffuse functions).

Following one of the strategies discussed in Ref. [34], the frozen density is constructed as

a superposition of fragment densities obtained for an isolated molecule. The Dirac calcula-

tions are performed employing the aug-cc-pVTZ basis in combination with the Levy-Leblond

(non-relativistic) Hamiltonian.

Our results for the three lowest singlet excitation energies are shown in Tab. III. We

observe that our calculations and those reported in Ref. [34] yield similar trends, although

quantitative differences occur. For instance, in both cases the shifts in the energies due to

solvation are positive and show little variation but the HF-in-DFT values are roughly two

third of those obtained by Jacob et al.. As for the response (kernel) contributions, we can

see that for the lowest singlet state both calculations yield similar results, namely 0.06 eV

for HF-in-DFT and 0.07 eV for DFT-in-DFT.
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Similar behavior is seen for the dipole moments. Using HF-in-DFT, we obtain a shift of

+0.57 D from the value for the isolated molecule (1.98 D) whereas the DFT calculations in

Ref. [34] show a shift of +0.65 D from the value of the isolated molecule (1.80 D).

VIII. CONCLUSIONS

We have presented a formalism suitable for calculating time-dependent molecular proper-

ties within a subsystem embedding framework, the key aspects of which are: First, the defi-

nition of a time-dependent Lagrangian expression that connects the energies of the isolated

subsystems and their interaction energy. Secondly, the use of the time-averaged quasienergy

formalism in order to identify the molecular properties with the (time-averaged) derivatives

of the Lagrangian with respect to the perturbing fields’ strengths [52]. As usual, time-

independent properties are also accessible, as a special (zero-frequency) case.

The crucial ansatz in our formalism is the expression of the interaction contribution to

the Lagrangian in a purely DFT fashion, that is, as a functional of the (time-dependent)

electron density for the total system. In addition, we consider the number of particles in each

subsystem as fixed, although for subsystems treated by DFT it may be possible to relax this

constraint, see e.g. Refs. [47, 55, 56]. However, these features provide several advantages:

there is no double counting of electron correlation, the total density can be expressed as the

sum of overlapping subsystem densities, and variational and non-variational WFT methods

can be treated on the same footing. Furthermore, it offers the pathway to an efficient

description with a large number of subsystems [82]. The calculation of the interaction

contributions is straightforward, being limited primarily by the accuracy of the approximate

exchange-correlation and kinetic energy functionals used to calculate the non-additive kinetic

and exchange-correlation contributions.

While we have restricted the discussion to coupled-cluster as an example of non-

variational wave functions, and Hartree-Fock as a simple example of variational methods,

we note that the methodology presented can be applied to other non-variational methods

such as MP2 as well as to variational methods such as MCSCF. Since the interaction contri-

bution to the quasienergy Lagrangian is a functional of the (total) electron density, we only

require a formulation of the time-dependent electron density using the method of choice.

We believe that for time-independent properties the simplest WFT-in-DFT model in prac-
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tice should be MP2-in-DFT as simpler models will not improve upon the DFT description.

For time-dependent properties, we propose CC2-in-DFT—although the pole structure is

more complicated to the vacuum case, approximations offer the possibility to correct this

deficiency, whereas MP2 itself exhibits inherently a wrong pole structure.

In the preceding discussion we have hinted at some strategies to take advantage of the

subsystem formulation in the calculation of the response parameters and (coupled) excita-

tion energies. In future work we plan to investigate this further and implement efficient

approximate embedding treatments.

IX. ACKNOWLEDGMENTS

S. H. has been supported by the European Commission under a Marie-Curie Intra-

European Fellowship (Contract no. PIEF-GA-2010-274224). L.V. has been supported by a

VICI grant by the Netherlands Organisation for Scientific Research (NWO).
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[69] A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).

[70] C. Hättig and P. Jørgensen, J. Chem. Phys. 109, 2762 (1998).

[71] O. Christiansen, C. Hättig, and J. Gauss, J. Chem. Phys. 109, 4745 (1998).

[72] O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 103, 7429 (1995).

[73] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley VCH,

2000).

[74] H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).

[75] H. Koch, H. J. A. Jensen, P. Jørgensen, T. Helgaker, G. E. Scuseria, and H. F. Schaefer, J.

Chem. Phys. 92, 4924 (1990).

[76] O. Christiansen, A. Halkier, H. Koch, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 108,

2801 (1998).

[77] C. B. Nielsen, O. Christiansen, K. V. Mikkelsen, and J. Kongsted, J. Chem. Phys. 126, 154112

(2007).

[78] J. M. Olsen, K. Aidas, and J. Kongsted, J. Chem. Theory Comput. 6, 3721 (2010).

[79] DIRAC, a relativistic ab initio electronic structure program, Release DIRAC11 (2011), writ-

ten by R. Bast, H. J. Aa. Jensen, T. Saue, and L. Visscher, with contributions from

V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, T. Fleig, O. Fos-

sgaard, A. S. P. Gomes, T. Helgaker, J. K. Lærdahl, J. Henriksson, M. Iliaš, Ch. R. Jacob,
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TABLE I: Vectors and matrices for general response functions, see Ref. [52].

Quantity Derivative expr. Quantity Derivative expr. Quantity Derivative expr.

ηY ∂2{L(2)}T
∂λ(1)(ωX)∂εY (ωY )

IIηY ∂2{L(2)}T
∂λ

(1)
II (ωX)∂εY (ωY )

ξY ∂2{L(2)}T
∂λ̄(1)(ωX)∂εY (ωY )

J(ωY ) ∂2{L(2)}T
∂λ̄(1)(ωX)∂λ̄(1)(ωY )

A(ωY ) ∂2{L(2)}T
∂λ(1)(ωX)∂λ̄(1)(ωY )

I,IIA(ωY ) ∂2{L(2)}T
∂λ̄(1)(ωX)∂λ

(1)
II (ωY )

F(ωY ) ∂2{L(2)}T
∂λ(1)(ωX)∂λ(1)(ωY )

I,IIF(ωY ) ∂2{L(2)}T
∂λ(1)(ωX)∂λ

(1)
II (ωY )

II,IIF(ωY ) ∂2{L(2)}T
∂λ

(1)
II (ωX)∂λ

(1)
II (ωY )

η ∂{Q(0)}T
∂λ(0)

IIη
∂{Q(0)

II }T
∂λ(0)
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TABLE III: TDHF excitation energies (in eV) for the first three singlet states of a water molecule,

isolated (Eiso) and solvated (Esol) by 127 water molecules employing FDE. The FDE corrections

are further subdivided into “diagonal”’ and “response”, i.e. arising from the potential and the

kernel contributions, see Eqs. (80) and (83), denoted ∆ Ediag
env and ∆ Eresp

env , respectively.

State Eiso (eV) Esol (eV) ∆ Ediag
env (eV) ∆ Eresp

env (eV)

1 8.65 9.24 0.53 0.06

2 10.33 10.85 0.47 0.05

3 10.94 11.47 0.47 0.06
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