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Abstract: It is well known that bending and stretching modes of deformation in linearly-elastic plates

decouple at leading order in thickness provided that the mid-plane is a plane of reflection symmetry

of the three-dimensional material properties. This situation being the exception rather than the norm,

it is important to have a model that accommodates coupling in a manner consistent with the three-

dimensional nature of the problem while retaining the analytical tractability of conventional engineering

plate theory. Here, this is achieved through an expansion of the potential energy of the plate in powers

of its thickness to derive an optimal approximate two-dimensional model for equilibria. The variables

are the displacement field of a surface parallel to the lateral surfaces of the plate and associated director

fields that emerge naturally in the expansion procedure. To achieve a model that is as accurate as

possible, the directors are constrained in accordance with necessary conditions arising in the exact

three-dimensional theory. These are incorporated at the level of the energy functional, yielding a model

accurate to third order in the small thickness.

Keywords: plate theory, linear elasticity

1. Introduction

Current research on the relationship between three-dimensional elasticity and two-dimensional mod-

els of plates and shells is based either on the method of gamma convergence [1], concerned with the

limiting variational problem as thickness tends to zero, or on asymptotic expansions of the weak forms

of the three-dimensional equilibrium equations in powers of thickness [2]. While these techniques have

yielded rigorous derivations of membrane theory and pure-bending theory, neither has yielded a model

of the classical type in which membrane and bending effects are accommodated simultaneously in a

single model. An important exception occurs when the effects of stretching and bending decouple at

leading order; i.e., when the plate midsurface is a plane of reflection symmetry of the material properties

and the deformation is sufficiently small. In this circumstance the method of gamma convergence may

be applied [3] and delivers a rigorous leading-order model for stretching and bending deformations. Our

concern here is with the more general case in which such symmetry need not obtain. In this case we

use the method discussed in [4-6], which delivers precisely the same model as that obtained via the

method of gamma convergence in circumstances when the latter may be applied [5]. However, our

method, while far simpler in concept, is not limited to the case of mid-plane reflection symmetry. It is
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similar in some respects to the method Koiter [7-10] used to establish a highly successful small-strain

model of linearly elastic isotropic shells. His is not a limit model in the sense of gamma convergence

or asymptotic analysis. Nevertheless, it has been justified through careful asymptotic estimates of solu-

tions to the three-dimensional theory for a thin body [2]. We have used this method previously [4-6] to

generate models for linearly elastic isotropic or transversely isotropic plates having reflection symmetry

with respect to the mid-plane. Here we extend the idea to plates with arbitrary symmetry, including

laminates.

Standard notation is used throughout. We use bold face for vectors and tensors and indices to

denote their components. Latin indices take values in {1 2 3}; Greek in {1 2}. The latter are associated
with surface coordinates and attendant vector and tensor components. A dot between bold symbols

is used to denote the standard inner product. Thus, if A1 and A2 are second-order tensors, then

A1 ·A2 = (A1A

2) where (·) is the trace and the superscript  is used to denote the transpose. The

norm of a tensor A is |A| =
√
A ·A. The linear operators (·) and (·) deliver the symmetric and

skew parts of their second-order tensor arguments, and the same symbols are used to denote the linear

spaces of symmetric and skew tensors. The notation ⊗ identifies the standard tensor product of vectors.
If C is a fourth-order tensor, then C[A] is the second-order tensor with orthogonal components 

Finally, we use symbols such as  and  to denote the three-dimensional divergence and gradient

operators, while  and ∇ are reserved for their two-dimensional counterparts. Thus, for example,

A =e and A = e, where {e} is an orthonormal basis and subscripts preceded by
commas are used to denote partial derivatives with respect to Cartesian coordinates.

The three-dimensional equation of equilibrium without body force is

P̃ = 0 (1)

where

P̃ = C[H̃] (2)

is the linear approximation to the Piola stress in the absence of residual stress, H̃ =ũ is the displace-

ment gradient, ũ(x) is the three-dimensional displacement field defined on a material region  and C is

the fourth-order tensor of elastic moduli. The moduli possess the usual minor and major symmetries,

the latter ensuring that

P̃ = H̃ (3)

where

(H̃) = 1
2
H̃ · C[H̃] (4)

The laminae are assumed to have uniform material properties, so that C is constant in each lamina.

Further, we impose the usual requirement that the strain-energy function be positive definite on the

linear space of symmetric tensors:

A · C[A]  0 for all non-zero A ∈  (5)

and the minor symmetries of C yield A · C[A] = 0 if and only if A ∈  This in turn yields the
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strong-ellipticity condition

v⊗w · C[v ⊗w]  0 for all v⊗w 6= 0 (6)

In particular, v ⊗w = 0 if and only if (v⊗w) vanishes.
Our approach is based on a development of the potential energy

E[ũ] =
Z


 −
Z


t̃ · ũ (7)

of the three-dimensional plate in powers of its thickness, where

t̃ = P̃n (8)

is assigned as a dead traction on a part  of the boundary  with exterior unit normal n. Here

 =  \ , where  is the part where displacement is prescribed. It is, of course, well known

that (1) and (8) are the Euler equation and natural boundary condition associated with E.
We seek the optimal expression for the functional [u] in the expansion

E = + (3) (9)

where  is the plate thickness and u is the displacement field of a surface Ω parallel to the lateral surfaces

of the plate; this is the mid-plane in the case of laminae, and the interfacial plane of the laminae in

the case of a two-ply laminate. The associated Euler equations furnish an approximate system for the

analysis of equilibria of the thin plate.

The desired expression, given in Sections 2 and 3, is of the form

[u] =

Z
Ω

[ (∇u∇∇u)− g · u]−
Z
Ω

(f · u + c · u) (10)

where u(r) is the displacement of the plane Ω on which points have (two-dimensional) position r; ∇(·)
is the gradient with respect to r; ∇∇(·) is the second gradient; f , c and g, respectively, are the assigned
force and couple per unit length of a part Ω of the boundary curve Ω and the assigned distributed

load per unit area of Ω; u = (∇u)ν is the derivative of the displacement in the direction of the in-plane
exterior unit normal ν to the boundary; and  is a suitable areal strain-energy density. We assume u

and u to be specified on Ω = Ω \ Ω
The development of the Euler equations and natural boundary conditions is outlined in [4]. In

Cartesian tensor notation, these are

 +  = 0 in Ω (11)

and

 − () =   =  on Ω (12)

respectively, where

 =  − with  =  and  =  (13)

Here  = u · e are the orthogonal components of u the subscript  represents the arclength derivative
along Ω (traversed counterclockwise), τ = k× ν is the unit tangent to Ω and subscripts preceded
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by commas are used to denote partial derivatives with respect to the in-plane Cartesian coordinates

 = r · e

2. Laminae

2.1 Kinematics and energetics

The reference placement of the plate is described by

x = r+ k (14)

where r ∈ Ω (the midplane), k is the fixed orientation of the plate and  ∈ [−2 2]. Henceforth we
regard  as being small in the sense that  ¿ 1 where  is any other length scale such as a spanwise

dimension. It simplifies matters to adopt  as the unit of length (i.e.;  = 1 ¿ 1)

The origin of the position r is assumed to lie on Ω Let

û(r) = ũ(r+ k) and Ĥ(r) = H̃(r+ k) (15)

and let ∇(·) and (·)0 respectively, stand for the (two-dimensional) gradient with respect to r at fixed 

and the derivative (·) at fixed r. Further, let

1 = I− k⊗ k (16)

where I is the identity for three-space; this is the projection onto the translation (vector) space Ω0 of Ω

In [4] this is used to derive

H̃1 = ∇û H̃k = û
0
 (17)

yielding the orthogonal decomposition

Ĥ =∇û + û0 ⊗ k (18)

The subsequent development requires

H0 =∇u+ a⊗ k H0
0 = ∇a+ b⊗ k and H00

0 = ∇b+ c⊗ k (19)

where H
()
0 = Ĥ

()

|=0 are obtained by differentiating (18) with respect to , and

u = û0 a = û00 b = û000 and c = û0000 (20)

are mutually independent functions of r These are the coefficient vectors in the displacement ansatz

û = u+ a+ 1
2
2b+ 1

6
3c+   (21)

It is known that in the presence of strong ellipticity, and for standard mixed boundary-value problems,

displacement fields satisfying (1) and (2) are of class ∞ in the interior of the body [11]. Accordingly,

the displacement ansatz is valid without qualification and may be extended as necessary to include

higher-order terms. Because of this the degree of regularity implied by (21) may be imposed without

loss of generality in the course of constructing a potential energy functional for the plate.
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Later, we make use of the fact that states of plane stress minimize the three-dimensional strain-

energy function pointwise. Accordingly, such states are energetically optimal provided that they are

compatible with the boundary data. Indeed, in plate theory it is customary to generate approximate

expressions for boundary data that are consistent with restrictions imposed on the deformation in the

interior. Thus, we follow the long-standing practice of subordinating boundary conditions to other

aspects of the theory. These are discussed below. The result provides independent justification of the

plane-stress hypothesis adopted by Koiter [7-10] in his theory of shells. In turn, Koiter’s hypothesis was

motivated by John’s [12] observation that plane stress obtains in the interior (i.e., away from edges) of

a thin, three-dimensional elastic body in equilibrium with vanishing tractions at the lateral surfaces.

To prove the claim, let (H̃) and P̃(H̃) be the three-dimensional strain energy and stress at x ∈
induced by the displacement field ũ(x) Using the decomposition (18), we define (d) = (∇û + d⊗k),
where d = û0 At a given material point the derivatives∇û and û0 may be specified independently. Thus,
we fix the former and consider a one-parameter family d(). The derivatives of () = (d()) are

̇ = P̃k · ḋ and ̈ = P̃k · d̈+ ḋ · (P̃k)· (22)

where

(P̃k)
·
= (C[ḋ⊗ k])k (23)

Thus,

d = P̃k (24)

and

ḋ · (dd)ḋ = ḋ⊗ k ·C[ḋ⊗ k] (25)

which is positive-definite by virtue of (6). It follows that ̈  0 on straight-line paths d() = (1−)d1+
d2 with  ∈ [0 1] and d12 fixed. These belong to the domain of (·) the convex set generated by the
linear space of 3-vectors. Integrating with respect to  then yields ̇()  ̇(0) and (1)− (0)  ̇(0)

proving that (d) is a strictly convex function; i.e.,

(d2)−(d1)  d(d1) · (d2 − d1) (26)

for all unequal d12 Because such functions possess unique stationary points corresponding to absolute

minima, it follows that

(∇û + d̄(∇û)⊗ k)  (∇û + d⊗ k) (27)

for all d 6= d̄(∇û) where
û0 = d̄(∇û) (28)

is the unique solution to P̃k = 0. Therefore states of plane stress are energetically optimal when the

two-dimensional displacement gradient ∇û is given.

2.2 Expansion of the three-dimensional energy
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The three-dimensional strain energy is given by

S =
Z


(H̃(x)) =

Z
Ω

 (29)

where

 =

Z 2

−2
(Ĥ(r)) (30)

is the areal strain-energy density. Leibniz’ rule and Taylor’s theorem imply that [4]

 = 0 +
1
24
3 000 + (3) (31)

where the subscript (·)0 identifies function values at  = 0 as in (19) and (20). Thus,

0 = 1
2
H0 ·C0[H0] =

1
2
P0 · H0

 00 = P0 · H0
0 and  000 = P

0
0 · H0

0 +P0 ·H00
0  (32)

where P
()
0 = P̂

()

|=0 with P̂(r) = P̃(x) and, from (2),

P0 = C0[H0] and P00 = C0[H
0
0] (33)

Further, it follows from (2) and (19) that

P0 · H0 = P01 · ∇u+ a ·P0k  P00 ·H0
0 = P

0
01 ·∇a+ b ·P00k

P0 · H0
0 = P01 · ∇a+ b ·P0k and P0 ·H00

0 = P01 ·∇b+ c ·P0k (34)

The expression (31) for  is not the complete strain energy for the order-3 ansatz defined by (21).

However, our aim here is to derive an accurate order-3 expression for the energy rather than a complete

expression for a given ansatz (cf. [13]).

Let ∗ be the line orthogonal to Ω and intersecting  at a point with position r and let  =

Ω × , where  is the collection of such lines, be the cylindrical generating surface of the plate-

like region  obtained by translating the points of Ω along their associated lines ∗ Let  measure

arclength on the curve Ω with unit tangent τ and rightward unit normal ν = τ × n.
Suppose, for the moment, that null tractions are assigned on the lateral surfaces of the plate. The

assigned traction is then non-zero only on   The potential energy of the boundary tractions may

thus be expanded to obtainZ


t̃ · ũ =
Z
Ω

(p · u+ p · a+ p · b)+ (3) (35)

where Ω ×  ⊂   and

p = t0 +
1
24
3t000  p =

1
12
3t00 p =

1
24
3t0 (36)

with t
()
0 = t̂

()

|=0 where t̂(r) = t̃(x) is the three-dimensional traction distribution on  ∩   The

complement of Ω with respect to Ω is Ω where Ω× =  ⊂   Thus, position is assigned

only on a part of   in accordance with the assignment of (null) tractions on the lateral surfaces.

This furnishes

 =

Z
Ω

(0 +
1
24
3 000 )−

Z
Ω

(p · u+ p · a+ p · b) (37)
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2.3 Construction of the optimal plate energy

Our objective is an expression for the order-3 approximation to the potential energy that is as accu-

rate as possible by the standard of the three-dimensional theory. To this end we use the decomposition

P̃ = P̃1+ P̃k⊗ k and evaluate the exact equilibrium equation (1), expressed in the form

(P̃1) + P̃
0
k = 0 (38)

on the plane Ω, obtaining

(P01) +P
0
0k = 0 (39)

Using (2) and (19), this is seen to furnish a relation among the fields ua and b Here it is imposed

as a constraint in the approximate expression for the potential energy of the plate. Thus we use par-

tial information about three-dimensional equilibria to generate the optimal order-3 potential energy

functional for the midsurface deformation. In other words, although at this stage the mid-plane dis-

placement field u(r) is unrestricted, the expression for the potential energy, to be derived, is not valid

for arbitrary kinematically possible three-dimensional states. These states belong to a manifold of con-

figurations, parametrized by u(r) and defined by equilibrium constraints on the directors. Stationarity

of the energy then selects those midsurface displacement fields that approximate equilibria of the plate.

In addition to (39), Taylor expansions of the exact tractions t̃± = ±P̃±k at the upper and lower
lateral surfaces  = ±2 with unit normals n = ±k furnish

t̃+ + t̃− = P00k +(3) t̃+ − t̃− = 2P0k +(2) (40)

Therefore, if the lateral surfaces are traction free; i.e., if t̃± vanish, then

P0k =(2) and P00k =(2) (41)

Equations (39) and (41) are used to refine the expression for the order-3 plate energy.

Equation (41)2 contrasts with the claim P00k =() made in [13]. In that work no account is taken

of restrictions imposed by the exact lateral traction data1. Evidently the motivation for the claim is

to obtain a model, purportedly accurate to order 3 that accounts for the effects of transverse shear

while ensuring that the associated energy functional is strongly elliptic2. It may be concluded from

the present considerations that this objective is achieved at the expense of accuracy, as judged by the

equations and boundary data of the three-dimensional theory.

In view of (31)-(33), the complete order-3 expansion of the strain energy is

 = 1
2
(P01 · ∇u+ a ·P0k) + 1

24
3(P001 ·∇a+ b ·P00k+P01 ·∇b+ c ·P0k) (42)

This expression is simplified by imposing the restrictions (39) and (41) associated with the exact three-

dimensional theory. Because these are necessary for energy minimizers in the exact theory, their im-

position here yields the optimal order-3 truncation of the energy vis á vis three-dimensional elasticity

theory. To this end, we use (39) to conclude that

P01 ·∇b = [(P01)

b]− b · (P01) = [(P01)


b] + b ·P00k (43)
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According to (41), the terms involving P0k and P
0
0k make no contribution to the coefficient of 

3 in

(42). Rather, they contribute at higher order in , making them irrelevant to our development. To be

precise, the stated accuracy is achieved by imposing

P0k = 0 and P00k = 0 (44)

in the coefficient of 3; the induced error in the potential energy is of order 5 according to the three-

dimensional theory. The imposition of (44)12 in the coefficient of 
3 is therefore consistent with our

objective of deriving an optimal order-3 model. Using (2) and (19), these are found to yield

Aa = −(C[∇u])k and Ab = −(C[∇a])k (45)

where A is the acoustic tensor defined by

Av = (C[v⊗ k])k (46)

for any vector v In terms of components,  = 33 That this is positive definite follows from (6).

Accordingly, (45)12 yield a and b as functions of ∇u and ∇∇u respectively. We write

a = ā(∇u) and b = b̄(∇∇u) (47)

where b̄ follows from (45)2 in which ∇a = ∇ā(∇u) Because the material is uniform, this depends only
on ∇∇u.
This line of reasoning may not be used to suppress P0k in the coefficient of  because (41)1 implies

that this term makes a net contribution to the energy at order 3 and therefore that it is comparable

to other terms that have been retained in (42). However, the coefficient of  in the expression for the

strain energy is the mid-plane value of the (positive-definite) three-dimensional strain energy. Applying

the energetic argument of Section 2.1, we conclude that this term is optimized, for a given mid-plane

displacement field u(r) by fixing the director field a(r) such that P0k = 0 Accordingly, the restrictions

(44) (and hence (45)) apply to all terms in the order-3 energy.

Taken together, our results imply that the optimal order-3 strain energy is given by

S =
Z
Ω

̄+ 1
24
3
Z
Ω

P01ν · b+ (3) (48)

where, as in [4,5], Green’s theorem has been used to transform the divergence in (43), ν is the exterior

unit normal to Ω and

̄ = 1
2
P01 · ∇u+ 1

24
3P001 ·∇ā (49)

wherein (cf. (2) and (19))

P0 = C[∇u+ ā(∇u)⊗ k] and P00 = C[∇ā(∇u) + b̄ (∇∇u)⊗ k] (50)

It is noteworthy that the term P001 ·∇ā in (49) and (50)2 obtained by imposing (44)2 furnishes the
minimum of the quadratic form H0

0 ·C0[H0
0] with respect to the director b. The proof proceeds exactly

as in (22)-(28), but with (d) replaced by (∇û0+d0 ⊗ k), where d0 = û00
Noting that t0 = P01ν the contribution to the boundary integral arising from Ω is seen to

balance the contribution p to the load potential (cf. (36)) in the expression (35) for the potential
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energy, leaving a residual integral over Ω of P01ν · b However, the latter is fixed by the data on Ω
and thus contributes only a disposable constant to the overall energy [4,5]. To see this we recall that ũ

is assigned on  Consequently, its (tangential) derivatives with respect to  are also assigned. This

then fixes the values of ua and b on Ω If the present model is to apply on the closure of Ω then

the values of a and b obtained from (45) must agree with the data obtained from the assigned function

ũ (cf. (20) and [4,5]). This imposes a restriction on admissible data. Further, the decomposition [14]

∇u = u ⊗ τ + u ⊗ ν (51)

where u is the tangential (arclength) derivative on Ω together with (47)1, implies that the assignment

of u and a on Ω is tantamount to the assignment of u and u there. This in turn fixes the values of

∇u and thus of P01ν, on Ω. With b fixed by the assigned ũ the residual integral over Ω is then

controlled by the data. It may therefore be suppressed, yielding the final expression

̄ =

Z
Ω

̄−
Z
Ω

(p · u+ p · ā) (52)

for the order-3 potential energy.

In the absence of distributed loads, correlation with the expression (10) for the plate energy is

achieved via the identification

 (∇u∇∇u) = ̄  (53)

and the boundary energies are correlated by using (45)1 and (51), yielding

p ·ā = −{p ·A−1(C[u⊗ τ ])k}+(p) ·A−1(C[u⊗ τ ])k+p ·A−1(C[u⊗ τ ])k−p ·A−1(C[u⊗τ ])k
(54)

The variational derivative of the first term in this expression follows on replacing u therein by its

variation u̇, say. This vanishes on Ω and so the integral of the first term over Ω is equivalent to its

integral over Ω, which vanishes if the boundary is smooth; i.e., if τ is continuous3. Accordingly, the

first term in (54) has null variational derivative and therefore contributes only a disposable constant to

the potential energy. The remaining terms are linear in u and u  The Riesz representation theorem for

linear scalar-valued functions then yields the existence of unique vectors f and c such that

f · u = p ·u+(p) ·A−1(C[u⊗ τ ])k+p ·A−1(C[u⊗ τ ])k and c · u = −p ·A−1(C[u⊗ τ ])k
(55)

and with these results the functional ̄ reduces to [u] (cf. (10)).

The Euler equation associated with (10) and (53) is easily shown to predict that (P01) = (2)

This is consistent with the exact equation (39), provided that P00k is likewise of order 2 as was

assumed in the foregoing derivation. Thus the present model is internally consistent and satisfies the

lateral traction data of the three-dimensional theory with an error of order 2, provided that eqs. (11)-

(13) deliver the mid-plane displacement field with the same error. If the plate is loaded by small tractions

t̃± = (3) at the lateral surfaces; i.e., if t̃± = 3t± + (3) with t± of order unity, then the foregoing

model is augmented by a distributed-load potential g · u (cf. (10)), where

g = 3(t+ + t−) (56)
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is the leading-order contribution to the net lateral traction. This is the scaling assumed in classical plate

theory [15], and is accommodated without affecting the error in the lateral tractions.

The error may be reduced to order 3, without affecting the model, by selecting the director c such

that P000k vanishes; i.e., by imposing c = c̄ where (cf. (2) and (19)3)

Ac̄ = −(C[∇b̄])k (57)

in which b̄ is computed a posteriori from solutions to eqs. (11)-(13). That this is possible follows from

the fact that the director c plays no role in the model and is therefore at our disposal. Naturally, the claim

about the error in representing the tractions presumes the same error in the mid-plane displacement field

delivered by the model. In contrast, the system described in [13], based on the assumption P00k = ()

carries a persistent error of order 2 in the traction data.

2.4 Energetic optimality of equilibria

In view of (32)-(34), the strain-energy function defined by (49) and (50) may be expressed as

̄ = 1
2
H̄0 ·C[H̄0] +

1
24
3H̄0

0 ·C[H̄0
0] (58)

where

H̄0 =∇u+ ā⊗ k and H̄0
0 = ∇ā+ b̄⊗ k (59)

and the minor symmetries of C furnish

̄ = 1
2
E ·C[E] + 1

24
3E0 ·C[E0] (60)

where

E = H̄0 and E0 = H̄0
0 (61)

yielding the strain energy as the sum of two positive-definite quadratic forms.

The potential energy [u] is a quadratic functional. If ú(r) = u(r) + u̇(r) is a displacement field

satisfying the data on Ω it follows that

[ú] = [u] + ̇[u u̇] + 1
2
̈ (62)

where ̇ and ̈ are the induced first and second variations of the energy. Using (60), it is straightforward

to obtain

̈ =

Z
Ω

 (63)

where

 = Ė ·C[Ė] + 1
12
3Ė0 ·C[Ė0] (64)

and Ė and Ė0 are given by (59) and (61) in which u is replaced by u̇

By definition, equilibria in this model are those displacements u(r) that nullify the first variation

̇[u ·], yielding
[ú]−[u] = 1

2

Z
Ω

 (65)

10



Because  is non-negative, the integral can vanish only if  vanishes pointwise in Ω and as  is the sum

of two positive-definite quadratic forms, this in turn requires that

Ė = 0 and Ė0 = 0 in Ω (66)

The analysis of these conditions is facilitated by decomposing the fields ua and b into parts parallel

and orthogonal to Ω Thus,

u = v + k a = α+ k and b = β + k (67)

where v = 1u α = 1a and β = 1b. Substituting the variations of these representations into (59) and

(61), we derive

Ė = [∇v̇ + k⊗ (∇̇ + α̇)] + ̇k⊗ k and Ė0 = [∇α̇+ k⊗ (∇̇+ β̇)] + ̇k⊗ k (68)

where (∇v̇) and (∇α̇) are linear maps from the translation space Ω0 to itself. Accordingly,

conditions (66) are satisfied if and only if

(∇v̇) = 0 α̇ = −∇̇ ∇∇̇ = 0 β̇ = 0 ̇ = 0 and ̇ = 0 (69)

It is easy to show that these restrictions are satisfied whenever the three-dimensional variation is a

rigid-body displacement field. They also furnish trivial solutions to the constraints imposed by the

variational derivatives of eqs. (44), upon which (64) is based.

In the three-dimensional parent problem, displacement is assigned on  and its variation vanishes

there. As previously discussed, this implies that u and its normal derivative are assigned - and their

variations vanish - on Ω By using a decomposition like (51), this in turn is easily seen to imply that

∇̇ = 0 on Ω Because ∇̇ is uniform (cf. (69)3) it then vanishes everywhere on the closure of Ω,

yielding a constant field ̇ which vanishes by virtue of the data.

The restriction imposed by (69)1 yields ∇v̇ = ε where ε = e⊗e is the skew two-dimensional
permutation tensor (12 = −21 = 1 11 = 22 = 0) and (r) ∈ R; the associated integrability condition
is ∇ = 0 Therefore, v̇ = (ε)r+ c for some constants  and c Differentiating this with respect to

arclength on Ω where v̇ vanishes identically, furnishes 0 = (ε)τ = ν and hence  = 0 Then c

vanishes also, and we conclude that  vanishes in Ω if and only if u̇ vanishes identically; that is, if and

only if the configuration of the plate is fixed. For variations that do not vanish identically,  is strictly

positive in a set of non-zero area measure and its integral over Ω is then strictly positive. Equation (65)

leads finally to the conclusion that an equilibrium displacement field is a minimizer of the energy; i.e.,

[ú] ≥ [u] for all kinematically possible ú not identically equal to u The minimum is strict if Ω is

non-empty and non-strict in the alternative case as rigid-body displacements are then admissible.

3. Laminates

To illustrate the extension of the foregoing ideas to laminates, we discuss in detail the case of a

laminate composed of two laminae bonded together at the plane ΩWe retain the convention that  = 0

on Ω The upper and lower laminae occupy the regions Ω× (0 ] and Ω× [−(1− ) 0) respectively,
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where  ∈ (0 1) is the fraction of the total thickness  apportioned to the upper lamina. We append
subscripts  and  to variables defined in the upper and lower laminae, respectively.

The main adjustment of the foregoing development required to accommodate laminates is to the

expression (30) for the strain energy, which is given here by

 =

Z 

0

(Ĥ(r)) +

Z 0

−(1−)
(Ĥ(r)) (70)

Leibniz’ rule and a Taylor expansion, applied to both integrals, deliver

 = [0 + (1− )0] +
1
2
2[2 00 − (1− )2 00]

+1
6
3[3 000 + (1− )3 000] + (3) (71)

in lieu of (31), to which it reduces if the lamina properties are identical and  = 12. This may be

expressed in terms of the individual lamina deformation variables by using (32) and (34), which apply

to both laminae at their interface Ω

The edge-load potential is treated in the same way, yieldingZ


t̃ · ũ =
Z
Ω

 (72)

where

 =

Z 

0

 +

Z 0

−(1−)
 and  = t̃ · ũ (73)

Thus,

 = [0 + (1− )0] +
1
2
2[200 − (1− )200]

+1
6
3[3000 + (1− )3000] + (3) (74)

where

0 = t0 · u 00 = t
0
0 · u+ t0 · a and 000 = t

00
0 · u+ 2t00 · a+ t0 · b (75)

with subscripts  or  appended as appropriate. The displacement is continuous at the interface in the

absence of delamination, implying that u = u; we continue to denote the common values of these

functions by u(r)

We apply Green’s theorem to the terms P01 ·∇a and P01 ·∇b appearing in  00 and  000  respectively,
as explained in Section 2.3. This generates integrals ofP01ν · a andP01ν · b over Ω; their contributions
from Ω are balanced by the terms t0 ·a and t0 ·b appearing in 00 and 000  respectively, leaving residual
integrals over Ω and integrals of a · (P01) and b · (P01) over Ω Combining these with (39),
which holds in each lamina, we arrive at the lengthy preliminary expression

 =

Z
Ω

(1 +
1
2
22 +

1
6
33)−

Z
Ω

(p · u+ p · a + p · a)

+1
2
2
Z
Ω

[2P01ν · a − (1− )2P01ν · a]

+1
6
3
Z
Ω

[3P01ν · b + (1− )3P01ν · b] (76)
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for the order-3 potential energy, where

1 = (P01 · ∇u+ a ·P0k) + (1− )(P01 · ∇u+ a ·P0k)
2 = 2(a ·P00k + b ·P0k )− (1− )2(a ·P00k + b ·P0k )

and 3 = 3[P001 ·∇a + b ·P00k+ (b ·P00k+ c ·P0k)]
+(1− )3[P001 ·∇a + b ·P00k+ (b ·P00k+ c ·P0k)] (77)

with

p = [t0 + (1− )t0] +
1
2
2[2t00 − (1− )2t00] +

1
6
3[3t000 + (1− )3t000]

p = 1
3
33t00 p =

1
3
3(1− )3t00 (78)

and we have invoked the traction-continuity condition P0k = P0k (≡ P0k) from the exact three-

dimensional theory.

As in the theory for laminae, this expression is dramatically simplified - and its accuracy enhanced -

by exploiting the lateral traction data in the three-dimensional theory. Thus, Taylor expansions of the

tractions t̃+ = P̃+ k and t̃
− = −P̃− k at the upper and lower lateral surfaces  =  and  = −(1− )

respectively, give

t̃+ = P0k+P
0
0k+

1
2
22P000k+(

3) and t̃− = −P0k+(1−)P00k− 1
2
(1−)22P000k+(3)

(79)

We observe that if the lateral surfaces are unloaded, then the exact traction conditions t̃± = 0 are

satisfied with an error of order 2 by taking4

P0k = 0 P00k = 0 and P00k = 0 (80)

Accordingly,

a = ā(∇u) and a = ā(∇u) (81)

where (cf. (45)1)

Aā = −(C[∇u])k and Aā = −(C[∇u])k (82)

whereas

b = b̄(∇∇u) and b = b̄(∇∇u) (83)

where (cf. (45)2)

Ab̄ = −(C[∇ā])k and Ab̄ = −(C[∇ā])k (84)

These conditions eliminate the coefficient of 2 and some terms in the coefficients of  and 3, in

the contribution to the potential energy from the integrals over Ω Moreover, the contributions from

Ω are then fixed by the data, as discussed in Section 2.3, and may therefore be eliminated. Thus we

derive the order-3 potential energy (cf. (52))

̄ =

Z
Ω

̄−
Z
Ω

(p · u+ p · ā + p · ā) (85)

where

̄ = [P01+ (1− )P01] · ∇u+ 1
6
3[3P001 ·∇ā + (1− )3P001 ·∇ā] (86)
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with

P01 ·∇u = 2H̄0 ·C[H̄0] and P001 ·∇ā = H̄0
0 ·C[H̄0

0] (87)

in each lamina, where H̄0 and H̄
0
0 are defined by (59) and subscripts  or  are appended as appropriate.

It follows that the strain energy is the sum of four positive-definite quadratic forms, implying, as in the

case of laminae, that equilibria furnish minima of the potential energy.

Expressions for the edge force f and couple c may be derived by using (85) together with obvious

adjustments to (54) and (55), and the plate energy is again given by (10) in which  = ̄ and ̄ is

given by (86).

Notes

1. In [13], restrictions imposed by (39) are adopted in the formulation of a model for plates, but

the idea of using the exact three-dimensional equations to enhance the theory seems to be attributed,

incorrectly, to [16]. The correct attribution is to [4,5,17,18]. In fact, the authors of [16] adopted the

through-thickness average of (38), which has played a central role in the historical development of the

subject (see [14], for example).

2. The work reported in [13] was evidently motivated by an observation in [4] to the effect that

retention of all terms through order 3 leads to a strain-energy function that violates the operative

Legendre-Hadamard (semi-strict strong ellipticity) inequality, which is necessary for the existence of

minimizers, implying that the associated energy functional does not admit of a minimum principle. To

offset this undesirable feature, the condition P00k = 0 imposed in [4,5] and in the present paper is relaxed

in [13], leading to an order-3 energy that satisfies the Legendre-Hadamard inequality. However, this is

at odds with the estimate (41)2 furnished by the exact theory; therefore, the restoration of ellipticity

in [13] is achieved at the expense of accuracy. Moreover, the non-ellipticity reported in [4] is associated

with the term b · (P01), which we show here to be negligible in the order-3 theory.
With the benefit of hindsight we note that the considerations of [4] involve a plate possessing reflection

symmetry with respect to its mid-plane. It follows that the in-plane and transverse displacements in

that work decouple at leading order, and therefore that ellipticity is restored simply by retaining only

the leading-order stretching and bending energies in the expression for the overall potential energy. This

is explained in [3,5].

In contrast, the present work yields an order-3 potential energy that is energetically optimal, of

optimal accuracy vis á vis the exact theory, and applicable to materials exhibiting arbitrary symmetry.

Further, its equilibria minimize the associated potential energy.

3. If Ω is piecewise smooth then this term generates corner forces at the points where τ is discon-

tinuous. Such forces are well known in classical plate theory [15].

4. If conditions (80) were not imposed, then the expression (85) would contain terms involving

a ·P00k + b ·P0k at order 2, and b ·P00k+ c ·P0k at order 3 (the expressions in round parentheses
in the second, third and fourth lines of (77)). These are not sign-definite. Their presence would imply

that equilibria do not minimize the energy. Further, deformations could be constructed in such a way

14



as to render the net contribution of these terms positive, implying that the associated expression for the

energy is sub-optimal relative to that given here. The imposition of (80) achieves the threefold purpose

of suppressing these indefinite terms, optimizing the remaining terms with respect to the directors a

and b in each lamina (see the paragraph following (50)) and satisfying the lateral traction data through

order .
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