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UMR-CNRS 7502, Institut Élie Cartan de Lorraine, France��

Abstract

In this article we investigate analytically and numerically a class of
non-autonomous Schrödinger equations in one space dimension describ-
ing the dynamics of quantum anharmonic oscillators driven by time-
dependent quartic interactions. We do so within a suitably constructed
Faedo-Galerkin scheme by analyzing several product approximations for
their solutions, which involve various exponential operator splittings. Our
main objective is to study the convergence rates and the accuracy of such
approximations, among which there are extensions of the Trotter-Kato
product formula and several other variants. Crucial to our analysis is the
knowledge of the lowest energy level and of the corresponding eigensolu-
tion to the associated time-independent problem, which we also compute
within the very same framework.

1 Introduction and Outline

Our primary purpose in this article is to investigate from an analytical and a nu-
merical point of view the class of one-dimensional non-autonomous Schrödinger
initial-value problems given by
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where � > 0 and where a : [0; T ] 7! R
+ is a twice continuously di¤erentiable

and positive amplitude function, with T 2 (0;+1) arbitrary. Problems of the
form (1) describe the dynamics of quantum anharmonic oscillators driven by
time-dependent quartic interactions, whose autonomous version
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has triggered over the years some interest in theoretical physics as a simple
model in �eld theory (see, for instance, [4] and [24]). From a mathematical
point of view, (1) may be considered as a very particular example of evolution
problems of the form

i
du(t)

dt
= H(t)u(t); t 2 (0; T ] ;

u(0) = v (3)

de�ned in a complex Hilbert space H, where the H(t)�s are unbounded self-
adjoint operators on some time-dependent and dense domains D(H(t)) � H.
In the case of (1) the reference space is the usual complex Lebesgue space H =
L2(R;C) endowed with the inner product

(f; g)2 :=

Z

R

dxf(x)g(x); (4)

and the H(t)�s are self-adjoint realizations of the formal expressions

H(t) := �1
2

@2

@x2
+
x2

2
+ �a(t)x4. (5)

There are many ways to compute the solution to evolution equations of the
form (3). For instance, writing L(H) for the algebra of all linear bounded oper-
ators on H, and assuming there is a unitary evolution system UH (t; s)s;t2[0;T ]
on H such that

u(t) := UH (t; 0) v

solves (3) in a suitable sense, we may ask whether there exist one-parameter
families of functions Ft : R+ 7! L(H) such that formulae of the form

UH (t; s) = lim
n!+1

0Y

D=n�1
Fs+ D

n
(t�s)

�
t� s
n

�
(6)

hold true in one of the various topologies of L(H) for all s; t 2 [0; T ] with t � s.
Formulae such as (6) indeed constitute the theoretical basis of numerical algo-
rithms intended to compute solutions to various evolution problems, a recurrent
theme that was already thoroughly discussed in [9] in the context of autonomous
evolution equations.
In the sequel we write h := t�s

n for the uniform time step so that (6) takes
the equivalent form

UH (t; s) = lim
n!+1

0Y

D=n�1
Fs+Dh (h) ; (7)

although we also allow the time variable to become large while keeping h �xed
in some numerical examples of Section 3. Product approximations such as (7)
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were in fact proved in [27] for a large class of Ft�s by using an adaptation of the
methods developed in [26] and [28] for the investigation of parabolic evolution
equations, and were illustrated there by two examples in quantum mechanics.
In this article we consider more re�ned approximating functions than those

introduced in [27], which we require to take values in the unitary group of L(H)
for reasons which we explain further below. More speci�cally we investigate a
situation that pertains to problems of the form (1), namely, one where more
information is available regarding the structure of the H(t)�s aside from their
self-adjointness, such as a typical decomposition of the form

H(t) = H0 + V (t) (8)

with H0 and V (t) both self-adjoint operators on H and H0 independent of time.
In such a case we can indeed think of many more concrete choices for Ft which
are not tractable by the method set forth in [27]. For instance we can consider

Ft(�) = exp [�i�H0] exp [�i�V (t)] ; (9)

in which case the corresponding approximation reads

UH (t; s) = lim
n!+1

0Y

D=n�1
exp [�ihH0] exp [�ihV (s+ Dh)] : (10)

We remark that (10) represents a formal generalization of the usual Trotter-Kato
formula

exp [�i(t� s)(H0 + V )] = lim
n!+1

(exp [�ihH0] exp [�ihV ])n

which is known to hold in the strong operator topology of L(H) if H0 + V
is essentially self-adjoint on the domain D (H0) \ D (V ), and which has been
generalized in various directions over the years (see, for instance, [7], [8], [13],
[14], [25] and also [10], [20], [24] and more recently [12] for a comprehensive
review of these and related works). But we can also consider

Ft(�) = exp [�i�H0] exp [�i�V (t)] exp
�
�2

2
[H0; V (t)]�

�
(11)

provided the commutator [H0; V (t)]� makes sense as an anti-adjoint operator
on some suitable domain in H, or

Ft(�) = exp
h
�i �
2
H0

i
exp [�i�V (t)] exp

h
�i �
2
H0

i
(12)

among many other possible choices. In these two cases the corresponding ap-
proximations formally read

UH (t; s)

= lim
n!+1

0Y

D=n�1
exp [�ihH0] exp [�ihV (s+ Dh)] exp

�
h2

2
[H0; V (s+ Dh)]�

�

(13)
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and

UH (t; s) = lim
n!+1

0Y

D=n�1
exp

�
�ih
2
H0

�
exp [�ihV (s+ Dh)] exp

�
�ih
2
H0

�
;

(14)
respectively. The choice of (11) has its origins in the Baker-Campbell-Hausdor¤
formula of Lie group theory, as is the case for (12) which pertains to the con-
struction of the symmetric splitting schemes introduced in [29] (see, for instance,
Chapter 3 in [16]).
A further variant of the last two choices amounts to replacing everywhere the

values V (s+ Dh) of the function V at the subdivision points by the arithmetic
averages

WD(s; h) :=
1

2
(V (s+ Dh) + V (s+ (D + 1)h)) (15)

for each D 2 f0; :::; n� 1g. Formulae (13) and (14) then become

UH (t; s)

= lim
n!+1

0Y

D=n�1
exp [�ihH0] exp [�ihWD(s; h)] exp

�
h2

2
[H0;WD(s; h)]�

�
(16)

and

UH (t; s) = lim
n!+1

0Y

D=n�1
exp

�
�ih
2
H0

�
exp [�ihWD(s; h)] exp

�
�ih
2
H0

�
; (17)

respectively.
To the best of our knowledge and in contrast to the parabolic case that was

investigated in [26] and [28], there exist as yet no proofs of the above product
approximations for the solution to evolution problems of the form

i
du(t)

dt
= (H0 + V (t))u(t); t 2 (0; T ] ;

u(0) = v (18)

when the operators H0 and V (t) are unbounded. This remark applies in partic-
ular to Problem (18) with the self-adjoint realizations of

H0 := �
1

2

@2

@x2
+
x2

2
(19)

and
V (t) := �a(t)x4; (20)

and thereby constitutes the point of departure of our investigation. Our goal is
indeed to compute the solution to (18)-(20) using the example

a(t) = 1� sin!t (21)
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with ! > 0, as well as the solution and the energy levels of the corresponding
autonomous problem (2), in such a way that we can test the validity of the above
approximating formulae and simultaneously provide rates of convergence in each
case. Accordingly, the remaining part of this article is organized as follows: in
Section 2 we �rst endow L2(R;C) with the orthonormal basis consisting of the
Hermite functions hm : R 7!R de�ned by

hm(x) :=
�
�
1
2 2mm!

�� 1
2

e�
x2

2 Hm(x) (22)

for every m 2 N, where the Hm�s are the Hermite polynomials

Hm(x) = (�1)mex
2 dm

dxm
e�x

2

:

We then devise a Faedo-Galerkin scheme where for each N 2 N
+ we de-

note by EN (R;C) the �nite-dimensional subspace of L2(R;C) generated by
fh0; :::; hN�1g, and consider there the truncated version of (18)

i
duN (t)

dt
= (H0;N + VN (t))uN (t); t 2 (0; T ] ;

uN (0) = vN (23)

where H0;N and VN (t) are linear bounded self-adjoint operators corresponding
to suitable restrictions of (19) and (20) to EN (R;C), respectively, and where
vN stands for the orthogonal projection of v onto EN (R;C). This allows us to
prove the existence of unitary evolution operators UN (t; s)s;t2[0;T ] such that

uN (t) := UN (t; 0) vN (24)

solves (23), while providing an approximation of the initial condition in (18) of
the form

vN =

N�1X

m=0

vmhm: (25)

Such a result is indeed easy to obtain to the extent that the operators in (23)
remain bounded. In Section 2 we also introduce the truncated versions of the
right-hand sides of (10), (16) and (17), namely,

uTKN;n(t) :=
0Y

D=n�1
exp [�ihH0;N ] exp [�ihVN (s+ Dh)] vN ; (26)

uBCHN;n (t)

:=
0Y

D=n�1
exp [�ihH0;N ] exp [�ihWN;D (s; h)] exp

�
h2

2
[H0;N ;WN;D (s; h)]�

�
vN

(27)
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and

uYN;n(t) :=
0Y

D=n�1
exp

�
�ih
2
H0;N

�
exp [�ihWN;D (s; h)] exp

�
�ih
2
H0;N

�
vN;

(28)
where TK, BCH and Y stand for Trotter-Kato, Baker-Campbell-Hausdor¤ and
Yoshida, respectively, and where

WN;D(s; h) :=
1

2
(VN (s+ Dh) + VN (s+ (D + 1)h)) (29)

is the truncated version of (15). We then prove that the speed of convergence of
(27) and (28) toward (24) as n ! +1 is much faster than it would have been
with the truncated versions of (13) and (14), respectively, thereby justifying
the replacement of V (s+ Dh) by WD(s; h) in those formulae. In contrast, we
also show there that this replacement has no in�uence whatsoever regarding the
convergence rate of (26).
Whereas the results of Section 2 are analytical and valid for problems of the

form (1) with an arbitrary smooth amplitude function a, those of Section 3 are
mainly numerical and concerned with the computation of the solutions to (2)
and to the particular case of (1) given by

i
@u(x; t)

@t
=

�
�1
2

@2

@x2
+
1

2
x2 + � (1� sin!t)x4

�
u(x; t); (x; t) 2 R� (0; T ] ;

u(x; 0) = v(x); x 2 R: (30)

The initial condition in (2) and (30) is chosen to be a solution to the eigenvalue
problem �

�1
2

d2

dx2
+
1

2
x2 + �x4

�
v(x) = E0v(x) (31)

where E0 is the lowest eigenvalue in the spectrum of this di¤erential operator,
so that both (2) and (30) are indeed intimately tied up since (31) is related to
the stationary part of (2). More speci�cally, we �rst compute the solution to
(2) by means of the formula

uN (t) = exp [�it (H0;N + VN )] vN (32)

for various values of N and � by means of MatLab�s expm, and then compare
the results with those obtained from the time-independent versions of (26), (27)
and (28), namely,

uTKN;n(t) = (exp [�ihH0;N ] exp [�ihVN ])n vN ; (33)

uBCHN;n (t) =

�
exp [�ihH0;N ] exp [�ihVN ] exp

�
h2

2
[H0;N ; VN ]�

��n
vN (34)
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and

uYN;n(t) =

�
exp

�
�ih
2
H0;N

�
exp [�ihVN ] exp

�
�ih
2
H0;N

��n
vN; (35)

respectively, for n su¢ciently large. Quite independently as a control, we also
compute the solution to (2) directly by using MatLab�s ode45 (see, for instance,
[11] for the origins of this method), and the comparison of that solution with
those obtained by means of (32)-(35) reveals that our numerical results are very
stable and accurate indeed. Of course all those computations �rst require the
computation of, and very good approximations for, the smallest eigenvalue E0
of the spectrum and for the corresponding eigenfunction v, which we get by
means of MatLab�s eigs and by a variational argument, respectively. At the
same time our variational method also allows us to address the important issue
of how large N ought to be for our results to be reliable.
Quite independently again, we also compute some of the eigenvalues in

�
�1
2

d2

dx2
+
1

2
x2 + �x4

�
v(x) = Ev(x)

by using MatLab�s eigs, with a particular emphasis on the lowest part of the
spectrum E0, thereby showing a good agreement with the analytical approxi-
mations.
We then proceed by computing the solution to (30) by using similar tech-

niques, namely, �rst by means of

uN;n(t) :=

0Y

D=n�1
exp [�ih (H0;N + VN (s+ Dh))] vN

and then with formulae (26), (27), (28) usingMatLab�s expm, and ultimately as a
control by means of MatLab�s ode45. The comparison of all those computations
shows once more that our results are very stable and accurate, which in the end
leads us to compare the numerical results of Section 3 with the analytical results
of Section 2. Our conclusion is that all of the above product approximation
formulae are indeed valid within the precision of our computations. Finally, we
derive other estimates for E0 and v by means of a formal WKB approximation
in the Appendix.
We conclude this introduction by pointing out that the methods of inves-

tigation set forth in this article are very di¤erent from other techniques which
were developed in recent times by a variety of authors in various settings to deal
with Schrödinger equations (see, for instance, [19] and some of the references
therein). For example, in [19] the authors prove some error bounds on the basis
of commutator estimates which involve unbounded operators from the outset,
without ever considering Faedo-Galerkin approximations and time-dependent
operators. The application of their results is thereby exclusively limited to
the analysis of evolutionary Schrödinger equations with time-independent and
bounded potentials.
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2 Some Analytical Results

We begin by recalling that the eigenvalue equation

H0hm =

�
m+

1

2

�
hm (36)

holds identically on R for every m 2 N, so that the space EN (R;C) de�ned in
the preceding section remains invariant under H0. In the sequel we write H0;N
for the restriction of H0 to EN (R;C), which obviously de�nes a linear bounded
self-adjoint operator there. In order to get a restriction of the quartic term (20)
to EN (R;C) which enjoys similar properties, we �rst need the following result
whose proof is omitted since it obtains from (22) and the recurrence relations
for the Hm�s in a standard way (see, for instance, [1] for a statement of those
recurrence relations):

Lemma 1. We have

x4hm(x)

=
1

4

p
m(m� 1)(m� 2)(m� 3)hm�4(x)

+
1

2

p
m(m� 1)(2m� 1)hm�2(x)

+
3

4

�
2m2 + 2m+ 1

�
hm(x)

+
1

2

p
(m+ 1)(m+ 2)(2m+ 3)hm+2(x)

+
1

4

p
(m+ 1)(m+ 2)(m+ 3)(m+ 4)hm+4(x) (37)

for each x 2 R and every m 2 N, provided we set hm0 identically equal to zero
whenever m0 < 0.

Let us now introduce the shorthand notation

am :=
1

4

p
m(m� 1)(m� 2)(m� 3)

bm :=
1

2

p
m(m� 1)(2m� 1)

cm :=
3

4

�
2m2 + 2m+ 1

�

dm :=
1

2

p
(m+ 1)(m+ 2)(2m+ 3)

em :=
1

4

p
(m+ 1)(m+ 2)(m+ 3)(m+ 4)
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for the coe¢cients in (37), so that we obtain

(V (t)hm; hm0)2
= �a(t) famEm�4;m0 + bmEm�2;m0 + cmEm;m0 + dmEm+2;m0 + emEm+4;m0g

(38)

for all m;m0 2 f0; :::; N � 1g as a consequence of (20), Lemma 1 and the ortho-
normality of the hm�s. This allows us to de�ne VN (t) as the linear transformation
in EN (R;C) whose matrix elements relative to the basis fh0; :::; hN�1g are given
by (38), and VN (t) is a self-adjoint operator there since the relations

(V (t)hm; hm0)2 = (hm; V (t)hm0)2 = (V (t)hm0 ; hm)2

hold as a consequence of the fact that am+4 = em and bm+2 = dm for every m.
For convenience we summarize these remarks in the following statement:

Lemma 2. The restrictions H0;N and VN (t) of H0 and V (t) de�ned above
are both linear bounded self-adjoint operators in EN (R;C).

Our main analytical result is then the following, in whichWN;D(s; h) is given
by (29):

Theorem. (a) For every N 2 N+ let us de�ne the operators UN (t; s)s;t2[0;T ]
in EN (R;C) by

UN (t; s)

:= IN+
+1X

E=1

(�i)E
Z t

s

d�1:::

Z �E�1

s

d� E (H0;N + VN (�1))::: (H0;N + VN (� E));

(39)

where IN is the identity operator and �0 = t. Then each UN (t; s) is unitary
and satis�es

UN (t; t) = IN ;

UN (t; s) = UN (t; r)UN (r; s) (40)

for all r; s; t 2 [0; T ]. Moreover, the functions uN : [0; T ] 7! EN (R;C) given by

uN (t) = UN (t; 0) vN

are continuous, once continuously di¤erentiable on (0; T ] and satisfy (23) iden-
tically, thereby providing a sequence of Faedo-Galerkin approximations to (18).
Furthermore, for every N 2 N+ and all s; t 2 [0; T ] with t � s the following

statements hold:

9



(b) We have

UN (t; s)

=
0Y

D=n�1
exp [�ihH0;N ] exp [�ihVN (s+ Dh)] +ON (h)

=
0Y

D=n�1
exp [�ihH0;N ] exp [�ihWN;D(s; h)] +ON (h) (41)

as h! 0+.
(c) We have

UN (t; s)

=
0Y

D=n�1
exp [�ihH0;N ] exp [�ihWN;D(s; h)] exp

�
h2

2
[H0;N ;WN;D(s; h)]�

�
+ON (h

2)

=
0Y

D=n�1
exp

�
�ih
2
H0;N

�
exp [�ihWN;D(s; h)] exp

�
�ih
2
H0;N

�
+ON (h

2) (42)

as h! 0+.

Remarks. (1) Within the above framework Problem (2) corresponds to a
time-independent potential VN in (23), in which case (41) and (42) all reduce
to the well-known Lie-type formulae

exp [�i(t� s) (H0;N + VN )]
= (exp [�ihH0;N ] exp [�ihVN ])n +ON (h)

=

�
exp [�ihH0;N ] exp [�ihVN ] exp

�
h2

2
[H0;N ; VN ]�

��n
+ON (h

2)

=

�
exp

�
�ih
2
H0;N

�
exp [�ihVN ] exp

�
�ih
2
H0;N

��n
+ON (h

2) (43)

as h ! 0+. Therefore, the results of the preceding theorem generalize these
relations to the non-autonomous case.
(2) Whereas the replacement of VN (s+ Dh) by WN;D(s; h) makes absolutely

no di¤erence regarding the rate of convergence in (41), we stress the fact that
it is essential for the estimates in (42) to hold: had we kept VN (s+ Dh) instead
of WN;D(s; h) on the right-hand side of (42), we would have obtained the much
slower convergence rate

UN (t; s)

=
0Y

D=n�1
exp [�ihH0;N ] exp [�ihVN (s+ Dh)] exp

�
h2

2
[H0;N ; VN (s+ Dh)]�

�
+ON (h)

=
0Y

D=n�1
exp

�
�ih
2
H0;N

�
exp [�ihVN (s+ Dh)] exp

�
�ih
2
H0;N

�
+ON (h) (44)
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as h! 0+. We will dwell a bit more on this further below.
(3) The rate of convergence in (42) does not change if we replace WN;D(s; h)

there by

W 0
N;D(s; h) := VN

�
s+ Dh+

h

2

�
;

that is, by the value of the function VN at the mid-point between s + Dh and
s + (D + 1)h for every D 2 f0; :::; n� 1g, which amounts to replacing WD(s; h)
by

W 0
D(s; h) := V

�
s+ Dh+

h

2

�

in (15)-(17). The same observation holds if we exchange the rôles of H0;N and
WN;D (s; h) in the second line of (42). The proofs of these assertions will be
omitted, since they are similar to that given below for (42).

While Statement (a) corresponds to the so-called Dyson expansion and its
most elementary consequences (see, for instance, Theorem X.69 in [24]), the
proofs of (b) and (c) require some preliminary considerations. To this end and
for every D 2 f0; :::; n� 1g, we �rst de�ne the operators

UN;D;n(t; s)

:= UN (s+ (D + 1)h; s+ Dh)

= IN+
+1X

E=1

(�i)E
Z s+(D+1)h

s+Dh

d�1:::

Z �E�1

s+Dh

d� E (H0;N + VN (�1))::: (H0;N + VN (� E))

(45)

with �0 = s + (D + 1)h according to (39). By virtue of the basic composition
law (40) we get

UN (t; s) =
0Y

D=n�1
UN;D;n(t; s): (46)

Then, for each of the operators (45) we have:

Lemma 3. For all n;N 2 N+and all s; t 2 [0; T ] with t � s the following
statements hold:
(a) We have

UN;D;n(t; s)

= exp [�ihH0;N ] exp [�ihVN (s+ Dh)] +ON (h2)
= exp [�ihH0;N ] exp [�ihWN;D(s; h)] +ON (h

2) (47)

as h! 0+, uniformly in D 2 f0; :::; n� 1g.

11



(b) We have

UN;D;n(t; s)

= exp [�ihH0;N ] exp [�ihWN;D(s; h)] exp

�
h2

2
[H0;N ;WN;D(s; h)]�

�
+ON (h

3)

= exp

�
�ih
2
H0;N

�
exp [�ihWN;D(s; h)] exp

�
�ih
2
H0;N

�
+ON (h

3) (48)

as h! 0+, uniformly in D 2 f0; :::; n� 1g.

Proof. In order to prove (47) we �rst split (45) as

UN;D;n(t; s) = IN � i
Z s+(D+1)h

s+Dh

d�1 (H0;N + VN (�1)) + bUN;D;n(t; s) (49)

where

bUN;D;n(t; s)

=
+1X

E=2

(�i)E
Z s+(D+1)h

s+Dh

d�1:::

Z �E�1

s+Dh

d� E (H0;N + VN (�1))::: (H0;N + VN (� E)):

Furthermore we write k:k for the usual matrix supremum-norm. Then we have

kVN (t)k � cN < +1 (50)

for some cN uniformly in t as a consequence of (38) and the de�nition of VN (t),
so that

DDDbUN;D;n(t; s)
DDD

�
+1X

E=2

Z s+(D+1)h

s+Dh

d�1:::

Z �E�1

s+Dh

d� E

EY

j=1

(kH0;Nk+ kVN (� j)k)

�
+1X

E=2

hE

E!
(kH0;Nk+ cN )E = ON (h2) (51)

as h! 0+. Moreover we also have

exp [�ihH0;N ] exp [�ihVN (s+ Dh)]
= IN�ih (H0;N + VN (s+ Dh)) +ON (h2) (52)

by expanding each exponential by means of the exponential series. Conse-
quently, from (49)-(52) and by regrouping terms and taking cancellations into
account we obtain

UN;D;n(t; s)� exp [�ihH0;N ] exp [�ihVN (s+ Dh)]

= i

Z s+(D+1)h

s+Dh

d�1 (VN (s+ Dh)� VN (�1)) +ON (h2) (53)

12



as h! 0+, so that in order to prove the �rst part of (47) it is su¢cient to have

Z (D+1)h

Dh

d� (VN (s+ Dh)� VN (s+ �)) = ON (h2) (54)

where we performed an elementary change of variables in the integral. For the
matrix elements of the integrand in (54) we now have

VN;m;m0(s+ Dh)� VN;m;m0(s+ �)

= �vm;m0 (a(s+ Dh)� a(s+ �)) (55)

for all m;m0 2 f0; :::; N � 1g and for some vm;m0 2 R according to (38). Fur-
thermore we have Z (D+1)h

Dh

d� (� � Dh) = h2

2
: (56)

Consequently from (55), the Lipschitz continuity of a, (56) and the equivalence
of all matrix norms on EN (R;C) we obtain the estimates

Z (D+1)h

Dh

d� kVN (s+ Dh)� VN (s+ �)k

� ON (1)
N�1X

m;m0=0

Z (D+1)h

Dh

d� jVN;m;m0(s+ Dh)� VN;m;m0(s+ �)j

� ON (1)
N�1X

m;m0=0

jvm;m0 j
Z (D+1)h

Dh

d� (� � Dh) = ON (1)h2

as h ! 0+ uniformly in D, which is (54) so that the �rst part of (47) indeed
holds.
Replacing now VN (s+ Dh) by WN;D(s; h) in (53) gives

UN;D;n(t; s)� exp [�ihH0;N ] exp [�ihWN;D(s; h)]

= i

Z s+(D+1)h

s+Dh

d�1 (WN;D(s; h)� VN (�1)) +ON (h2) (57)

where this time

Z (D+1)h

Dh

d� (WN;D(s; h)� VN (s+ �)) = ON (h3): (58)

This last relation is indeed a consequence of (29) and a standard trapezoidal
rule estimate of the form

Z (D+1)h

Dh

d�a(s+ �) =
h

2
(a(s+ Dh) + a(s+ (D + 1)h) +O(h3)

13



for the amplitude function a, since we have
DDDDD

Z (D+1)h

Dh

d� (WN;D(s; h)� VN (s+ �))
DDDDD

� ON (1)
N�1X

m;m0=0

CCCCC

Z (D+1)h

Dh

d� (WN;D;m;m0(s; h)� VN;m;m0(s+ �))

CCCCC

= ON (1)
N�1X

m;m0=0

jvm;m0 j
CCCCC
h

2
(a(s+ Dh) + a(s+ (D + 1)h)�

Z (D+1)h

Dh

d�a(s+ �)

CCCCC

= ON (h
3):

But in spite of this estimate the second term on the second line of (57) remains
ON (h

2), so that the second equality in (47) also holds without any room for
improvement.
The situation is quite di¤erent regarding the proof of (48). In this case we

start with

UN;D;n(t; s)

= IN � i
Z s+(D+1)h

s+Dh

d� (H0;N + VN (�1))

�
Z s+(D+1)h

s+Dh

d�1

Z �1

s+Dh

d�2 (H0;N + VN (�1)) (H0;N + VN (�2)) +ON (h
3):

Furthermore we have

exp [�ihH0;N ] exp [�ihWN;D(s; h)] exp

�
h2

2
[H0;N ;WN;D(s; h)]�

�

= IN�ih (H0;N +WN;D(s; h))�
h2

2
(H0;N +WN;D(s; h))

2
+ON (h

3)

again by expanding exponentials. Therefore, by lumping terms together and by
making appropriate changes of variables in the integrals we obtain

UN;D;n(t; s)� exp [�ihH0;N ] exp [�ihWN;D(s; h)] exp

�
h2

2
[H0;N ;WN;D(s; h)]�

�

= i

Z (D+1)h

Dh

d� (WN;D(s; h)� VN (s+ �))

�
Z (D+1)h

Dh

d�

Z �

Dh

d�
�
(H0;N + VN (s+ �)) (H0;N + VN (s+ �))� (H0;N +WN;D(s; h))

2
�

+ON (h
3):

14



We proceed by decomposing this last integrand as

(H0;N + VN (s+ �)) (H0;N + VN (s+ �))� (H0;N +WN;D(s; h))
2

= (H0;N + VN (s+ �)) (VN (s+ �)�WN;D(s; h))

+ (VN (s+ �)�WN;D(s; h)) (H0;N +WN;D(s; h))

and substitute this expression in the above integral; in this way we get

UN;D;n(t; s)� exp [�ihH0;N ] exp [�ihWN;D(s; h)] exp

�
h2

2
[H0;N ;WN;D(s; h)]�

�

= i

Z (D+1)h

Dh

d� (WN;D(s; h)� VN (s+ �))

+

Z (D+1)h

Dh

d� (H0;N + VN (s+ �))

Z �

Dh

d� (WN;D(s; h)� VN (s+ �))

+

Z (D+1)h

Dh

d�(� � Dh) (WN;D(s; h)� VN (s+ �)) (H0;N +WN;D(s; h)) +ON (h
3):

(59)

We already know that (58) holds, so that it remains to estimate the second and
third terms on the right-hand side of the preceding expression. Regarding the
second term we notice that

Z �

Dh

d� (WN;D(s; h)� VN (s+ �)) = ON
�
(� � Dh)3

�
(60)

which can be obtained exactly as we proved (58), so that (50) and (60) lead to

Z (D+1)h

Dh

d�

DDDD(H0;N + VN (s+ �))
Z �

Dh

d� (WN;D(s; h)� VN (s+ �))
DDDD

� ON (1)
Z (D+1)h

Dh

d�

DDDD
Z �

Dh

d� (WN;D(s; h)� VN (s+ �))
DDDD

� ON (1)
Z (D+1)h

Dh

d� (� � Dh)3 = ON
�
h4
�

uniformly in D, which is more than we need. Finally, for the third term we get

Z (D+1)h

Dh

d�(� � Dh) (WN;D(s; h)� VN (s+ �)) (H0;N +WN;D(s; h)) = ON (h
3)

(61)
uniformly in D from entirely similar arguments based this time on the trapezoidal
rule estimate

Z (D+1)h

Dh

d�(� � Dh)a(s+ �) = h2

2
a(s+ (D + 1)h) +O(h3)
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and the Lipschitz continuity of a.
The proof of the second part of (48) is identical and thereby omitted. �

We are now ready for the following:

Proof of the Theorem. Let us begin by proving (41). According to (46)
we have

UN (t; s)�
0Y

D=n�1
exp [�ihH0;N ] exp [�ihVN (s+ Dh)]

=
0Y

D=n�1
UN;D;n(t; s)�

0Y

D=n�1
exp [�ihH0;N ] exp [�ihVN (s+ Dh)] : (62)

Furthermore, for each D 2 f0; :::; n� 1g let us introduce momentarily the short-
hand notation

AD := UN;D;n(t; s)

and
BD := exp [�ihH0;N ] exp [�ihVN (s+ Dh)] :

For every n � 3 we then have the decomposition formula
0Y

D=n�1
AD �

0Y

D=n�1
BD

=
1Y

C=n�1
BC � (A0 �B0)

+
n�2X

D=1

D+1Y

C=n�1
BC � (AD �BD)�

0Y

B=D�1
AB

+ (An�1 �Bn�1)�
0Y

B=n�2
AB (63)

which can easily be checked directly, and therefore
DDDDD

0Y

D=n�1
AD �

0Y

D=n�1
BD

DDDDD �
n�1X

D=0

kAD �BDk (64)

since the operators AD and BD are all unitary with respect to the supremum-
norm. Consequently from (62), (47) and remembering the de�nition of h we

16



obtain
DDDDDUN (t; s)�

0Y

D=n�1
exp [�ihH0;N ] exp [�ihVN (s+ Dh)]

DDDDD

�
n�1X

D=0

kUN;D;n(t; s)� exp [�ihH0;N ] exp [�ihVN (s+ Dh)]k

= nON (h
2) = ON (h)

since the estimates of Lemma 3 are all uniform in D, which is the desired result.
The proofs of the remaining equalities in (42) are entirely similar and thereby
omitted. �

Remarks. (1) We can prove that

UN (t; s)

=
0Y

D=n�1
exp [�ih (H0;N + VN (s+ Dh))] +ON (h)

=
0Y

D=n�1
exp [�ih (H0;N +WN;D(s; h))] +ON

�
h2
�

(65)

when h ! 0+ in exactly the same way as we proved the above theorem. How-
ever, whereas (65) shows how to reconstruct the true dynamics from the basic
exponentials, it has little value from a computational point of view.
(2) The second part of the proof of Lemma 3 shows why we would have

obtained the slower convergence rates (44) had we kept VN (s + Dh) instead of
WN;D(s; h) in (59): whereas the second and third terms on the right-hand side
of that expression would still have been ON (h3), the very �rst term would have
remained ON (h2) according to (54).
(3) The fact that all the approximating operators are unitary with respect

to the supremum-norm is of course an essential ingredient of the above proof.
If those operators were not isometries, the n-dependence in (63) could not be
controlled and (64) not be established. It turns out that such a norm-preserving
property will also be crucial for numerical stability purposes, as we will see in
Section 3.

It is now easy to convert the statements of the theorem into estimates for the
solutions to (23). Let us write k:k2 for the norm in L2 (R;C); since kvNk2 � kvk2
by the very de�nition of vN , the above theorem then immediately implies the
following result where uTKN;n, u

BCH
N;n and uYN;n are given by (26), (27) and (28),

respectively, this time all three with s = 0:

Corollary. For every t 2 [0; T ] we have the estimates
DDuN (t)� uTKN;n(t)

DD
2
� kvk2

n
; (66)
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DDuN (t)� uBCHN;n (t)
DD
2
� kvk2

n2
(67)

and DDuN (t)� uYN;n(t)
DD
2
� kvk2

n2
(68)

as n! +1, uniformly in N 2 N+.

Remark. According to the last part of the third remark following the main
theorem, we also have

DDDuN (t)� uY
0

N;n(t)
DDD
2
� kvk2

n2
(69)

as n! +1 uniformly in N 2 N+, where

uY
0

N;n(t) :=
0Y

D=n�1
exp

�
�ih
2
WN;D(0; h)

�
exp [�ihH0;N ] exp

�
�ih
2
WN;D(0; h)

�
vN :

(70)
The proof is identical to that of the above corollary.

In the next section we compute the solutions to Problems (2) and (30) ac-
cording to the outline of Section 1, and then compare those results with the
analytical statements of this section.

3 Some Numerical Results

The computation of the solution to

i
@u(x; t)

@t
= Hu(x; t); (x; t) 2 R� (0; T ] ;

u(x; 0) = v(x); x 2 R (71)

where

H := �1
2

@2

@x2
+
1

2
x2 + �x4; (72)

and where v satis�es
Hv(x) = E0v(x) (73)

with E0 the smallest eigenvalue in (73), �rst calls for the computation and for
very good analytical approximations of E0 and v whether we carry out the
computation by means of (32) or (33)-(35), since (73) is not exactly solvable
when � > 0. While we carry out the computation of E0 and v by means of
MatLab�s eigs, our choice for the corresponding approximations rests on the
observation that (73) reduces to (36) when � = 0, whose exact solution for
m = 0 is E0 = 1

2 with

h0(x) = �
� 1
4 e�

x2

2 : (74)
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It is then natural to embed (74) into the one-parameter family of Gaussian
curves given by

h0;B(x) :=
�B
�

� 1
4

e�
Bx2

2 (75)

where B > 0, and to choose the function

vB�(x) := h0;B�(x)

to approximate v where B� is the solution to the minimization problem

E�0 := min
B>0

(Hh0;B; h0;B)2 :

Indeed for � = 0 this procedure leads to the exact value of the smallest eigenvalue
corresponding to B� = 1, while in the general case we have the following result:

Lemma 4. For all B > 0 and � � 0 we have

E0;B := (Hh0;B; h0;B)2 =
1

4

�
3�

B2
+
1

B
+ B

�
; (76)

and furthermore the following statements hold:

(a) For every � 2
h
0;

p
3

27

i
we have

E�0 = E0;B� (77)

with

B� =
2
p
3

3
cos

'

3
(78)

and
' = arccos 9

p
3�:

In particular, for � =
p
3

27 this gives B
� = 2

p
3

3 :

(b) For every � 2
�p

3
27 ;+1

�
we have

E�0 = E0;B� (79)

where

B� =

 
3�+

�
9�2 � 1

27

� 1
2

! 1
3

+

 
3��

�
9�2 � 1

27

� 1
2

! 1
3

: (80)

Proof. From (72) and (75) we obtain

Hh0;B(x) =
1

2

�
B� (B2 � 1)x2 + 2�x4

�
h0;B(x);

so that (76) follows from the de�nition of E0;B through the values of the second
and fourth moments of a Gaussian distribution. Furthermore, from (76) it is
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plain that the function B 7! E0;B is convex for every � � 0, and that B� > 0 is
a zero of its �rst derivative if, and only if,

B�3 � B� � 6� = 0:

But if � 2
h
0;

p
3

27

i
the only positive root of this equation is (78), while if

� 2
�p

3
27 ;+1

�
its only positive root is (80). �

In what follows we refer to vB� as the best Gaussian approximation for v,
thus having

vB�(x) =

�
B�

�

� 1
4

e�
B�x2

2 (81)

where B� � 1 is given by (78) or (80) depending on the value of �, with (77)
and (79) as approximations for the corresponding eigenvalues.
Aside from providing explicit expressions, relations (77), (79) and (81) turn

out to be very close to the actual solution to (73) indeed. In order to see this we
�rst show in Figure 1 the size of the expansion coe¢cients of the eigenfunction
v in (73) relative to the Hermite basis (hm)m2N which we computed by means
of MatLab�s eigs, and in Figure 2 the corresponding matrix norms kH0;Nk,
kVNk, kHNk, kCNk and some condition numbers as a function of N , where
CN := [H0;N ; VN ]�:

Figure 1: size of the expansion coe¢cients of v with respect to the Hermite
basis (hm)m2N for � = 1; 5; 10: The rapid fall-o¤ shows that for m � N ' 25

we may assume vm = 0, for then
P

m�N jvmj
2
. 10�5.
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Figure 2: various norms and condition numbers as a function of N . The norm
kH0;Nk grows linearly, while kVNk and kHNk grow roughly as N2:2 and kCNk
as N2:3: The condition number { (CN ) is not shown since CN is singular for

about seventy-�ve percent of the values from N = 10 to N = 100.

Indeed the latter diagram is related to the very important issue of knowing
how large we can choose N in the Faedo-Galerkin scheme for our results to be
accurate when using MatLab�s eigs, that is, of having

vN =
N�1X

m=0

vmhm (82)

to accurately represent v. Furthermore, it also turns out that the rapid fall-o¤ of
vm as illustrated in Figure 1 can be well duplicated analytically by means of the
best Gaussian approximation vB� . Indeed we remark that since vB� 2 L2(R;C)
is even, and since the Hermite functions (22) have the parity of m, we may
decompose (81) as

vB� = vB�;N +
+1X

m=N

v2m;B�h2m

where

vB�;N :=
N�1X

m=0

v2m;B�h2m (83)

and

lim
N!+1

+1X

m=N

jv2m;B� j2 = 0: (84)

Moreover, the advantage of having vB� as a Gaussian curve makes it possible
to compute the coe¢cients v2m;B� explicitly and thereby obtain the following
rapid decay estimate for the series (84):
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Lemma 5. For B� � 1 as in the preceding lemma we have
+1X

m=N

jv2m;B� j2 �
B� + 1p
2�NB�

�
B� � 1
B� + 1

�N
(85)

for every N 2 N+.

Proof. From Relation 7.373-2 in Chapter 7 of [15] and an elementary change
of variables we get

Z

R

dxe�
B�+1
2 x2H2m(x)

=
p
2�
(2m)!(1� B�)m

m! (1 + B�)m+
1
2

for every m 2 N, so that (22) and (81) lead to

v2m;B� =

Z

R

dxvB�(x)h2m(x)

= 2
1�2m
2

p
(2m)! 4

p
B�(1� B�)m

m! (1 + B�)m+
1
2

;

which gives

jv2m;B� j2 =
(2m)!

22m (m!)
2 �

2
p
B�(B� � 1)2m

(B� + 1)2m+1
: (86)

Next, we prove that the inequality

(2m)!

22m (m!)
2 �

1p
�m

(87)

holds for every m 2 N+. To this end we recall that

m! =
�m
e

�mp
2�m exp

�
�
Z +1

m

dx
p(x)

x2

�
(88)

as a consequence of Euler�s summation formula, where p : [0;+1) 7! R
� is

periodic with period one and

p(x) =
x(x� 1)

2

for every x 2 [0; 1] (see, for instance, Theorem 15.18 in Chapter 15 of [2]). By
applying (88) to both factorials on the left-hand side of (87) we obtain

(2m)!

22m (m!)
2 =

1p
�m

exp

�Z +1

m

dx
p(x)

x2
+

Z 2m

m

dx
p(x)

x2

�
;
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which implies (87) since p(x) � 0 for every x. We now substitute (87) into (86)
and take m � N into account to get

+1X

m=N

jv2m;B� j2

� 2
p
B�

(B� + 1)
p
�N

+1X

m=N

�
B� � 1
B� + 1

�2m

=
B� + 1p
4�NB�

�
B� � 1
B� + 1

�2N

� B� + 1p
2�NB�

�
B� � 1
B� + 1

�N

after summing explicitly the tail of the geometric series. �

The preceding result is very useful in that it allows us to estimate N as a
function of the degree of precision we want for (82) to approximate v. Thus, if
we impose for instance that

B� + 1p
2�NB�

�
B� � 1
B� + 1

�N
. 10�5

then we obtain N ' 23, a result of the same order of magnitude as that illus-
trated in Figure 1. Moreover, Figure 3 below shows that the value E�0 is very
closely related to the computed eigenvalue E0 in (73), and that the two curves
are essentially indistinguishable for small values of �:

Figure 3: the Gaussian value E�0 compared with the computed eigenvalue E0
in (73), as a function of the anharmonic coupling.

23



Our preliminary step is thereby completed, that is, we have obtained computed
values for E0 and v in (73) as well as very good analytical approximations for
them. We will get other estimates for E0 and v by means of a formal WKB
approximation in the Appendix.

Remark. Actually, within our Faedo-Galerkin scheme MatLab�s eigs allows
us to compute all the nontrivial solutions to the di¤erential equation

�
�1
2

d2

dx2
+
1

2
x2 + �x4

�
v(x) = Ev(x) (89)

having their L2(R;C)-norm equal to one, that is, all the eigenvalues Em and
the corresponding normalized eigenfunctions of the di¤erential operator in (89),
in addition to E0 and v. In Figure 4 below we display parts of the anharmonic
spectra as a function of m for several values of �, while in Figure 5 we plot
�ve of those eigenvalues as a function of �. In Figure 6 we show how large we
have to choose N := Nstop in our Faedo-Galerkin scheme in order to accurately
get the mth eigenvalue and the mth eigenfunction within the precision desired
when � = 1. It is interesting to note that from all the computations carried out
thus far, the dimension Nstop of the Galerkin subspace has to be increased when
the anharmonic coupling � becomes large, and in that case our results are more
sensitive to the chosen step size as well.

Figure 4: the �rst twenty eigenvalues Em of the di¤erential operator in (89)
for various values of �. Away from � = 0, Em is no longer linear in m.

24



Figure 5: �ve eigenvalues of (89) as a function of the anharmonic coupling.
Detailed �ts using poly�t show Em ' cm�� where 0:31 � � � 0:325.

Figure 6: the number Nstop of the Faedo-Galerkin scheme needed to accurately
capture the mth eigenvalue and the mth eigenfunction in (89) for � = 1, versus

the precision desired: the larger m is, the larger Nstop ought to be.

Next, we describe the results of our actual computation of the solution to (71)-
(73) by means of (32) and (33)-(35), in which we choose the initial condition
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to be the solution to (73) computed with MatLab�s eigs. In all the forthcoming
�gures of this section the results obtained from the Yoshida splitting are indif-
ferently labeled YOS or YOS2, and all the exponentials in (32) and (33)-(35) are
computed by means of the routine MatLab�s expm which uses

expm(A) = (P�1(�A=m)P (A=m))m

through the method called scaling and squaring where P is a thirteenth degree
real polynomial (see [18]). By repeated squaring of the inner argument the
required power m can be computed in q steps when m = 2q. It turns out
that this method is surprisingly very robust, while we are acutely aware of the
longstanding di¢culties of computing matrix exponentials (see, for instance,
[21]); when applied to the di¤erence between (32) and (33) on the one hand,
and between (32) and (35) on the other hand, that method leads to the following
�gure which shows the corresponding root mean square errors as a function of
the uniform step size h de�ned in Section 1, for � = 1, N = 50 and t = 20; we
write uex for the computed solution (32):

Figure 7: comparison of the RMS errors of the TK-splitting and the
Y-splitting with (32) for the autonomous problem, for N = 50, � = 1 and

t = 20: Straight lines are two-parameter �ts.

Remarks. (1) In Figure 7 we do not display the computation of the root
mean square error between (32) and (34) for, within the accuracy of the printed
numerical data and that of the plotter, that computation leads exactly to the
same curve as that relative to the Y -splitting. The same observation holds for
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the root mean square error between (32) and the autonomous version of (70),
that is,

uY
0

N;n(t) :=

�
exp

�
�ih
2
VN

�
exp [�ihH0;N ] exp

�
�ih
2
VN

��n
vN : (90)

We may thereby conclude that the h-dependence provided by these numerical
results is in very good agreement with relations (67) and (68) of the corollary
stated at the very end of Section 2, and with relation (69) as well, which are all
valid in the autonomous case. It is, therefore, deemed appropriate to compute
the solution to (71)-(73) by means of the product approximations (34), (35)
and (90), with a very good rate of convergence in each case and with stability
and accuracy of the numerical results, which we have also compared with those
obtained by using MatLab�s ode45.
(2) The crucial fact that all our approximating operators are unitary with re-

spect to the supremum-norm is also visible numerically. Whereas the L2 (R;C)-
norm of the solution is indeed essentially constant in time in all cases, up to
�oating point machine errors, this is not so much the case for the results we got
through MatLab�s ode45 as we shall see further below in Figure 14.

We now describe the results which pertain to the computation of the solution
to (30), that is,

i
@u(x; t)

@t
= H(t)u(x; t); (x; t) 2 R� (0; T ] ;

u(x; 0) = v(x); x 2 R

where

H(t) := �1
2

@2

@x2
+
1

2
x2 + � (1� sin!t)x4; (91)

and where we choose once again the initial condition v to be the solution to
(73) computed with MatLab�s eigs. As before we compute the exponentials by
means of MatLab�s expm, which we apply this time to the di¤erence between

uN;n(t) :=
0Y

D=n�1
exp [�ihHN (Dh)] vN (92)

and (26), (27) and (28), respectively, where HN denotes the restriction of (91) to
the Faedo-Galerkin subspace we de�ned in Section 2. This is indeed justi�ed in
that (92) provides a reference approximation for the solution to (30) according
to the �rst equality in (65) taken with s = 0. We display the corresponding
root mean square errors as a function of the uniform step size h in the �gures
below for N = 25 and various values of �, t and !. In so doing we note one
important di¤erence between the results shown and those of Figure 7, to wit,
the fact that the root mean square error between (92) and (27) on the one hand,
and between (92) and (28) on the other hand, no longer coincide. Moreover, we
choose h� = 10�5 as the reference step size to compute (92), a much smaller
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value than that used for the computation of (26), (27) and (28), the reason being
that the operators HN (Dh) taken at di¤erence time steps do not commute:

Figure 8: comparisons of the RMS errors of the various splittings with (92) for
the non-autonomous problem, for N = 25; � = 1, t = 1 and ! = 1: Error data
for h < 5� 10�3 are not used in the �ts because their values are smaller than

the reference error.

Figure 9: same comparisons and restrictions as in Figure 8 but with N = 25;
� = 1, t = 10 and ! = 1.
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Figure 10: same comparisons and restrictions as in the above �gures but with
N = 25; � = 1; t = 1 and ! = 5:

Figure 11: same comparisons and restrictions as in the above �gures but with
N = 25, � = 1; t = 10 and ! = 5:
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Figure 12: same comparisons and restrictions as in the above �gures but with
N = 25, � = 5, t = 1 and ! = 1:

Figure 13: same comparisons and restrictions as in the above �gures but with
N = 25, � = 5, t = 10 and ! = 1:

Thus, we may conclude that (26), (27) and (28) provide very good stable and
accurate algorithms for the computation of the solution to (30), in spite of the
fact that the respective rates of convergence seem to be numerically sensitive
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to the values of �; t and !, thereby making them somewhat di¤erent from the
analytical predictions (66), (67) and (68).
We have also compared the above results with that obtained by means of

the quite robust and reliable integrator MatLab�s ode45, which, however, does
not keep the L2 (R;C)-norm of the solution to (30) constant in time as much as
the product approximations do, as shown in the following �gure:

Figure 14: time evolution of the L2-norm of the solution to (30) as computed
with the product approximations and with MatLab�s ode45, for N = 25;

h = 10�2, � = 5 and ! = 1.

Finally, we provide a last piece of information regarding (30) by plotting this
time the root mean square errors we computed above as a function of t, which
shows that at least for relatively small times those root mean square errors are
increasing:

Figure 15: comparison of the RMS errors of the various splittings and
MatLab�s ode45 with (92) labeled as EXP for the non-autonomous problem,

for N = 25; h = 10�2, � = 5 and ! = 1:

Concluding remark and provenance information. The preceding
results complete our analytical and numerical investigations of Problems (2) and
(30), thus showing that the product approximations of Section 1 are rigorously
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correct within the framework of the Faedo-Galerkin scheme we de�ned in Section
2, and numerically veri�ed with high accuracy in this section. This suggests that
those product approximations might remain valid in the limit N ! +1, and
for more general non-autonomous quantum systems as well, but rigorous proofs
of such statements are clearly lacking at the present time.
All the simulations in this paper were run on an Apple Macbook using

MatLab version R2012a. The processor was an Intel Core 2 Duo, and the
Mac operating system was Mac OS-X, version 10.6.8. Any interested reader is
welcome to the MatLab code.

Acknowledgements. Both authors are particularly indebted to Professors
T. Rivière and C. Schwab for having made the visit of the second author in
Zurich �nancially possible through funds from the Forschungsinstitut für Math-
ematik and the Seminar für Angewandte Mathematik of the ETHZ, the warm
hospitality of which they gratefully acknowledge.

4 Appendix: A Formal WKB Approximation

In this section we consider anew the equation
�
�1
2

d2

dx2
+
1

2
x2 + �x4

�
v(x) = E0v(x); x 2 R (93)

and obtain yet other approximations for E0 and v. Our method in this appendix
is essentially formal, for our focus is not so much on mathematical rigor as it
is on the success of the numerical algorithm we shall be using. Since (93) is
an eigenvalue problem, E0 and v should in fact be computed simultaneously.
However we proceed somewhat di¤erently by �rst choosing E0 = E�0 in (93),
where E�0 is given by (77) or (79). By analogy with (74) which satis�es (93)
exactly when � = 0 and E0 = 1

2 , or with the best Gaussian approximation (81),
we then look for an approximate solution to (93) of the form

v(x) = e�w(x) (94)

where w : R 7! R
+ is su¢ciently smooth and even. The di¤erential equation for

this function being

w00(x)� w0(x)2 = 2E0 � x2 � 2�x4; (95)

this amounts to �nding an approximate solution to (95). Let x0 be the only
positive root to

2�x4 + x2 � 2E0 = 0:
For jxj � x0 where

2E0 � x2 � 2�x4 � 0;
let us consider

w<(x) := w2x
2 + w4x

4 + w6x
6: (96)
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Substituting (96) into (95) and neglecting all powers higher than four in (w0)2

we obtain

w<(x) = E0x
2 +

1

12

�
4E20 � 1

�
x4 +

1

15

�
2E0
3

�
4E20 � 1

�
� �
�
x6:

We note that for � = 0 and E0 = 1
2 , the preceding expression satis�es (95)

exactly. Now for jxj � x0 where

2E0 � x2 � 2�x4 � 0;

let us consider

w>(x) := w<(x0) +

Z jxj

x0

dy
�
2�y4 + y2 � 2E0

� 1
2 : (97)

For each x 2 R we then de�ne the function

w
WKB
(x) := �(x)w<(x) + (1� �(x))w>(x) (98)

with

�(x) =

(
1 for jxj � x0;

e
� (jxj�x0)

2

16x20 for jxj � x0:
It is clear that our method to obtain (98) bears some analogy with the classical
WKB method (see, for instance, [3]), and it turns out that (94) with w = w

WKB

given by (98) provides a very good numerical approximation for the solution to
(93). In order to see this we �rst express the second term on the right-hand side
of (97) in terms of elliptic integrals, which is possible by means of the identity

�y4 +
y2

2
� E0 = �

�
y2 + �

� �
y2 � �

�
(99)

where
� :=

1

4�

�
(1 + 16�E0)

1
2 + 1

�
> 0

and
� :=

1

4�

�
(1 + 16�E0)

1
2 � 1

�
= x20 > 0:

Indeed from (97), (99) and Relation 3-155-6 in Chapter 3 of [15] we obtain

w>(x) = w<(x0) +
p
2�

Z jxj

x0

dy
��
y2 + �

� �
y2 � �

�� 1
2

= w<(x0) +
1

3
(2�(�+ �))

1
2 ((� � �)E(�; k)� �F (�; k))

+
p
2�
x2 + �� �
3 jxj

�
(x2 + �)(x2 � �)

� 1
2 ; (100)
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where E(�; k) and F (�; k) are elliptic integrals of the second and �rst kind,
respectively, with amplitude

� = arccos
�p
�= jxj

�

and modulus

k =

�
�

�+ �

� 1
2

:

The interest in (100) now lies in the fact that Landen�s transformation (see, for
instance, [1]) provides an algorithm for the simultaneous computation of E(�; k)
and F (�; k) in terms of the complete elliptic integrals

E = E
��
2
; k
�

(101)

and
K = F

��
2
; k
�
; (102)

respectively, where (101) and (102) can be computed by means of two polyno-
mials P and Q in the variable z = 1� k2 through the relation P (z)�Q(z) ln z
according to [22]. Indeed we can �rst initialize a set of m values

x := (x1; :::; xm) 7! � := (�1; :::; �m)

where
�j = arccos

�p
�=xj

�

for each j 2 f1; :::;mg, by setting

t = tan (�); a = 1; b =
p
1� k2; c = k; d = 1; m0 = 0; es = 0:

According to [22] we then follow the descending Landen series on the triplet
(a; b; c) until jc=aj is smaller than the relative machine precision which is about
2:2 � 10�16 (see, for instance, [17]), with quadratic convergence in �ve to six
steps according to [5] or [6]. In this process it is important that the arithmetic-
geometric mean sequence depends only upon k and not on �, which allows the
simultaneous computation of �-vectors and thereby multiple computations of
elliptic functions which can be easily parallelized. Indeed parallel versions of the
tangent-, arctangent- and sine functions do exist in the software library (see,
for instance [17] and [23]). We illustrate the algorithm in the diagram below.
The result of that simultaneous computation of E(�; k) and F (�; k) together
with (100) then leads to the computation of (98), and thereby to that of (94)
with w = w

WKB
, which we denote by vE. In Figures 16 and 17 we compare vE

with v computed withMatLab�s eigs, with the best Gaussian approximation vB� ,
and with yet another approximation vQ to (94) obtained from (98) by means of
MatLab�s quad, which we use as a control. Finally, the numerical integration of

E0;WKB : = (Hv
WKB
; v

WKB
)2

=

Z

R

dx

�
1

2

CCv0
WKB
(x)
CC2 + 1

2
x2 jv

WKB
(x)j2 + �x4 jv

WKB
(x)j2

�
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where
v
WKB

:= e�wWKB

provides yet another approximation for the lowest eigenvalue in (93), which
we compare with E0 computed with MatLab�s eigs and with the Gaussian ap-
proximation E�0 in Figure 18. In the following diagram which illustrates our
algorithm we set n�=2 = b�=

�
�
2

�
c and, in the fourth step in the loop, we mean

tj  �
(1 + r) tj
1� rt2j

for every j 2 f1; :::;mg :

while (jc=aj > F)
f

r  b
a

�  �+ arctan(rt) + �m0

m0  b�+�=2� c
t  (1+r)t

1�rt2
c  a�b

2

s  
p
ab

a  a+b
2

b  s
d  2d
es  es + c sin (�)

g

t3  
arctan (t) + �m0

ad

t2  
t3

K
+ es + n�=2E; t1  t3 + n�=2K

F (�; k) = t1; E(�; k) = t2

Figure 16: comparison of v computed with MatLab�s eigs with vB� and the two
computed variants vE and vQ of vWKB, for � = 20:
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Figure 17: comparison of the di¤erences vQ � v, vE � v and vB� � v of the
functions de�ned in the preceding �gure, for � = 20.

Figure 18: comparison of E0;WKB and E0;BG:= E�0 with E0 computed by
means of MatLab�s eigs: E0;WKB provides yet an improved value for the lowest

eigenvalue in (93).
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