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Contemporary Mathematics

Multiple zeta value cycles in low weight

Ismaël Soudères

Abstract. In a recent work, the author has constructed two families of al-
gebraic cycles in Bloch’s cycle algebra over P1 \ {0, 1,∞} that are expected
to correspond to multiple polylogarithms in one variable and have a good
specialization at 1 related to multiple zeta values.

This is a short presentation, by the way of toy examples in low weight
(6 5), of this construction and could serve as an introduction to the general
setting. Working in low weight also makes it possible to push (“by hand”) the
construction further. In particular, we will not only detail the construction of
the cycles but we will also associate to these cycles explicit elements in the
bar construction over the cycle algebra and make as explicit as possible the
“bottom-left” coefficient of the Hodge realization period matrix. That is, in a

few relevant cases we will associated to each cycle an integral showing how the
specialization at 1 is related to multiple zeta values. We will be particularly
interested in a new weight 3 example corresponding to −ζ(2, 1).
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2 ISMAËL SOUDÈRES

1. Introduction

The multiple polylogarithm functions were defined in [Gon95] by the power
series

Lik1,...,km
(z1, . . . , zm) =

∑

n1>···>nm>0

zn1

1

nk1

1

zn2

2

nk2

2

· · ·
znm
m

nkm
m

(zi ∈ C, |zi| < 1).

They admit an analytic continuation to a Zariski open subset of Cm. The case
m = 1 is nothing but the classical polylogarithm functions. The case z1 = z and
z2 = · · · = zm = 1 gives a one variable version of multiple polylogarithm functions

LiCk1,...,km
(z) = Lik1,...,km

(z, 1, . . . , 1) =
∑

n1>···>nm>0

zn1

nk1

1 nk2

2 · · ·n
km
m

.

When k1 is greater or equal to 2, the series converge as z goes to 1 and one recovers
the multiple zeta value

ζ(k1, . . . , km) = LiCk1,...,km
(1) = Lik1,...,km

(1, . . . , 1) =
∑

n1>···>nm>0

1

nk1

1 nk2

2 · · ·n
km
m

.

To the tuple of integers (k1, . . . , km) of weight n =
∑

ki, we can associate a
tuple of 0’s and 1’s

(εn, . . . , ε1) := ( 0, . . . , 0︸ ︷︷ ︸
k1−1 times

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
km−1 times

, 1)

which allows to write multiple polylogarithms as iterated integrals (zi 6= 0 for all
i):

Liγk1,...,km
(z1, . . . , zm) = (−1)m

∫

∆γ

dt1
t1 − ε1x1

∧ · · · ∧
dtn

tn − εnxn

where γ is a path from 0 to 1 in C \ {x1, . . . , xn}, the integration domain ∆γ is
the associated real simplex consisting of all n-tuples of points (γ(t1), . . . , γ(tn))
with ti < tj for i < j and where we have set xn = z−1

1 , x1 = (z1 · · · zm)−1 and
where, for all i such that k1 + · · · + kl−1 + 1 6 i < k1 + · · · + kl, we have set
xn−i = (z1 · · · zl)−1. Classically, γ is the straight path from 0 to 1 : γ(t) = t and
in this case the superscript will be omitted..

Bloch and Kriz in [BK94] have constructed an algebraic cycle avatar of the
classical polylogarithm function. More recently in [GGL09], Gangl, Goncharov
and Levin, using a combinatorial approach, have built algebraic cycles correspond-
ing to the multiple polylogarithm values Lik1,...,km

(z1, . . . , zm) with parameters zi
satisfying in particular that all the zi but z1 have to be different from 1 and their
methods do not give algebraic cycles corresponding to multiple zeta values.

The goal of the article [Sou12] was to develop a geometric construction for
multiple polylogarithm cycles removing the previous obstruction which will allow
to have multiple zeta cycles.

A general idea underlying this project consists of looking for cycles fibered over
a larger base and not just point-wise cycles for some fixed parameter (z1, ..., zm).
Levine in [Lev11] shows that there exists a short exact sequence relating the Bloch-
Kriz Hopf algebra over Spec(Q), its relative version over P1 \ {0, 1,∞} and the
Hopf algebra associated to Goncharov and Deligne’s motivic fundamental group
over P1 \ {0, 1,∞} which contains motivic avatars of iterated integrals associated
to the multiple polylogarithms in one variable.
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As this one variable version of multiple polylogarithms gives multiple zeta values
for z = 1, it is natural to investigate first the case of the Bloch-Kriz construction
over P1 \ {0, 1,∞} in order to obtain algebraic cycles corresponding to multiple
polylogarithms in one variable with a “good specialization” at 1.

This paper presents the main geometric tools in order to construct such alge-
braic cycles and applies the general construction described in [Sou12] to concrete
examples up to weight 5. In these particular cases, one can easily go further in the
description, lifting the obtained cycles to the bar constructions over the Bloch’s cy-
cle algebra, describing the corresponding Bloch-Kriz motive and computing some
associated integrals related to the Hodge realization. Those integrals give back
multiple polylogarithms in one variable and their specialization at 1 give multiple
zeta values.

The structure of the paper is organized as follows. In section 2 we review
shortly the combinatorial context as it provides interesting relations for the bar
elements associated to the cycles and an interesting relation with Goncharov’s mo-
tivic coproduct for motivic iterated integrals. Section 3 is devoted to the geometric
situation and to the construction of the cycles after a presentation of the Bloch’s
cycle algebra. Section 4, presents a combinatorial representation of the constructed
cycles as parametrized cycles.

Section 5 recalls the definition of the bar construction over a commutative dif-
ferential graded algebra and associates elements in the bar constructions (and a
corresponding motive in the Bloch-Kriz construction) to the low weight examples
of cycles. Finally in section 6, I follow Gangl, Goncharov and Levin’s algorithm
associating an integral to some of the low weight algebraic cycles previously de-
scribed.

2. Combinatorial situation

In this paper a tree is a planar finite tree whose internal vertices have valency
> 3 and where at each vertex a cyclic ordering of the incident edges is given. A
rooted tree has a distinguished external vertex called the root and a forest is a
disjoint union of trees.

Trees will be drawn with the convention that the cyclic ordering of the edges
around an internal vertex is displayed in counterclockwise direction. The root
vertex in the case of a rooted tree is displayed at the top.

2.1. Trees, Lie algebras and Lyndon words. Let T tri be the Q-vector
space generated by rooted trivalent trees with leaves decorated by 0 and 1 modulo
the relation

T1

T2 T3

= −
T1

T3 T2

where the Ti’s are subtrees (and T1 contains the root of the global tree). Note that
in the above definition, the root is not decorated.

Define on T tri the internal law by

T1 T2 T3 T4

=

•

T1 T2 T3 T4

.
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and extend it by bilinearity. One remarks that by definition is antisymmetric.
Identifying {0, 1} with {X0, X1} by the obvious morphism and using the correspon-
dence ↔ [, ], this internal law allows us to identify the free Lie algebra Lie(X0, X1)

with T tri modulo the Jacobi identity. Thus one can identify the (graded) dual of
Lie(X0, X1) as a subspace of T tri

Lie(X0, X1)
∗ ⊂ T tri.

A Lyndon word in 0 and 1 is a word in 0 and 1 strictly smaller than any of
its nonempty proper right factors for the lexicographic order with 0 < 1 (for more
details, see [Reu93]). The standard factorization [W ] of a Lyndon word W is
defined inductively by [0] = X0, [1] = X1 and otherwise by [W ] = [[U ], [V ]] with
W = UV , U and V nontrivial and such that V is minimal. The sets of Lyndon
brackets {[W ]}, that is Lyndon words in standard factorization, form a basis of
Lie(X0, X1) which can then be used to write the Lie bracket

[[U ], [V ]] =
∑

W Lyndon
words

αW
U,V [W ].

with U < V Lyndon words.

Example 2.1. Lyndon words in letters 0 < 1 in lexicographic order are up to
weight 5:

0 < 00001 < 0001 < 00011 < 001 < 00101 < 0011 < 00111 <

01 < 01011 < 011 < 0111 < 01111 < 1

The above identification of Lie(X0, X1) as a quotient of T tri and the basis of
Lyndon brackets allows us to define a family of trees dual to the Lyndon bracket

basis beginning with T0∗ =
0

and T1∗ =
1

and then setting

(1) TW∗ =
∑

U<V

αW
U,V TU∗ TV ∗ .

Example 2.2. We give below the corresponding dual trees in weight 1, 2 and
3

T0∗ =
0

, T1∗ =
1

, T01∗ =
0 1

, T001∗ =

0 0 1

, T011∗ =

0 1 1

.

In weight 4 appears the first linear combination

T0001∗ =

0 0 0 1

, T0011∗ =

0 0 1 1

+

0 0 1 1

, T0111∗ =

0 1 1 1

,

due to the fact that both [0] ∧ [011] and [001] ∧ [1] are mapped onto [0011] =
[X0, [[X0, X1], X1]] under the bracket map.

In weight 5, we will concentrate our attention to the two following examples

T00101∗ =

0 0 1 0 1

−

10 0 0 1
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and

T01011∗ =

0 1 0 1 1

+

0 0 1 1 1

+

0 0 1 1 1

.

2.2. Another differential on trees. In [GGL09], Gangl, Goncharov and
Levin introduced a differential dcy on trees which reflects the differential in the
Bloch’s cycle algebra NSpec(Q) (see Section 3). In their work they have shown that
some particular linear combinations of trivalent trees attached to decompositions
of polygons have decomposable differential. More precisely, the differential of these
particular linear combinations of trees is a linear combination of products of the
same type of linear combinations of trees. The elements TW∗ have a similar behavior
under dcy.

One begins by endowing trees with an extra structure.

Definition 2.3. • An orientation ω of a tree T (or a forest) is a num-
bering of the edges. That is if T has n edges and if E(T ) denotes its set
of edges , ω is a map E(T ) −→ {1, . . . , n}.
• Let e(T ) denote the cardinality of E(T ), that is the number of edges of T ,

and let we(T ), the weight of T , be the number of leaves of T . The degree
of T is defined by deg(T ) = 2we(T ) − e(T ). We extend these definitions
to forests by linearity.

Definition 2.4.

• Let V t be the Q-vector space generated by a unit 1 and oriented forests
of rooted trees T with root vertex decorated by: t, 0 or 1 and leaves
decorated by 0 or 1.
• Let · denote the product induced by the disjoint union of the trees and

shift of the numbering for the orientation of the second factor. That is the
product of (F1, ω1) and (F2, ω2) is the forest F = F1 ⊔ F2 together with
the numbering ω satisfying ω|E(F1) = ω1 and ω|E(F2) = ω2 + n1 where
n1 = e(F1) is the number of edges in F1. Note that here, by convention,
the empty tree is 0 and the unit for · is the extra generator 1.
• Define F•

Q to be the algebra V t modulo the relations:

(T, σ(ω)) = ε(σ)(T, ω),
T1T2

0

= 0 and
1

0

= 0.

for any permutation σ and where ε(σ) denotes the usual signature of the
permutation σ.

The algebra F•
Q endowed with the product · is graded commutative because the

orientation introduces signs into the usual disjoint union. Note that for any forest
F one has (−1)deg(F ) = (−1)e(F ).

Remark 2.5. (1) There is an obvious direction on the edges of a rooted
tree: away from the root.

(2) A rooted tree comes with a canonical numbering, starting from the root
edge and induced by the cyclic ordering at each vertex.
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Example 2.6. With our convention, an example of this canonical ordering is
shown at Figure 1; we recall that by convention we draw trees with the root at the
top and the cyclic order at internal vertices counterclockwise.

e3 e4

e2
e5

e1

t

0 1 1

Figure 1. A tree with its canonical orientation, that is the canon-
ical numbering of its edges.

Now, we define on F•
Q a differential satisfying d2 = 0 and the Leibniz rule

d((F1, ω1) · (F2, ω2)) = d((F1, ω1)) · (F2, ω2) + (−1)e(F1)(F1, ω1) · d((F2, ω2)).

The set of rooted planar trees decorated as above endowed with their canonical
orientation forms a set of representatives for the permutation relation and it gen-
erates F•

Q as an algebra. Hence, we will define this differential first on these trees
and then extend the definition by the Leibniz rule.

The differential of an oriented tree (T, ω) is a linear combination of oriented
forests where the trees appearing arise by contracting an edge of T and fall into two
types depending on whether the edge is internal or not. We will need the notion of
splitting.

Definition 2.7. A splitting of a tree T at an internal vertex v is the disjoint
union of the trees which arise as Ti ∪ v where the Ti are the connected components
of T \ v. Moreover

• the planar structure of T and its decorations of leaves induce on each Ti∪v
a planar structure and decorations of leaves ;
• an ordering of the edges of T induces an orientation of the forest ⊔i(Ti∪v);
• if T has a root r then v becomes the root for all Ti ∪ v which do not

contain r, and if v has a decoration then it keeps its decoration in all the
Ti ∪ v.

Definition 2.8. Let e be an edge of a tree T . The contraction of T along e
denoted T/e is given as follows:

(1) If the tree consists of a single edge, its contraction is the empty tree.
(2) If e is an internal edge, then T/e is the tree obtained from T by contracting

e and identifying the incident vertices to a single vertex.
(3) If e is the edge containing the root vertex then T/e is the forest obtained

by first contracting e to the internal incident vertex w (which inherits the
decoration of the root) and then by splitting at w; w becoming the new
root of all trees in the forest T/e.

(4) If e is an external edge not containing the root vertex then T/e is the forest
obtained as follows: first one contracts e to the internal incident vertex
w (which inherits the decoration of the leaf) and then one performs a
splitting at w.
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(5) If T is endowed with its canonical orientation ω there is a natural orien-
tation ieω on T/e given as follows :

∀f ∈ E(T/e)
ieω(f) = ω(f) if ω(f) < ω(e)
ieω(f) = ω(f)− 1 if ω(f) > ω(e).

Example 2.9. Two examples are given below. In Figure 2, one contracts the
root vertex and in Figure 3, a leaf is contracted.

e

t

p q r

contracting

;

along e

t

p q r

splitting at

;

internal vertex

t
t

t

p q r

Figure 2. Contracting the root

e

t

p q r

contracting

;

along e

t

p q

r

splitting at

;

internal vertex
r r

t

p q

r

Figure 3. Contracting a leaf

Definition 2.10. Let (T, ω) be a tree endowed with its canonical orientation,
one defines dcy(T,w) as

dcy(T, ω) =
∑

e∈E(T )

(−1)ω(e)−1(T/e, ieω).

One extends dcy to all oriented trees by the relation dcy(T, σ ◦ ω) = ε(σ)dcy(T, ω)
and to F•

Q by linearity and the Leibniz rule.

In particular dcy maps a tree with at most one edge to 0 (which corresponds
by convention to the empty tree).

As proved in [GGL09], dcy, extended with the Leibniz rule, induces a differ-
ential on F•

Q.

Proposition 2.11. The map dcy : F•
Q −→ F

•
Q makes F•

Q into a commutative

differential graded algebra. In particular d2cy = 0.

By an abuse of notation, for any Lyndon word U the image of TU∗ in F•
Q with

root vertex decorated by t and canonical orientation is also denoted by TU∗ . The
image of TU∗ in F•

Q with root vertex decorated by 1 and canonical orientation is

denoted by TU∗(1).
The main result of the combinatorial aspects is the following.

Theorem 2.12. Let W be a Lyndon word. Then the following equality holds
in F•

Q:

(ED-T) dcy(TW∗) =
∑

U<V

αW
U,V TU∗ · TV ∗ +

∑

U,V

βW
U,V TU∗ · TV ∗(1)
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where the αW
U,V are the ones from Equation (1). In the above equation, coefficients

α’s and β’s are in Z.

For a detailed proof, we refer to [Sou12]. The theorem mainly follows by
induction from the combinatorics of the free Lie algebra Lie(X0, X1):

• The terms in the first sum in the R.H.S of (ED-T) come from the con-
traction of the root edge which is nothing but the differential dLie dual to
the bracket of Lie(X0, X1).
• Using the inductive definition of TW∗ (cf. Equation (1)), one shows by

induction that, as d2Lie = 0, internal edges do not contribute.
• Terms in TV ∗(1) arise from leaves decorated by 1. The fact that terms

arising from leaves decorated by 1 can be regrouped as a product TU∗ ·
TV ∗(1) is due to a particular decomposition of some specific brackets in
terms of the Lyndon basis.

Example 2.13. As mentioned before, the trees are endowed with their canon-
ical numbering. First on remarks that trees with only one edge are mapped to 0
so

dcy(T0∗) = dcy(
t

0

) = 0 and dcy(T1∗) = dcy(
t

1

) = 0.

We recall that a tree with root decorated by 0 is 0 in F•
Q. As applying an odd

permutation to the numbering changes the sign of the tree, the trivalency of the
tree TW∗ shows that some trees coming from the computation of dcy are 0 in F•

Q

because they contain a symmetric subtree; that is they contain a subtree of the
form

T T

where T is a trivalent tree.

Using the fact that the tree
1

0

is 0 in F•
Q, one computes in weight 2

dcy(T01∗) = dcy(

t

0 1

) =
t

0

·
t

1

= T0∗ T1∗ .

In weight 3, one has

dcy(T001∗) = dcy(

t

0 0 1

) =
t

0

·

t

0 1

= T0∗ T01∗

and

dcy(T011∗) = dcy




t

0 1 1


 =

t

0 1

·
t

1

+
t

1

1

0 1

= T01∗ T1∗ + T1∗ T01∗(1).

In weight 4, one can easily check that

dcy(T0001∗) = T0∗ T001∗ and dcy(T0111∗) = T011∗ T1∗ + T1∗T011∗(1).
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The example of T0011∗ is more interesting.

(2) dcy




t

0 0 1 1

+

t

0 0 1 1




=

t

0

·

t

0 1 1

+

t

0 0 1

·

t

1

+

t

1

·

1

0 0 1

+

t

0 1

·

1

0 1

That is:

(3) dcy(T0011∗) = T0∗ T011∗ + T001∗ T1∗ + T1∗ T001∗(1) + T01∗T01∗(1)

In the above equations, the term in T01∗ T01∗(1) is coming form the last edge of the
tree

t

0 0 1 1

appearing in T0011∗ .
Computing d2cy(T0011∗) (which is 0), the differential dcy(T01∗ T01∗(1)) cancels

with the term in T0∗ T1∗T01∗(1) arising from dcy(T0∗ T011∗). It can be thought of as
the propagation of the weight 3 correction term T1∗T01∗(1) appearing in dcy(T011∗).

We give below an example in weight 5, dcy(T01011∗) :

dcy




t

0 1 0 1 1

+

t

0 0 1 1 1

+

t

0 0 1 1 1




=

t

0 1

·

t

0 1 1

+




t

0 0 1 1

+

t

0 0 1 1



·

t

1

+

t

1

·




1

0 0 1 1

+

1

0 0 1 1




+ 2

t

0 1 1

·

1

0 1

e f
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where the last term arises from the part of the differential associated to edges e and
f . The above equation can be written as

(4) T01011∗ = T01∗ · T011∗ + T0011∗ · T1∗ + T1∗ · T0011∗(1) + 2T011∗ · T01∗(1)

3. Algebraic cycles

This section begins with the construction of the cycle complex (or cycle algebra)
as presented in [Blo86, Blo97, BK94, Lev94]. Then, we give some properties of
equidimensional cycles groups over A1 and build some algebraic cycles correspond-
ing to multiple polylogarithms in one variable.

Here the base field is Q and the various structures have Q coefficients.

3.1. Construction of the cycle algebra. Let �n be the algebraic n-cube

�n = (P1 \ {1})n.

Insertion morphisms sεi : �
n−1 −→ �n are given by the identification

�n−1 ≃ �i−1 × {ε} ×�n−i

for ε = 0,∞. A face F of codimension p of �n is given by the equation xik = εk for
k in {1, . . . , p} and εk in {0,∞} where x1, . . . , xn are the usual affine coordinates
on P1. In particular, codimension 1 faces are given by the images of insertion
morphisms.

Now, let X be a smooth irreducible quasi-projective variety over Q.

Definition 3.1. Let p and n be non-negative integers. Let Zp(X,n) be the
free group generated by closed irreducible sub-varieties of X × �n of codimension
p which intersect all faces X × F properly (where F is a face of �n). That is:

Z

〈
Z ⊂ X ×�

n such that





Z is closed and irreducible
codimX×F (Z ∩ (X × F )) = p
or Z ∩ (X × F ) = ∅

〉

A sub-variety Z of X ×�n as above is admissible. The insertion morphisms sεi
induce a well defined pull-back sε ∗i : Zp(X,n)→ Zp(X,n− 1) and a differential:

∂ =

n∑

i=1

(−1)i−1(s0 ∗
i − s∞∗

i ) : Zp(X,n) −→ Zp(X,n− 1).

The permutation group Sn acts on �n by permutation of the factors. This action
extends to an action of the semi-direct product Gn = (Z/2Z)n ⋊ Sn where each
Z/2Z acts on �1 by sending the usual affine coordinates x to 1/x. The sign repre-
sentation of Sn extends to a sign representation Gn −→ {±1}. Let Altn ∈ Q[Gn]
be the corresponding projector; when the context is clear enough, we may drop the
subscript n.

Definition 3.2. Let p and k be integers as above. One defines

N k
X(p) = Alt2p−k(Z

p(X, 2p− k)⊗Q).

We will refer to k as the cohomological degree and to p as the weight.

For our purpose, we will not only need admissible cycles but cycles in X ×�n

whose fibers over X are also admissible.

Definition 3.3 (Equidimensionality). Let X be an irreducible smooth variety.
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• Let Zp
eq(X,n) denote the free abelian group generated by irreducible closed

subvarieties Z ⊂ X ×�n such that for any face F of �n, the intersection
Z ∩ (X × F ) is empty or the restriction of p1 : X ×�n −→ X to

Z ∩ (X × F ) −→ X

is equidimensional of relative dimension dim(F )− p.
• We say that elements of Zp

eq(X,n) are equidimensional over X with respect
to any face or simply equidimensional.

• Following the definition of N k
X(p), let N eq, k

X (p) denote

N eq, k
X (p) = Alt2p−k

(
Zp

eq(X, 2p− k)⊗Q
)
.

• If Z is an irreducible closed subvariety of X × �n satisfying the above
condition, Z|t=x will denote the fiber over the point x ∈ X of p1 restricted
to Z that is Z ∩ ({x} ×�n).

Let C = Alt(
∑

qiZi) be an element in N eq, •
X with the Zi as above

and qi’s in Q. For a point x ∈ X , we will denote by C|t=x the element of
N •

X

C|t=x = Alt(
∑

qiZi|t=x)

which is well defined in both N •
X and N •

{x} by definition of the Zi.

Example 3.4. Consider the graph of the identity A1 t7→t
−→ A1 restricted to

A1 × A1 \ {1}. Let Γ0 be its embedding in A1 × �1. Then Γ0 is of codimension
1 in A1 × �1 and is admissible as the intersection with the face x1 = ∞ is empty
and the intersection with the face x1 = 0 is {0} × {0} which is of codimension 1 in
A1 × {0}.

However, Γ0 is not equidimensional as

Γ0 ∩
(
A1 × {0}

)
= {0} × {0}

is neither equidimensional over A1 nor empty as the condition would require.
Applying the projector Alt gives an element L0 in N 1

A1(1). Using the definition
of Γ0 as a graph, one obtains a parametric representation (where the projector Alt
is omitted):

L0 = [t; t] ⊂ A1 ×�1.

In the above notation the semicolon separates the base space coordinates from the
cubical coordinates.

The morphisms sε ∗i induce morphisms ∂ε
i : N k

X(p) −→ N k+1
X (p) and the above

differential ∂ =
∑

i(−1)
i−1(∂0

i − ∂∞
i ) gives a complex

N •
X(p) : · · · −→ N k

X(p)
∂
−→ N k+1

X (p) −→ · · ·

Definition 3.5. One defines the cycle complex as

N •
X =

⊕

p>0

N •
X(p) = Q⊕

⊕

p>1

N •
X(p)

and as the differential restricts to equidimensional cycles, one also defines

N eq, •
X =

⊕

p>0

N eq, •
X (p).
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The author refers sometimes to N •
X as the cycle algebra because of another

natural structure coming with this cubical cycle complex: the product structure.
Levine has shown in [Lev94][§5] or [Lev11][Example 4.3.2] the following propo-

sition.

Proposition 3.6. Concatenation of the cube factors and pull-back by the di-
agonal

X ×�
n ×X ×�

m ∼
→ X ×X ×�

n ×�
m ∼
→ X ×X ×�

n+m ∆X←− X ×�
n+m

induce, after applying the Alt projector, a well-defined product:

N k
X(p)⊗N l

X(q) −→ N k+l
X (p+ q)

denoted by ·
The complex N eq, •

X is stable under this product law.

Remark 3.7. The smoothness hypothesis on X allows us to consider the pull-
back by the diagonal ∆X : X −→ X ×X which is, in this case, of local complete
intersection.

One has the following theorem (stated in [BK94, Blo97] for X = Spec(Q)).

Theorem 3.8 ([Lev94]). The cycle complex N •
X is an Adams graded, commu-

tative differential graded algebra (Adams graded, c.d.g.a.). In weight p, its coho-
mology groups are the higher Chow groups of X:

Hk(NX(p)) = CHp(X, 2p− k)Q,

where CHp(X, 2p− k)Q stands for CHp(X, 2p− k)⊗Q.

Moreover N eq, •
X turns into a sub-Adams graded, c.d.g.a. Note that, in the

graded algebra context, commutative always means graded commutative.
One has natural flat pull-backs and proper push-forwards on N •

X (and on
N eq, •

X ). Comparison with higher Chow groups also gives on the cohomology groups
both A1-homotopy invariance and the long exact sequence associated to an open
and its closed complement. Writing P1 \ {0, 1,∞} as A1 \ {0, 1}, one obtains the
following description of H∗(N •

P1\{0,1,∞}(p)) :

Hk(N •
P1\{0,1,∞}(p)) ≃ Hk(N •

Q(p))⊕

Hk−1(N •
Q(p− 1))⊗QL0 ⊕Hk−1(N •

Q(p− 1))⊗QL1,

where L0 and L1 are in cohomological degree 1 and weight 1 (that is of codimension
1). Their explicit description will be given later on.

Comparing the situation over P1 \{0, 1,∞} and over A1 comes as an important
idea in our project as the desired cycles over P1 \ {0, 1,∞} need to admit a natural
specialization at 1. In particular, we will need to work with equidimensional cycle
and some of their properties are given in the next subsection.

3.2. Equidimensional cycles. The following result given in [Sou12] essen-
tially follows from the definition and makes it easy to compare both situations.

Proposition 3.9. Let X0 be an open dense subset of X an irreducible smooth
variety and let j : X0 −→ X be the inclusion. Then the restriction of cycles from
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X to X0 induces a morphism of c.d.g.a. preserving the weight (that is the Adams
grading)

j∗ : N eq, •
X −→ N eq, •

X0
.

Moreover, let C be in N •
X0

and write C in terms of the generators of the group
⊕Z⋆(X0, •) as

C =
∑

i∈I

qiZi, qi ∈ Q

where I is a finite set. Assume that, for any i, the Zariski closure Zi of Zi in
X ×�ni intersected with any face X ×F of X ×�ni is equidimensional over X of
relative dimension dim(F )− pi. Define C′ as

C′ =
∑

i∈I

qiZi,

then

C′ ∈ N eq, •
X and C = j∗(C′) ∈ N eq, •

X0
.

Below, we describe the main geometric fact that allows the construction of our
cycles: pulling back by the multiplication induces a homotopy between identity and
the zero section on the cycle algebra over A1.

Let m : A1 ×A1 −→ A1 be the multiplication map sending (x, y) to xy and let
τ : �1 = P1 \ {1} −→ A1 be the isomorphism sending the affine coordinate u to
1

1−u
. The map τ sends ∞ to 0, 0 to 1 and extends as a map from P1 to P1 sending

1 to ∞.
The maps m and τ are in particular flat and equidimensional of relative dimen-

sion 1 and 0, respectively.
Consider the following commutative diagram for a positive integer n

A1 ×�1 ×�n A1 ×�n

A1 ×�1 A1

A1

(m◦(id
A1

×τ))×id�n

p
A1×�1 p

A1

m◦(id
A1

×τ)

p
A1

Proposition 3.10 (multiplication and equidimensionality). In the following
statement, p, k and n will denote positive integers subject to the relation n = 2p−k

• the composition m̃ = (m ◦ (id A1 ×τ))× id�n induces a group morphism

Zp
eq(A

1, n)
m̃∗

−→ Zp
eq(A

1 ×�1, n)

which extends to a morphism of complexes for any p

N eq, •
A1 (p)

m̃∗

−→ N eq, •
A1×�1(p).

• Moreover, one has a natural group morphism

hp

A1,n
: Zp

eq(A
1 ×�

1, n) −→ Zp
eq(A

1, n+ 1)

given by regrouping the �1 factors (as �n = (�1)n).
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• The composition µ∗ = hp

A1,n
◦ m̃∗ gives a linear map

µ∗ : N eq, k

A1 (p) −→ N eq, k−1
A1 (p)

sending equidimensional cycles with empty fiber at 0 to equidimensional
cycles with empty fiber at 0.
• Let θ : A1 −→ A1 be the involution sending the natural affine coordinate t

to 1− t. Twisting the map m̃ by θ gives a map m̂ via

A1 ×�1 ×�n A1 ×�n

A1 ×�1 ×�n A1 ×�nm̃

θ×id
�n+1 θ×id

�n

m̂

and induces a linear map

ν∗ : N eq, k

A1 (p) −→ N eq, k−1
A1 (p)

sending equidimensional cycles with empty fiber at 1 to equidimensional
cycles with empty fiber at 1.

Proof. It is enough to work with generators of Zp
eq(A

1, n). Let Z be an

irreducible subvariety of A1×�n such that for any face F of �n, the first projection

pA1 : Z ∩ (A1 × F ) −→ A1

is equidimensional of relative dimension dim(F ) − p or empty. Let F be a face of
�n. We want first to show that under the projection A1 ×�1 ×�n −→ A1 ×�1,

m̃−1(Z) ∩ (A1 ×�1 × F ) −→ A1 ×�1

is equidimensional of relative dimension dim(F )−p or empty. This follows from the
fact that Z∩(A1×F ) is equidimensional over A1 and m is flat and equidimensional
of relative dimension 1 (hence are m × τ and m̃). The map m̃ is the identity on
the �n factor, thus for Z ⊂ A1 × �n as above and a codimension 1 face F of �n,
m̃−1(Z) satisfies

m̃−1(Z) ∩ (A1 ×�1 × F ) = m̃−1(Z ∩ (A1 × F ))

which makes m̃∗ into a morphism of complexes.
Moreover, assuming that the fiber of Z at 0 is empty, as m̃ restricted to

{0} ×�1 ×�n

factors through the inclusion {0} ×�n −→ A1 ×�n, the intersection

m̃−1(Z) ∩
(
{0} ×�

1 ×�
n
)

is empty. Hence the fiber of m̃−1(Z) over {0} × �1 by pA1×�1 is empty and the
same holds for the fiber over {0} by pA1 ◦ pA1×�1 .

Now, let Z be an irreducible subvariety of A1×�1×�n such that for any face
F of �n

Z ∩ (A1 ×�1 × F ) −→ A1 ×�1

is equidimensional of relative dimension dim(F )− p. Let F ′ be a face of

�
n+1 = �

1 ×�
n.
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The face F ′ is either of the form �1 × F or of the form {ε} × F with F a face of
�n and ε ∈ {0,∞}. If F ′ is of the first type, as

Z ∩ (A1 ×�1 × F ) −→ A1 ×�1

is equidimensional and, as A1×�1 −→ A1 is equidimensional of relative dimension
1, the projection

Z ∩ (A1 ×�
1 × F ) −→ A1

is equidimensional of relative dimension

dim(F )− p+ 1 = dim(F ′)− p.

If F ′ is of the second type, by symmetry of the role of 0 and ∞, we can assume
that ε = 0. Then the intersection

Z ∩ (A1 × {0} × F )

is nothing but the fiber of Z ∩ (A1 × �1 × F ) over A1 × {0}. Hence, it has pure
dimension dim(F )− p+ 1.

Moreover, denoting with a subscript the fiber, the composition

Z ∩ (A1 × {0} × F ) =
(
Z ∩ (A1 ×�1 × F )

)
A1×{0}

−→ A1 × {0} −→ A1

is equidimensional of relative dimension

dim(F )− p = dim(F ′)− p.

This shows that hp

A1,n
gives a well defined morphism and that it preserves the fiber

at a point x in A1; in particular, if Z has an empty fiber at 0, so does hp

A1,n
(Z).

Finally, the last part of the proposition is deduced from the fact that θ ex-
changes the role of 0 and 1. �

Remark 3.11. We have remarked that m̃ sends cycles with empty fiber at 0
to cycles with empty fiber at any point in {0}×�1. Similarly m̃ sends cycles with
empty fiber at 0 to cycles that also have an empty fiber at any point in A1 ×{∞}.

From the proof of Levine’s Proposition 4.2 in [Lev94], we deduce that µ∗ gives
a homotopy between p∗0 ◦ i

∗
0 and id where i0 is the zero section {0} → A1 and p0

the projection onto the point {0}.

Proposition 3.12. Notations are the ones from Proposition 3.10 above. Let
i0 (resp. i1) be the inclusion of 0 (resp. 1) in A1:

i0 : {0} −→ A1 , i1 : {1} −→ A1.

Let p0 and p1 be the corresponding projections pε : A
1 −→ {ε} for ε = 0, 1.

Then µ∗ provides a homotopy between

p∗0 ◦ i
∗
0 and id : N eq, •

A1 −→ N eq, •
A1

and similarly ν∗ provides a homotopy between

p∗1 ◦ i
∗
1 and id : N eq, •

A1 −→ N eq, •
A1 .

In other words, one has

∂A1 ◦ µ∗ + µ∗ ◦ ∂A1 = id −p∗0 ◦ i
∗
0 and ∂A1 ◦ ν∗ + ν∗ ◦ ∂A1 = id −p∗1 ◦ i

∗
1.

The proposition follows from computing the different compositions involved
and the relation between the differential on N eq, •

A1×�1 and the one on N eq, •
A1 via the

map hp
A1,n

.
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Proof. We denote by i0,� and i∞,� the zero section and the infinity section
A1 −→ A1 × �1. The action of θ only exchanges the role of 0 and 1 in A1, hence
it is enough to prove the statement for µ∗. As previously, in order to obtain the

proposition for N eq, k

A1 (p), it is enough to work on the generators of Zp
eq(A

1, n) with
n = 2p− k.

By the previous proposition 3.10, the morphism m̃∗ commutes with the differ-
ential on Zp

eq(A
1, •) and on Zp

eq(A
1 × �1, •). As the morphism µ∗ is defined by

µ∗ = hp

A1,n
◦ m̃∗, the proof relies on computing ∂A1 ◦hp

A1,n
. Let Z be a generator of

Zp
eq(A

1 ×�1, n). In particular,

Z ⊂ A1 ×�1 ×�n

and hp

A1,n
(Z) is also given by Z but viewed in

A1 ×�
n+1.

The differentials denoted by ∂n+1
A1 on Zp

eq(A
1, n+1) and ∂n

A1×�1 on Zp
eq(A

1×�1, n)

are both given by intersections with the codimension 1 faces but the first �1 factor
in �n+1 gives two more faces and introduces a change of sign. Namely, using an
extra subscript to indicate in which cycle groups the intersections take place, one
has:

∂n+1
A1 (hp

A1,n
(Z)) =

n+1∑

i=1

(−1)i−1
(
∂0
i,A1(Z)− ∂∞

i,A1(Z)
)

=∂0
1,A1(Z)− ∂∞

1,A1(Z)−
n+1∑

i=2

(−1)i−2
(
∂0
i,A1(Z)− ∂∞

i,A1(Z)
)

=i∗0,�(Z)− i∗∞,�(Z)−
n∑

i=1

(−1)i−1
(
∂0
i+1,A1(Z)− ∂∞

i+1,A1(Z)
)
.

Hence one gets

∂n+1
A1 (hp

A1,n
(Z)) = i∗0,�(Z)− i∗∞,�(Z)

−
n∑

i=1

(−1)i−1
(
hp

A1,n−1

(
∂0
i,A1×�1(Z)− ∂∞

i,A1×�1(Z)
))

which can be written has

∂n+1
A1 (hp

A1,n
(Z)) = i∗0,�(Z)− i∗∞,�(Z)− hp

A1,n−1 ◦ ∂
n
A1×�1(Z).

Thus one can compute ∂A1 ◦ µ∗ + µ∗ ◦ ∂A1 on Zp
eq(A

1, n) as

∂A1 ◦ µ∗ + µ∗ ◦ ∂A1 =∂A1 ◦ hA1,n ◦ m̃
∗ + hA1,n−1 ◦ m̃

∗ ◦ ∂A1

=i∗0,� ◦ m̃
∗ − i∗∞,� ◦ m̃

∗ − hA1,n−1 ◦ ∂A1 ◦ m̃∗

+ hA1,n−1 ◦ ∂A1 ◦ m̃∗

=i∗0,� ◦ m̃
∗ − i∗∞,� ◦ m̃

∗.

The morphism i∗∞,� ◦ m̃
∗ is induced by

A1 A1 ×�1 A1 × A1 A1

x (x,∞) (x, 0) 0

i
∞,� τ m
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which factors through

A1 A1 ×�1 A1 × A1 A1

{0} A1

i
∞,� τ m

p0

i0

id
A1

Thus,

i∗∞,� ◦ m̃
∗ = (i0 ◦ p0)

∗ = p∗0 ◦ i
∗
0.

Similarly i∗0,� ◦ m̃
∗ is induced by

A1 A1 ×�1 A1 × A1 A1

x (x, 0) (x, 1) x

i
∞,� τ m

which factors through id A1 : A1 −→ A1 and one has

i∗0,� ◦ m̃
∗ = id

which concludes the proof of the proposition. �

3.3. Weight 1, weight 2 and polylogarithm cycles. For now on, we set
X = P1 \ {0, 1,∞}.

3.3.1. Two weight 1 cycles generating the H1. As mentioned before, there is a
decomposition of H1(N •

X(p)) as

H1(N •
X(p)) ≃ H1(N •

Q(p))⊕H0(N •
Q(p− 1))⊗QL0 ⊕H0(N •

Q(p− 1))⊗QL1

and L0 and L1 (which are in weight 1 and degree 1) generates the H∗(N •
X) relatively

to H∗(N •
Q). Explicit expression for L0 and L1 are given below.

In Example 3.4, a cycle L0 was constructed using the graph of t 7−→ t from
A1 −→ A1. Taking its restriction to X × �1, and using the same convention, one
gets a cycle

(5) L0 = [t; t] ⊂ X ×�1, L0 ∈ N
1
X(1).

Similarly, using the graph of t 7−→ 1− t, one gets

(6) L1 = [t; 1− t] ⊂ X ×�1, L1 ∈ N
1
X(1).

One notices that the cycles L0 and L1 are both equidimensional over X = P1 \
{0, 1,∞} but not equidimensional over A1.

Moreover, as

L0 ∩ (X × {ε}) = L0 ∩ (P1 \ {0, 1,∞}× {ε}) = ∅

for ε = 0,∞, the above intersection tells us that ∂(L0) = 0. Similarly, one shows
that ∂(L1) = 0. Thus L0 and L1 give two well defined classes in H1(N •

X(1)).
In order to show that they are non-trivial and that they give the above decom-

position of the H1(N 1
X), one shows that, in the localization sequence, their images

under the boundary map

H1(N •
X(1))

δ
−→ H0(N •

{0}(0))⊕H0(N •
{1}(0))
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are non-zero. It is enough to treat the case of L0. Recall that L0 is the closure of
L0 in A1 ×�1 and is given by the parametrized cycle

L0 = [t; t] ⊂ A1 ×�1.

Its intersection with the face u1 = 0 is of codimension 1 in A1 × {0} and the
intersection with u1 =∞ is empty. Hence L0 is admissible.

Thus, considering the definition of δ, δ(L0) is given by the intersection of the
differential of L0 with {0} and {1} on the first and second factor, respectively. The
above discussion on the admissibility of L0 tells us that δ(L0) is non-zero on the
factor H0(N •

{0}(0)) and 0 on the other factor as the admissibility condition is trivial

for N •
{0}(0) and the restriction of L0 to 1 is empty. The situation is reverse for L1

using its closure L1 in A1 ×�1.
Hence, even if the differentials of L0 and L1 are 0 in N •

X , the differentials
of their closure in A1 are non-zero in N •

A1 and have a particular behavior when
multiplied by an equidimensional cycle (see Lemma 3.13 below and Equation (11)
for an example). We consider here only equidimensional cycles as it is needed to
work with such cycles in order to pull-back by the multiplication. We use below
notations of propositions 3.10 and 3.12.

Lemma 3.13. Let C be an element in N eq, •
A1 , then

∂A1(L0)C = C|t=0 and ∂A1(L1)C = C|t=1

where the notation C|t=0 (resp. C|t=1) denotes, as in Definition 3.3 the (image un-
der the projector Alt of the) fiber at 0 (resp. 1) of the irreducible closed subvarieties
composing the formal sum that defines C.

Proof. It is enough to assume that C is given by C = Alt(Z) where Z is
an irreducible closed subvariety of A1 × �n such that for any face F of �n, the
intersection Z ∩ (X × F ) is empty or the restriction of p1 : A1 ×�n −→ A1 to

Z ∩ (A1 × F ) −→ A1

is equidimensional of relative dimension dim(F )− p.
Remark that for ε = 0, 1 the cycle ∂A1(Lε) is given by the point

{ε} ∈ A1

which is of codimension 1 in A1. In order to compute the product ∂A1(Lε)C, one
considers first the product in A1 × A1 ×�n:

{ε} × Z ⊂ A1 × A1 × �n.

Let ∆ denote the image of the diagonal A1 −→ A1 × A1. The equidimensionality
of Z insures that for any face F of �n

({ε} × Z)
⋂

(∆× F ) ≃ (Z ∩ ({ε} ×�n))
⋂(

A1 × F
)

is of codimension p+1. Thus the product ∂A1(Lε)C is simply the image under Alt
of

Z ∩ ({ε} ×�n) = Z|t=ε ⊂ A1 ×�n.

�
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3.3.2. A weight 2 example: the Totaro cycle. One considers the linear combi-
nation

b = L0 · L1 ∈ N
2
X(2).

It is given as a parametrized cycle by

b = [t; t, 1− t] ⊂ X ×�
2

or in terms of defining equations by

T1V1 − U1T2 = 0 and U1V2 + U2V1 = V1V2

where T1 and T2 denote the homogeneous coordinates on X = P1 \ {0, 1,∞} and
Ui, Vi the homogeneous coordinates on each factor �1 = P1 \ {1} of �2. One sees
that the intersection of b with faces Ui or Vi = 0 for i = 1, 2 is empty because T1

and T2 are different from 0 in X and because Ui is different from Vi in �1. Thus it
tells us that

∂(b) = 0.

Now, let b denote the algebraic closure of b in A1 × �2. As previously, its
expression as parametrized cycle is

b = L0 L1 = [t; t, 1− t] ⊂ A1 ×�2

and the intersection with A1 × F for any codimension 1 face F of �2 is empty.
Writing, as before, ∂A1 for the differential in NA1 , one has ∂A1(b) = 0.

As L0 (resp. L1) is equidimensional over A1 \ {0} (resp. over A1 \ {1}), the

cycle b is equidimensional over A1\{0, 1}. Moreover, as L0 (resp. L1) has an empty
fiber at 1 (resp. at 0), b has empty fiber at both 0 and 1. So b is equidimensional
over A1 with empty fibers at 0 and 1. Following notations of Proposition 3.12, one
defines two elements in N 1

A1(2) by pull back by the multiplication ( resp. twisted
multiplication):

(7) L01 = µ∗(b) and L101 = ν∗(b).

One also defines their restrictions to X

(8) L01 = j∗(L01) and L101 = j∗(L101).

Now, direct application of Proposition 3.12 shows that

∂A1(L01) = −µ
∗(∂A1(b)) + b− p∗0 ◦ i

∗
0(b) = −0 + L0 L1 − 0

because b has empty fiber at 0 and is 0 under ∂A1 . More generally, as j∗ is a
morphism of c.d.g.a., Proposition 3.12 gives the following.

Lemma 3.14. Cycles L01, L01, L101 and L101 satisfy the following properties

(1) L01 and L101 (resp. L01 and L101) are equidimensional over X, that is

elements in N eq, 1
X (2) (resp. equidimensional over A1).

(2) They satisfy the following differential equations

∂(L01) = ∂(L101) = b = L0 L1

and ∂A1(L01) = ∂A1(L101) = b = L0 L1.

(3) By the definition given in Equation (8), the cycle L01 (resp. L101) extends
L01 (resp. L101) over A1 and has an empty fiber at 0 (resp. at 1).
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Moreover, one can explicitly compute the two pull-backs and obtain parametric
representations

(9) L01 = [t; 1−
t

x
, x, 1− x], L101 = [t;

x− t

x− 1
, x, 1− x].

The multiplication map inducing µ∗ is given by

A1 ×�1 ×�2 A1 ×�2
, [t;u1, u2, u3] [ t

1−u1
;u2, u3] .

In order to compute the pull-back, one should remark that if u = 1− t/x then

t

1− u
= x.

Computing the pull-back by µ∗ is then just rescaling the new �1 factor which arrives
in first position. The case of ν∗ is similar but using the fact that for u = x−t

x−1 one
has

t− u

1− u
= x.

Remark 3.15. The cycle L01 is nothing but Totaro’s cycle [Tot92], already
described in [BK94, Blo91].

Moreover, L01 corresponds to the function t 7→ LiC2 (t) as shown in [BK94].
One recovers the value ζ(2) by specializing at t = 1 using the extension of L01

to A1.

3.3.3. Polylogarithm cycles. By induction one can build cycles Licyn = L0···01
(n− 1 zeros and one 1). We define Licy1 to be equal to L1.

Lemma 3.16. For any integer n > 2 there exists an equidimensional cycle over
X, Licyn in N eq, 1

X (n) ⊂ N 1
X(n) satisfying

(1) There is an equidimensional cycle over A1, Licyn in N eq, 1
A1 (n), such that

Licyn = j∗(Licyn ) (it has in particular a well defined fiber at 1).

(2) The cycle Licyn has empty fiber at 0.

(3) The cycles Licyn and Licyn satisfy the differential equations

∂(Licyn ) = L0 · Li
cy
n−1 and ∂(Licyn ) = L0 · Li

cy
n−1.

(4) Licyn is explicitly given as a parametrized cycle by

[t; 1−
t

xn−1
, xn−1, 1−

xn−1

xn−2
, xn−2, . . . , 1−

x2

x1
, x1, 1− x1] ⊂ X ×�2n−1.

Proof. For n = 2, we have already defined Licy2 = L01 satisfying the expected
properties.

Assume that one has built the cycles Licyk for 2 6 k < n. One considers in
N 2

A1(n) the product

b = L0 · Li
cy
n−1 = [t; t, 1−

t

xn−2
, xn−2, 1−

xn−2

xn−3
, xn−3, . . . , 1−

x2

x1
, x1, 1− x1].

As L0 is equidimensional over A1 \ {0} and as Licyn−1 is equidimensional over A1,

b is equidimensional over A1 \ {0}. Moreover, as Licyn−1 has empty fiber at 0, b is

equidimensional over A1 with empty fiber at 0.
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Computing the differential with the Leibniz rule and Lemma 3.13, one gets

∂A1(b) = Licyn−1|t=0 − L0 · L0 · Li
cy
n−2 = 0.

One concludes using Proposition 3.12. The same argument used to obtain the
parametrized representation for L01 at Equation (9) shows that

Licyn = [t; 1−
t

xn−1
, xn−1, 1−

xn−1

xn−2
, xn−2, . . . , 1−

x2

x1
, x1, 1− x1] ⊂ A1 ×�2n−1.

�

Remark 3.17.

• One retrieves the expression given in [BK94].
• Moreover, Licyn corresponds to the function t 7→ LiCn(t) as shown in [BK94]

(or in [GGL09]).
• L0 having an empty fiber at 1, one can also pull-back by the twisted

multiplication and obtain similarly cycles L10···01 satisfying ∂(L10···01) =
∂(L0···01). In some sense, they correspond to L0···01−p∗ ◦ i∗1(L0···01) which
in terms of integrals corresponds to LiCn(t)− ζ(n).

3.4. Some higher weight examples for multiple polylogarithm cycles.

3.4.1. Weight 3. The cycle L01 was defined previously, so was the cycle L001 =
Licy3 by considering the product

b = L0 · L01.

Now, in weight 3, one could also consider the product

(10) L01 · L1 ∈ N 2
X(3).

However the above product does not lead by similar arguments to a new cycle.
Before explaining how to follow the strategy used in weight 2 and for the polylog-
arithms in order to obtain another weight 3 cycle, the author would like to spend
a little time on the obstruction occurring with the product in Equation (10) as it
enlightens in particular the need of the cycle L101 previously built.

Thus let b = L01 · L1 be the above product in N 2
X(3), given as a parametrized

cycle by

b = [t; 1−
t

x1
, x1, 1− x1, 1− t] ⊂ X ×�

4.

From this expression, one sees that b is admissible and that ∂(b) = 0 because t ∈ X
can not be equal to 1.

Let b be the closure of the defining cycle of b in A1 × �4, that is the image
under the projector Alt of

{
(t, 1 −

t

x1
, x1, 1− x1, 1− t) such that t ∈ A1, x1 ∈ P1

}
∩ A1 ×�4.

Let ui denote the coordinate on the i-th factor �1. As most of the intersections
of b with face A1 × F are empty, in order to prove that b is admissible and gives
an element in N 2

A1(3), it is enough to check the (co)dimension condition on the

three faces : u1 = 0, u4 = 0 and u1 = u4 = 0. The intersection of b with the face
u1 = u4 = 0 is empty as u2 6= 1. The intersection b with the face defined by u1 = 0
or u4 = 0 is 1 dimensional and so of codimension 3 in A1 × F .
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Computing the differential in N •
A1 , using Lemma 3.13 or the fact that the

intersection with u1 = 0 is killed by the projector Alt, gives

(11) ∂A1(b) = ∂A1(L01L1) = −L01|t=1 6= 0

and the homotopy trick used previously will not work as it relies (partly) on begin-
ning with a cycle b satisfying ∂A1(b) = 0.

In order to bypass this, one could introduce the constant cycle L01(1) = p∗ ◦
i∗1(L01) and consider the linear combination

(12) b = (L01 − L01(1)) · L1 ∈ N
2
A1(3).

and its equivalent in N 2
X(3). Now, the correction by −L01(1) · L1 insures that

∂A1(b) = 0.
However, it is still not good enough as the use of the homotopy property for

the pull-back by the multiplication requires to work with equidimensional cycles
which is not the case for b (the problem comes from the fiber at 1).

The fact that L1 is not equidimensional over A1 but equidimensional on A1\{1}
requires to multiply it by a cycle with an empty fiber at 1 which insures that the
fiber of the product at 1 is empty. Thus one considers the product in N eq, 2

A1 (3)

b = L101 L1 = −L1 L101

which has an empty fiber at 0 and 1. Moreover the Leibniz rule and Lemma 3.13
imply that

∂A1(b) = ∂A1(L101)L1 − L
1
01 ∂(L1) = L1 L0L1 − L

1
01|t=1 = 0.

Thus one defines

(13) L011 = µ∗(L101 L1) and L1011 = ν∗(L101 L1)

and their restrictions to X = P1 \ {0, 1,∞}

(14) L011 = j∗(L011) and L1011 = j∗(L1011).

As previously, propositions 3.12 and 3.10 insure the following.

Lemma 3.18. The cycles L011, L011, L1011 and L1011 satisfy the following prop-
erties

(1) L011 and L1011 (resp. L011 and L1011) are in N eq, 1
X (2) (resp. in N eq, 1

A1 (2)).
(2) They satisfy the following differential equations

∂(L011) = ∂(L1011) = L
1
01 L1 = −L1 L

1
01

and ∂A1(L011) = ∂A1(L1011) = L
1
01 L1.

(3) The cycle L011 (resp. L1011) has an empty fiber at 0 (resp. at 1).

3.4.2. Weight 4. In weight 4 the first linear combination appears. The situation
in weight 4 is given by the following Lemma

Lemma 3.19. Let W be one of the Lyndon words 0001, 0011 or 0111. There

exist cycles LW , L1W in N eq, 1
X (4) and cycles LW , L1W in N eq, 1

A1 (4) which satisfy the
following properties

(1) LW = j∗(LW ) and L1W = j∗(L1W )

(2) LW (resp. L1W ) has an empty fiber at 0 (resp. at 1)
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(3) Cycles LW and L1W for W = 0001, 0011 and 0111 satisfy the following
differential equations derived from the differential equations satisfied by

LW and L1W

(15) ∂(L0001) = ∂(L10001) = L0 L001,

(16) ∂(L0011) = ∂(L10011) = L0 L011 + L
1
001 L1 − L01 L

1
01

and

(17) ∂(L0111) = ∂(L10111) = L
1
011 L1.

Proof. The proof goes as before as the main difficulty is to “guess” the differ-
ential equations. The case of L0001 = Licy4 and L10001 has already been treated in
Lemma 3.16 and the remark afterward. The case of L0111 and L10111 is extremely

similar to the case of L011. We will only describe the case of L0011. Let b be the
element in N 2

A1(4) defined by:

b = L0 L011 + L1001 L1 − L01 L
1
01.

All the cycles involved are equidimensional over A1 \ {0, 1}. As the products in the
above equation always involve a cycle with empty fiber at 0 and one with empty
fiber at 1, the product has empty fiber at 0 and 1 and is equidimensional over A1.

This shows that b is equidimensional over A1 with empty fiber at 0 and 1. One
computes ∂A1(b) using the Leibniz rule, Lemma 3.13 and the previously obtained
differential equations:

∂A1(b) = −L0L101 L1 + L0 L01 L1 − L0 L1 L
1
01 + L01 L0 L1 = 0

One can thus define

L0011 = µ∗(b) and L10011 = ν∗(b)

and conclude with propositions 3.12 and 3.10. �

3.4.3. General statement and a weight 5 example. In weight 5 there are six
Lyndon words and the combinatorics of equation (ED-T) leads to six cycles with
empty fiber at 0 and six cycles with empty fiber at 1. The general statement proved
in [Sou12] is given below.

Theorem 3.20. For any Lyndon word W of length p greater or equal to 2,
there exist two cycles LW and L1W in N 1

X(p) such that :

• LW , L1W are elements in N eq, 1
X (p).

• There exist cycles LW , L1W in N eq, 1
A1 (p) such that

LW = j∗(LW ) and L1W = j∗(L1W ).

• The restriction of LW (resp. L1W ) to the fiber t = 0 (resp. t = 1) is
empty.
• The cycle LW satisfies the equation

(18) ∂(LW ) =
∑

U<V

aWU,V LULV +
∑

U,V

bWU,V LUL
1
V

and resp. L1W satisfies

(19) ∂(L1W ) =
∑

0<U<V

a′
W
U,V L

1
UL

1
V +

∑

U,V

b′
W
U,V LUL

1
V +

∑

V

a′0,V L0LV
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and the same holds for their extensions LW and L1W to N eq, 1
A1 . In the

above equations U and V are Lyndon words of smaller length than W

and the coefficients aWU,V , bWU,V , a′
w
U,V and b′

W
U,V are integers derived from

equation (ED-T).

Remark 3.21. Without giving a proof which works by induction on the length
of W , the author would like to stress that the construction of the cycles LW (resp.

L1W ) relies on a geometric argument that has already been described and used
here: the pull-back by the (twisted) multiplication µ∗ (resp. ν∗) gives a homotopy
between the identity and p∗ ◦ i∗0 (resp. p∗ ◦ i∗1). Thus, defining

AW =
∑

U<V

aWU,V LULV +
∑

U,V

bWU,V LUL
1
V

and
A1

W =
∑

0<U<V

a′
W
U,V L

1
UL

1
V +

∑

U,V

b′
W
U,V LUL

1
V +

∑

V

a′0,V L0LV ,

the cycle LW and L1W are defined by

(20) LW = µ∗(AW ) and L1W = ν∗(A1
W ).

The fact that AW (resp. A1
W ) is equidimensional over A1 with empty fiber at 0

(resp. 1) is essentially a consequence of the induction. The main problem is to show

that ∂A1(AW ) = ∂A1(A1
W ) = 0 which in [Sou12] is deduced after a long preliminary

work from the combinatorial situation given by the trees TW∗ .

In weight 5 appears the need of two distinct differential equations and the first
example with coefficient different from ±1.

Example 3.22. The two cycles associated to the Lyndon word 01011 satisfy

∂(L01011) =− L01 L011 − L1 L
1
0011 − 2L011 L

1
01(21)

∂(L101011) =L
1
01 L

1
011 − L011 L

1
01 − L01 L

1
011 − L1 L

1
0011.(22)

The factor 2 in the last term of ∂(L01011) is related to the factor 2 appearing in
dcy(T01011∗) presented in Equation (4). The term

2L011L0L1

which is equal to ∂(−2L011L101) cancels with one term in −L0L1L011 coming from
∂(−L01 · L011) and one term in L1L0L011 coming from ∂(L1 · L0011). The whole
computation can in fact be done over A1 and L01011 is defined as previously as the
pull-back by µ∗ of

b = −L01 L011 − L1 L10011 − 2L011 L101.

The cycle L01011 is then its restriction to X . The above linear combination has an
empty fiber at 0 (which allows the use of µ∗). However its fiber at 1 is nonempty
and given by

−L01|t=1 L011|t=1

and its pull-back by the twisted multiplication ν∗ satisfies

∂A1(ν∗(b)) = b+ p∗ ◦ i∗1(b) 6= b.

That is why we have introduced the linear combination

L101 L
1
011 − L011 L

1
01 − L01 L

1
011 − L1 L

1
0011
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whose extension to A1 has empty fiber at 1 (but not at 0). This allows us to define

L101011 = ν∗
(
L101 L

1
011 − L011 L

1
01 − L01 L

1
011 − L1 L

1
0011

)
.

4. Parametric and combinatorial representation for the cycles: trees

with colored edges

One can give a combinatorial approach to describe cycles LW and L1W as
parametrized cycles using trivalent trees with two types of edge.

Definition 4.1. Let T || be the Q vector space spanned by rooted trivalent
trees such that

• the edges can be of two types: or ;

• the root vertex is decorated by t ;
• other external vertices are decorated by 0 or 1.

We say that such a tree is a rooted colored tree or simply a colored tree.

We define two bilinear maps T || ⊗ T || −→ T || as follows on the colored trees:

• Let T1 T2 be the colored tree given by joining the two roots of T1 and

T2 and adding a new root and a new edge of type :

T1 T2 =

T1 T2

t

where the dotted edges denote either type of edges.
• Let T1 T2 be the colored tree given by joining the two roots of T1 and

T2 and adding a new root and a new edge of type :

T1 T2 =

T1 T2

t

where the dotted edges denote either type of edges.

Definition 4.2. Let T0 and T1 be the colored trees defined by

T0 =
t

0

and T1 =
t

1

.

For any Lyndon word W of length greater or equal to 2, let TW (resp. T1
W ) be

the linear combination of colored trees given by

TW =
∑

U<V

aWU,V TU TV +
∑

U,V

bWU,V TU T
1
V ,

and respectively by

T
1
W =

∑

0<U<V

a′
W
U,V T

1
U T

1
V +

∑

U,V

b′
W
U,V TU T

1
V +

∑

V

a′0,V T0 TV .

where the coefficients appearing are the ones from Theorem 3.20.

To a colored tree T with p external leaves and a root, one associates a function

fT : X × (P1)
p−1
−→ X × (P1)2p−1 as follows :
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• Endow T with its natural order as trivalent tree.
• This induces a numbering of the edges of T : (e1, e2, . . . , e2p−1).
• The edges being oriented away from the root, the numbering of the edges

induces a numbering of the vertices (v1, v2, . . . , v2p) such that the root is
v1.
• Associate variables x1, . . . , xp−1 to each internal vertices such that the

numbering of the variables is opposite to the order induced by the number-
ing of the vertices (first internal vertex has variable xp−1, second internal
vertex has variable xp−2 and so on).

• For each edge ei =

a

b
oriented from a to b, define a function

fi(a, b) =





1−
a

b
if ei is of type ,

b− a

b − 1
if ei is of type .

• Finally fT : X × (P1)p−1 −→ X × (P1)2p−1 is defined by

fT (t, x1, . . . xp−1) = (t, f1, . . . , f2p−1).

Let Γ(T ) be the intersection of the image of fT with X × �2p−1. One extends
the definition of Γ to T || by linearity and thus obtains a twisted forest cycling map
similar to the one defined by Gangl, Goncharov and Levin in [GGL09].

The map Γ satisfies:

• Alt(Γ(T0)) = L0 and Alt(Γ(T1)) = L1.
• For any Lyndon word of length p > 2,

Alt(Γ(TW )) = LW and Alt(Γ(T1
W )) = L1W .

The fact that Γ(T0) (resp. Γ(T1)) is the graph of t 7→ t (resp. t 7→ 1− t) follows
from the definition. Thus one already has Γ(T0) (resp. Γ(T1)) in Z1

eq(X, 1) and

Alt(Γ(T0)) = L0 and Alt(Γ(T1)) = L1.

Then the above property is deduced by induction. Recall that the defining
equation (20) for the cycle LW is

LW = µ∗


∑

U<V

aWU,V LULV +
∑

U,V

bWU,V LUL
1
V


 .

As already remarked in Example 9, in order to compute the pull-back by µ∗ one
sets the former parameter t to a new variable xn and parametrizes the new �1

factor arriving in first position by 1 − t
xn

; t is again the parameter over X or A1

depending if one considers cycles over A1 or their restriction to X = P1 \ {0, 1,∞}.
Thus the expression of LW , restriction of LW to X is exactly given by

LW = Alt(Γ(TW )).

The case of ν∗ is similar but parametrizing the new �1 factor by xn−t
xn−1 .

For the previously built examples, we give below the corresponding colored
trees and expressions as parametrized cycles (omitting the projector Alt). We also
recall the corresponding differential equations as given by Theorem 3.20.
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Example 4.3 (Weight 1).

T0 =
t

0

, T1 =
t

1

and ∂(L0) = ∂(L1) = 0.

We recall below how cycles L0 and L1 are expressed in terms of parametrized cycles:

L0 = [t; t] ⊂ X ×�1 and L1 = [t; 1− t] ⊂ X ×�1.

Example 4.4 (Weight 2).

T01 =

t

0 1

, T
1
01 =

t

0 1

and ∂(L01) = ∂(L101) = L0L1

We have seen in Equation (9) that cycles L01 and L101 are given (in X ×�3) by

L01 = [t; 1−
t

x1
, x1, 1− x1] and L101 = [t;

x1 − t

x1 − 1
, x1, 1− x1].

Example 4.5 (Weight 3).

∂(L001) = ∂(L1001) = L0L01, ∂(L011) = ∂(L1011) = −L1L
1
01.

T001 =

t

0

0 1

, T
1
001 =

t

0

0 1

, T011 = −

t

0 1

1

, T
1
011 = −

t

0 1

1

The corresponding expression as parametrized cycles are given below (following our
“twisted forest cycling map”):

L001 = [t; 1−
t

x2
, x2, 1−

x2

x1
, x1, 1− x1] ⊂ X ×�5,

L1001 = [t;
x2 − t

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1] ⊂ X ×�5

and

L011 = −[t; 1−
t

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1] ⊂ X ×�

5,

L1011 = −[t;
x2 − t

x2 − 1
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1] ⊂ X ×�5

Example 4.6 (Weight 4). The differential equations satisfied by the weight 4
cycles are:

∂(L0001) = ∂(L10001) =L0L001

∂(L0011) = ∂(L10011) =L0L011 − L1L
1
001 − L01L

1
01

∂(L0111) = ∂(L10111) =− L1L
1
011
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The corresponding colored trees are given by:

T0001 =

t

0

0

0 1

, T
1
0001 =

t

0

0

0 1

, T0111 =

t

0 1

1

1
, T

1
0111 =

t

0 1

1

1
,

T0011 = −

t

0

0 1

1

−

t

0

0 1

1
−

t

0 1 0 1

and

T
1
0011 = −

t

0

0 1

1

−

t

0

0 1

1
−

t

0 1 0 1

.

The expressions as parametrized cycles of L0001, L
1
0001, L0111 and L10111 are

given below (in X ×�7):

L0001 = [t; 1−
t

x3
, x3, 1−

x3

x2
, x2, 1−

x2

x1
, x1, 1− x1],

L10001 = [t;
x3 − t

x3 − 1
, x3, 1−

x3

x2
, x2, 1−

x2

x1
, x1, 1− x1],

L0111 = [t; 1−
t

x3
, 1− x3,

x2 − x3

x2 − 1
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1],

L10111 = [t;
x3 − t

x3 − 1
, 1− x3,

x2 − x3

x2 − 1
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1],

while the expressions for L0011 and L10011 involved linear combinations:

L0011 = −[t; 1−
t

x3
, x3, 1−

x3

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

− [t; 1−
t

x3
, 1− x3,

x2 − x3

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1]

− [t; 1−
t

x3
, 1−

x3

x2
, x2, 1− x2,

x1 − x3

x1 − 1
, x1, 1− x1]

and

L10011 = −[t;
x3 − t

x3 − 1
, x3, 1−

x3

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

− [t;
x3 − t

x3 − 1
, 1− x3,

x2 − x3

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1]

− [t;
x3 − t

x3 − 1
, 1−

x3

x2
, x2, 1− x2,

x1 − x3

x1 − 1
, x1, 1− x1].
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Example 4.7 (Weight 5). The differential equations satisfied by L01011 and
L101011 are:

∂(L01011) =− L01 · L011 − L1L
1
0011 − 2L011L

1
01

∂(L101011) =L
1
01 · L

1
011 − L011 · L

1
01 − L01 · L

1
011 − L1 · L

1
0011.

The corresponding colored trees are given by:

T01011 =

t

0 1 1

0 1

+

t

1

0

0 1

1

+

t

1

0

0 1

1

+

t

1

0 1 0 1

+ 2

t

0 11

0 1

and

T
1
01011 = −

t

0 1 1

0 1

+

t

0 1 1

0 1

+

t

0 11

0 1

+

t

1

0

0 1

1

+

t

1

0

0 1

1

+

t

1

0 1 0 1

The corresponding expression as parametrized cycles are given below (in X ×�9):

L01011 = [t; 1−
t

x4
, 1−

x4

x3
, x3, 1− x3, 1−

x4

x2
, 1− x2,

x1 − x2

x2 − 1
, x1, 1− x1]

+ [t; 1−
t

x4
, 1− x4,

x3 − x4

x3 − 1
, x3, 1−

x3

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

+ [t; 1−
t

x4
, 1− x4,

x3 − x4

x3 − 1
, 1− x3,

x2 − x3

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1]

+ [t; 1−
t

x4
, 1− x4,

x3 − x4

x3 − 1
, 1−

x3

x2
, x2, 1− x2,

x1 − x3

x1 − 1
, x1, 1− x1]

+ 2[t; 1−
t

x4
, 1−

x4

x3
, 1− x3,

x2 − x3

x2 − 1
, x2, 1− x2,

x1 − x4

x1 − 1
, x1, 1− x1],
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and

L101011 = −[t;
x4 − t

x4 − 1
,
x3 − x4

x3 − 1
, x3, 1− x3,

x2 − x4

x2 − 1
, 1− x2,

x1 − x2

x2 − 1
, x1, 1− x1]

+ [t;
x4 − t

x4 − 1
, 1−

x4

x3
, x3, 1− x3,

x2 − x4

x2 − 1
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

+ [t;
x4 − t

x4 − 1
, 1−

x4

x3
, 1− x3,

x2 − x3

x2 − 1
, x2, 1− x2,

x1 − x4

x1 − 1
, x1, 1− x1]

+ [t;
x4 − t

x4 − 1
, 1− x4,

x3 − x4

x3 − 1
, x3, 1−

x3

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

+ [t;
x4 − t

x4 − 1
, 1− x4,

x3 − x4

x3 − 1
, 1− x3,

x2 − x3

x2 − 1
, x2, 1−

x2

x1
, x1, 1− x1]

+ [t;
x4 − t

x4 − 1
, 1− x4,

x3 − x4

x3 − 1
, 1−

x3

x2
, x2, 1− x2,

x1 − x3

x1 − 1
, x1, 1− x1].

5. Bar construction settings

In the cycle motives setting, a motive over X is a comodule on the H0 of the
bar construction over N •

X modulo shuffle products. For more details, one can look
at the works of Bloch and Kriz [BK94], Spitzweck [Spi, Spi01] (i.e. as presented
in [Lev05]) and Levine [Lev11].

In this context, the cycles constructed above, which are expected to correspond
to multiple polylogarithms (as outlined in Section 6), induce elements in this H0

and naturally gives rise to an associated comodule, thus to mixed Tate motives
corresponding to multiple polylogarithms.

Before, giving explicit expressions for the induced elements in the bar con-
struction, the beginning of the section is devoted to a short review of the bar
construction.

5.1. Bar construction. As there does not seem to exist a global sign con-
vention for the various operations on the bar construction, the main definitions in
the cohomological setting are recalled below following the (homological) description
given in [LV12].

Let A be a commutative differential graded algebra (c.d.g.a.) with augmen-
tation ε : A −→ Q, with product µA and let A+ be the augmentation ideal
A+ = ker(ε). Note again that commutative in this context stand for graded com-
mutative.

In order to understand the sign convention below and the “bar grading”, one
should think of the bar construction as built on the tensor coalgebra over the shifted
(suspended) graded vector space A+[1].

Definition 5.1. The bar construction B(A) over A is the tensor coalgebra
over the suspension of A+.

• In particular, as vector space B(A) is given by :

B(A) = T (A+) =
⊕

n>0

(A+)⊗n.

• A homogeneous element a of tensor degree n is denoted using the bar
notation, that is

a = [a1| . . . |an]
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and its degree is

degB(a) =

n∑

i=1

(degA(ai)− 1) .

• The coalgebra structure comes from the natural deconcatenation coprod-
uct, that is

∆([a1| . . . |an]) =
n∑

i=0

[a1| . . . |ai]⊗ [ai+1| . . . |an].

Remark 5.2. This construction can be seen as a simplicial total complex as-
sociated to the complex A (Cf. [BK94]). The augmentation makes it possible to
use directly A+ without referring to the tensor coalgebra over A and without the
need of killing the degeneracies.

However this simplicial presentation usually masks the need of working with
the shifted complex.

We associate to any bar element [a1| . . . |an] the function η(i) giving its “partial”
degree

η(i) =
i∑

k=1

(degA(ak)− 1).

The original differential dA induces a differential D1 on B(A) given by

D1([a1| . . . |an]) = −
n∑

i=1

(−1)η(i−1)[a1| . . . |dA(ai)| . . . |an]

where the initial minus sign comes from the fact that the differential on the shifted
complex A[1] is −dA. Moreover, the multiplication on A induces another differential
D2 on B(A) given by

D2([a1| . . . |an]) = −
n−1∑

i=1

(−1)η(i)[a1| . . . |µA(ai, ai+1)| . . . |an]

where the signs are coming from Koszul commutation rules (due to the shifting).
One checks that the two differentials anticommute providing B(A) with a total
differential.

Definition 5.3. The total differential on B(A) is defined by

dB(A) = D1 +D2.

The last structure arising with the bar construction is the graded shuffle product

[a1| . . . |an]x [an+1| . . . |an+m] =
∑

σ∈sh(n,m)

(−1)εgr(σ)[aσ(1), . . . , aσ(n+m)]

where sh(n,m) denotes the permutation of {1, . . . , n+m} such that if 1 6 i < j 6 n
or n+ 1 6 i < j 6 n+m then σ(i) < σ(j). The sign is the graded signature of the
permutation (for the degree in A+[1]) given by

εgr(σ) =
∑

i<j
σ(i)>σ(j)

(degA(ai)− 1)(degA(aj)− 1).

With these definitions, one can explicitly check the following
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Proposition 5.4. Let A be a (Adams/weight graded) c.d.g.a. The operations
∆, dB(A) and x together with the obvious unit and counit give B(A) a structure of
(Adams graded) commutative graded differential Hopf algebra.

In particular, these operations induce on H0(B(A)), and more generally on
H∗(B(A)), a (Adams graded) commutative Hopf algebra structure. This (Adams
graded) algebra is cohomologically graded in the case of H∗(B(A)) and cohomologi-
cally graded concentrated in degree 0 in the case of H0(B(A)).

We recall that the set of indecomposable elements of an augmented c.d.g.a. is
defined as the augmentation ideal I modulo products, that is I/I2. Applying a
general fact about Hopf algebras, the coproduct structure on H0(B(A)) induces a
coLie algebra structure on its set of indecomposable elements.

5.2. Bar elements. Considering the bar construction over N •
X , part of the is-

sue is to associate to any cycle LW and L1W a corresponding element in H0(B(N •
X)).

As the weight 1 cycles L0 and L1 have 0 differential in N •
X , there are obvious

corresponding bar elements:

(23) LB0 = [L0] and LB1 = [L1].

Let MX denote the indecomposable elements of H0(B(N •
X)) and let τ be the

morphism exchanging the two factors of H0(B(N •
X))⊗H0(B(N •

X)). We denote by

d∆ =
1

2
(∆− τ∆)

the differential on the coLie algebraMX induced by the coproduct on H0(B(N •
X)).

In general, one should have the following.

Claim. For any Lyndon word W (of length greater or equal to 2), there exist

elements LBW and L1,BW in B(N •
X) of bar degree 0 satisfying:

• Let dB denotes the total bar differential dB = dB(N•

X
). Then one has:

dB(L
B
W ) = dB(L

1,B
W ) = 0.

• The tensor degree 1 part of LBW (resp. L1,BW ) is given by [LW ] (resp.
[L1W ]).

• The elements LBW (resp. L1,BW ) satisfy the differential equation (18) (resp.
(19)) in MX . That is

d∆(L
B
W ) = −


∑

U<V

aWU,V L
B
UL

B
V +

∑

U,V

bWU,V L
B
UL

1,B
V


 ∈MX ∧MX

and

d∆(L
1,B
W ) = −


 ∑

0<U<V

a′
W
U,V L

1,B
U L

1,B
V +

∑

U,V

b′
W
U,V L

B
UL

1,B
V +

∑

V

a′0,V L
B
0 L

B
V




∈MX ∧MX

where the overall minus sign is due to shifting reasons.

The obstruction for proving the general statement lies in the control of the
global combinatorics relating D1, D2 and the two systems of differential equations.
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Below, one finds some elements LBW and L1,BW corresponding to the previously
described examples together with some relations among those elements. Once the
element LBW are explicitly described, it is a straightforward computation to check
that it lies in the kernel of dB and this verification will be omitted.

Note that all cycles LW and L1W are in cohomological degree 1, that is in N 1
X .

Thus, signs appearing in the operations on the bar construction are much simpler
as all terms in degA(ai)− 1 are 0.

Example 5.5 (Weight 2). Cycles L01 and L101 satisfy ∂(L01) = ∂(L101) = L0L1.
Thus one can define
(24)

LB01 = [L01]−
1

2
([L0|L1]− [L1|L0]) and L1,B01 = [L101]−

1

2
([L0|L1]− [L1|L0]) .

Remark that, looking at things modulo products, that is in MX , the tensor
degree 2 involves some choices. Instead of

−
1

2
([L0|L1]− [L1|L0]) ,

we could have used
−[L0|L1] or [L1|L0]

and obtained the same elements inMX as

−
1

2
([L0|L1]− [L1|L0]) = −[L0|L1] +

1

2
LB0 x LB1 = [L1|L0]−

1

2
LB0 x LB1 .

The above choice reflects in some sense that there is no preferred choice for either

∂(L01) = ∂(L101) = L0L1 or ∂(L01) = ∂(L101) = −L1L0.

Recall that we have defined a cycle L01(1) in N 1
X by

L01(1) = j∗(p∗ ◦ i∗1(L01))

Building the cycle L011, we have introduced the cycle L101 instead of using the
difference L01 − L01(1) in order to keep working with equidimensional cycles. The
“correspondence”

L101 ↔ L01 − L01(1)

becomes an equality in H0(B(N •
X)).

More precisely, using either the commutation of the above morphisms with
the differential or the expression of L01(1) as parametrized cycle, one sees that
∂(L01(1)) = 0 and one defines

LB01(1) = [L01(1)].

A direct computation shows that

L01(1) = [t; 1−
1

x1
, x1, 1− x1].

Now, from the expressions of L01, L01(1) and L101 as parametrized cycles, one checks
that in N 1

X

L01 − L01(1) = L
1
01 + ∂(C01)

where C01 is the element of N 0
X defined by

C01 = −[t; y,
y − x1−t

x1

y − x1−1
x1

, x1, 1− x1] ⊂ X ×�4.
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The bar element CB
01 = [C01] is of bar degree −1 and gives in B(N •

X)

LB01 − L
B
01(1) = L

1,B
01 − dB(C

B
01)

and thus, the equality LB01 − L
B
01(1) = L

1,B
01 in the H0.

For these weight 2 examples , computing the deconcatenation coproduct is
trivial and gives the expected relation

d∆(L
B
01) = d∆(L

1,B
01 ) = −LB0 ∧ L

B
1 .

Finally the motive corresponding to L01 is the comodule generated by LB01, that is
the subvector space of MX spanned by LB01, L

B
0 and LB1 .

Example 5.6 (Weight 3). The differentials of L001, L1001, L011, L
1
011 allow us to

easily write down the corresponding tensor degree 1 and 2. The expressions below
try to keep a symmetric presentation for the part in tensor degree 3.

In the equations below, cycles LW are simply denoted by W and cycles L1W
simply by W . We will also use this abuse of notation later on in weight 4. One
defines

LB001 = [001]−
1

2
([0|01]− [01|0]) +

1

4
([0|0|1]− [0|1|0] + [1|0|0]) ,

L1,B001 = [001]−
1

2
([0|01]− [01|0]) +

1

4
([0|0|1]− [0|1|0] + [1|0|0])

and

LB011 = [011]−
1

2

(
[01|1]− [1|01]

)
+

1

4
([0|1|1]− [1|0|1] + [1|1|0]) ,

L1,B011 = [011]−
1

2

(
[01|1]− [1|01]

)
+

1

4
([0|1|1]− [1|0|1] + [1|1|0]) .

As the cycles L001 and L1001 (resp. L011 and L1011) differ only by their first �1

factors, the arguments used to compare LB01 and L1,B01 apply here and give:

LB001 − L
B
001(1) = L

1,B
001 and LB001 − L

B
001(1) = L

1,B
001 ∈MX .

The “correction” cycles giving the explicit relations between the cycles are

C001 = −[t; s,
s− x2−t

x2

s− x2−1
x2

, x2, 1−
x2

x1
, x1, 1− x1]

and

C011 = [t; s,
s− x2−t

x2

s− x2−1
x2

, 1− x2,
x1 − x2

x1 − 1
, x1, 1− x1].

Now, computing the reduced coproduct ∆′ = ∆− 1⊗ id − id ⊗1 of LB001 gives:

∆′(LB001) = −
1

2
([0]⊗ [01]− [01]⊗ [0])

+
1

4
([0]⊗ [0|1]− [0]⊗ [1|0] + [1]⊗ [0|0]

+[0|0]⊗ [1]− [0|1]⊗ [0] + [1|0]⊗ [0]) .

As [0|0] = 1/2LB0 x LB0 , one has modulo products

∆′(LB001) = −
1

2

(
[0]⊗

(
[01]−

1

2
([0|1]− [1|0])

)
−

(
[01]−

1

2
([0|1]− [1|0])

)
⊗ [0]

)
.
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Similar computations apply to L1,B001 , LB011 and L1,B011 and give in MX ∧MX :

d∆(L
B
001) = d∆(L

1,B
001 ) = −L

B
0 ∧ L

B
01 and d∆(L

B
011) = d∆(L

1,B
011 ) = −L

1,B
01 ∧ L

B
1 .

One should remark that the equality L1,B01 = LB01 − L
B
01(1) in the H0 implies

(25) d∆(L
B
011) = −

(
LB01 − L

B
01(1)

)
∧ LB1

which is (up to a global minus sign) the equation satisfied by T011∗ as shown at
Example 2.13.

Finally, the corresponding comodules giving motives associated to the cycle
L001 and L011 are the subvector spaces ofMX generated respectively by

〈
LB001, L

B
01, L

B
0 , L

B
1

〉

and

〈
LB011, L

B
01, L

B
01(1), L

B
0 , L

B
1

〉
.

The above arguments apply similarly in weight 4. Hence, we will describe below
the case of L0011 as it gives a “preview” of the combinatorial difficulties related to
the bar construction context.

Example 5.7 (Weight 4: LB0011). We give below an element LB0011 in the bar
construction with zero differential and with tensor degree 1 part equal to L0011:

LB0011 =[0011]−
1

2

(
[0|011]− [0|011] + [001|1]− [1|001]− [01|01] + [01|01]

)

+
1

4

(
−[0|1|01] + [0|1|01]− [01|0|1] + [01|0|1]− [01|1|0] + [01|1|0]

−[1|0|01] + [1|0|01] + [1|01|0] + [1|01|0] + [0|01|1] + [0|01|1]
)

−
1

2
([0|0|1|1]− [1|1|0|0]) .

Identifying the reduced coproduct of LB0011 with

(26) −
1

2

(
LB0 ⊗ L

B
011 − L

B
011 ⊗ L

B
0 + L1,B001 ⊗ L

B
1 − L

B
1 ⊗ L

1,B
001

−LB01 ⊗ L
1,B
01 + L1,B01 ⊗ L

B
01

)

is more difficult than in the previous cases. First of all, one remarks that in the

above expression the terms in
(
N 1

X

)⊗2
⊗
(
N 1

X

)⊗2
are coming only from −LB01⊗L

1,B
01

and L1,B01 ⊗ L
B
01 and cancel each other. Thus the expression (26) has no term in(

N 1
X

)⊗2
⊗

(
N 1

X

)⊗2
. On the other hand, the terms in

(
N 1

X

)⊗2
⊗

(
N 1

X

)⊗2
coming

from ∆′(LB0011) are given by

−
1

2
([0|0]⊗ [1|1]− [1|1]⊗ [0|0]) =

−
1

8

(
LB0 x LB0 ⊗ L

B
1 x LB1 − L

B
1 x LB1 ⊗ L

B
0 x LB0

)

and thus are zero inMX ∧MX .
The terms in N 1

X ⊗N
1
X in the above expression (26) obviously agree with the

corresponding terms of ∆′(LB0011) as the term of tensor degree 2 of LB0011 is written
down that way.
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Computations below are done in B(N •
X) ⊗ B(N •

X). They will induce the ex-

pected relation inMX ∧MX after going to the H0 and taking the quotient modulo
shuffle product. Let πn : B(N •

X) −→ (N •
X)

⊗n
be the projection to the n-th tensor

factor. From the above discussion it is enough to compute ∆′(π3(LB0011)) and part
of ∆′(π4(LB0011)).

First the definition of the coproduct gives

4∆′(π3(L
B
0011)) =

(
[0]⊗ [01|1] + [0|01]⊗ [1]− [01]⊗ [0|1]− [0|1]⊗ [01]

)

+
(
−[0]⊗ [1|01]− [01|0]⊗ [1] + [01]⊗ [1|0] + [1|0]⊗ [01]

)

+ (−1)
(
[01|1]⊗ [0] + [1]⊗ [0|01]− [0|1]⊗ [01]− [01]⊗ [0|1]

)

+ (−1)
(
−[1|01]⊗ [0]− [1]⊗ [01|0] + [1|0]⊗ [01] + [01]⊗ [1|0]

)

+ ([0]⊗ ([01|1] + [1|01]) + ([01|1] + [1|01])⊗ [0])

+
(
[1]⊗

(
[01|0] + [0|01]

)
+
(
[01|0] + [0|01]

)
⊗ [0]

)
.

The four first lines of the above equality correspond to 4 times the terms of
Equation (26) in N •

X ⊗N
•
X

⊗2 ⊕N •
X

⊗2 ⊗N •
X . The two last lines can be written as

[0]⊗ ([01]x [1]) + ([01]x [1])⊗ [0] + [0]⊗
(
[01]x [0]

)
+
(
[01]x [0]

)
⊗ [1]

which covers many terms of a shuffle between terms in the H0 of the bar construc-
tion. As an example,

[0]⊗ ([01]x [1])

covers many terms of

[LB0 ]⊗
(
LB01 x L

B
1

)
= [0]⊗

(
[01]x [1]−

1

2
([0|1]− [1|0])x [1]

)
.

Computing the reduced coproduct of π4(L
B
0011) gives

∆′(π4(L
B
0011)) =

(
−
1

2

)(
1

4

)
(4[0]⊗ [0|1|1] + 4[0|0]⊗ [1|1] + 4[0|0|1]⊗ [1]

−4[1]⊗ [1|0|0] + 4[1|1]⊗ [0|0]− 4[1|1|0]⊗ [0]) .

where the factors 1/4 and 4 make it easier to relate ∆′(π4(LB0011)) with shuffle
products and the corresponding terms in Equation (26).

We have already remarked that the terms [0|0] ⊗ [1|1] and [1|1] ⊗ [0|0] in the
equation above can be expressed as shuffles. The four other terms are similar.
Hence we will only discuss the case of [0]⊗ [0|1|1]. One can write

4[0|1|1] = 2[0|1|1] + 2[1|1|0] + 2[0|1|1]− 2[1|1|0]

= [0|1|1] + [1|1|0]− [1|0|1] + [0|1|1] + [1|0|1] + [1|1|0] + 2[0|1|1]− 2[1|1|0].

Now, one remarks that

[0|1|1] + [1|0|1] + [1|1|0] =
1

2
[0]x [1]x [1] =

1

2
LB0 x LB1 x LB1

and that the tensor degree 3 part of − 1
2L

B
01 x L

B
1 is equal to

−1

2

−1

2
([0|1]x [1]− [1|0]x [1]) =

1

4
(2[0|1|1]− 2[1|1|0]) .
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Then one can conclude that

∆′(LB0011) =−
1

2

(
LB0 ⊗ L

B
011 − L

B
011 ⊗ L

B
0 + L1,B001 ⊗ L

B
1 − L

B
1 ⊗ L

1,B
001

−LB01 ⊗ L
1,B
01 + L1,B01 ⊗ L

B
01

)

+
1

4

(
LB01 x L

B
1 ⊗ L

B
0 + L1,B01 x LB0 ⊗ L

B
1 + LB0 ⊗ L

B
01 x L

B
1

+LB1 ⊗ L
1,B
01 x LB0

)

−1

16

(
−LB0 x LB1 x LB1 ⊗ L

B
0 − L

B
0 x LB0 x LB1 ⊗ L

B
1

+LB0 ⊗ L
B
0 x LB1 x LB1 + LB1 ⊗ L

B
0 x LB0 x LB1

)
.

InMX ∧MX , one simply gets

(27) d∆(L
B
0011) = −

(
LB0 ∧ L

B
011 + L

1,B
001 ∧ L

B
1 − L

B
01 ∧ L

1,B
01

)

and using the relations between LBW and L1,BW , one recovers (up to a global minus
sign) the differential equation associated to T0011∗

(28) d∆(L
B
0011) = −

(
LB0 ∧ L

B
011 + (LB001 − L

B
001(1)) ∧ L

B
1 + LB01 ∧ L

B
01(1)

)
.

The associated motive is as above the sub-vector space of MX generated by

LB0 , L
1,B
001 , L

B
0011, L

B
01, L

B
011, L

1,B
01 , LB1 .

5.3. Goncharov’s motivic coproduct. In this subsection, we would like to
illustrate how the differential equation satisfied by the elements LBW , written using
its “tree differential form” (that is using the elements LBU (1) instead of the elements

L1,BU ), gives another expression for Goncharov’s motivic coproduct.
Work of Levine [Lev11] insures that the above differential coincides with Gon-

charov’s motivic coproduct for motivic iterated integrals (modulo products). We
will not review this theory here but only recall some of the needed properties satis-
fied by Goncharov’s motivic iterated integrals [Gon05]. A short exposition of the
combinatorics involved is also recalled in [GGL09][Section 8].

For our purpose, it is enough to consider motivic iterated integrals as degree
n generating elements I(a0; a1, . . . , an; an+1) of a Hopf algebra with ai in A1(Q).
They are subject to the following relations.

Path composition: for x in A1(Q), one has

I(a0; a1, . . . , an; an+1) =

n∑

k=0

I(a0; a1, . . . , ak;x)I(x; ak+1, . . . , an; an+1).

Inversion: which relates I(a0; a1, . . . , an; an+1) and I(an+1; an, . . . , a1; a0)

I(an+1; an, . . . , a1; a0) = (−1)nI(a0; a1, . . . , an; an+1).

Unit and neutral identities:

for a 6= b I(a; b) = 1 and I(a0; a1, . . . , an; a0) = 0.

Rescaling: If an+1 and at least one of the ai is not zero then

I(0; a1, . . . , an, an+1) = I(0; a1/an+1, . . . , an/an+1, 1).
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Regularization:

I(0; 1; 1) = I(0; 0; 1) = 0.

The product is given by the shuffle relations

I(a; a1, . . . , an; b)I(a; an+1, . . . , an+m; b) =
∑

σ∈sh(n,m)

I(a; aσ(1), . . . , aσ(n+m); b)

where sh(n,m) denotes the set of permutations preserving the order of the or-
dered subset {1, . . . , n} and {n + 1, . . . , n + m}. Such a motivic iterated integral
corresponds formally to the iterated integral

∫

∆a0,an+1

dt

t− a1
∧ · · · ∧

dt

t− an

with ∆a0,an+1
the image of the standard simplex induced by a path from a0 to

an+1. The above relations reflect the relations satisfied by the integrals.
The coproduct is given by the formula

∆M (I(a0; a1 . . . , an; an+1)) =

∑

(ak1
,...,akr )

{k1,...,kr}⊂{1,...,n}

I(a0; ak1
, . . . , akr

; an+1)⊗
r∏

l=0

I(akl
; akl+1, . . . , akl+1−1; akl+1

)

with the convention that r runs from 0 to n and that k0 = 0 and kr+1 = n+ 1.

Now, considering the reduced coproduct ∆
′M = ∆M − (1⊗ id + id ⊗1) on the

space of indecomposable elements (that is modulo products), the above formula
reduces to

∆
′M (I(a0; a1 . . . , an; an+1)) =

∑

k<l
k 6=l−1

I(a0; a1, . . . , ak, al, al+1, . . . an; an+1)⊗ I(ak; ak+1, . . . , al−1, al).

This formula can be pictured placing the ai on a semicircle in the order dictated
by their indices. Then a term in the above sums corresponds to a non-trivial chord
between to vertices:

•

•

••

•

• a5

a4

a3a2

a1

a0

Considering the relation between multiple polylogarithms and iterated inte-
grals, we want to related our expression of the differential of LB011 at t to the re-
duced coproduct for the motivic iterated integral I(0; 0, x, x; 1) for x = t−1. From
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the semicircle representation, one sees that there are five terms to consider:

•

•

•

•

• 1

x

x

0

0

c1

c2

c
3

However, the chord c1 gives a zero term modulo products as I(0;x, x; 1) =
1
2I(0;x; 1)I(0;x; 1) and chord c2 and c3 give terms equal to 0 using the regularization
relations. There are thus only two terms to consider

I(0; 0, x; 1)⊗ I(x;x; 1) and I(0;x; 1)⊗ I(0; 0, x;x).

Using path composition, inversion and regularization relations, in the set of
indecomposable elements, one has

I(x;x; 1) = I(0;x; 1) + I(x;x; 0) = I(0;x; 1)− I(0;x;x) = I(0;x; 1).

Thus the first term equals

I(0; 0, x; 1)⊗ I(x;x; 1) = I(0; 0, x; 1)⊗ I(0;x; 1).

From the rescaling relation, the second term equals

I(0;x; 1)⊗ I(0; 0, 1; 1)

and one can write modulo products

(29) ∆
′M (I(0; 0, x, x; 1)) = I(0; 0, x; 1)⊗ I(0;x; 1) + I(0;x; 1)⊗ I(0; 0, 1; 1).

Keeping in mind that, for x = t−1, I(0;x; 1) corresponds to the fiber at t of LB1
(t 6= 1) and that I(0; 0, x; 1) corresponds to the fiber at t of LB01 (any t), the above
formula (29) corresponds exactly to Equation (25):

d∆(L
B
011) = −

(
LB01 − L

B
01(1)

)
∧ LB1 = −

(
LB01 ∧ L

B
1 + LB1 ∧ L

B
01(1)

)
.

The fact that, as in the above example, Goncharov’s motivic iterated integrals
corresponding to multiple polylogarithms in one variable, satisfy the tree differential
equations (ED-T) is easily checked for Lyndon words with one 1 (that is for the
classical polylogarithms) but can also be checked for some Lyndon words with two
1’s or more. It seems to be a general behavior. However, the above example and
the example of I(0; 0, 0, x, x; 1) corresponding to LB0011 below show that it involves
using all the relations in order to pass from Goncharov’s formula to the shape of
Equation (ED-T).

The case of LB0011 involves more computations but works essentially as the case
of LB011. The reduced coproduct for I(0; 0, 0, x, x; 1) modulo products gives nine
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terms corresponding to the nine chords below:

•

•

••

•

• 1

x

x0

0

0
c1

c3

c2

c
4

The five dashed chords give terms equal to 0 for one of the following reasons:
I(a; . . . ; a) = 0, regularization relations or shuffle relations. Hence we are left with
four terms. The chord c1 gives, using the rescaling relation,

I(0;x; 1)⊗ I(0; 0, 0, 1; 1)

corresponding to LB1 ∧ L
B
001(1). The chord c2 gives a term in

I(0; 0, x, x; 1)⊗ I(0; 0;x)

corresponding to LB0 ∧L
B
011. The chord c3 gives, using the rescaling relation, a term

in

I(0; 0, x; 1)⊗ I(0; 0, x;x) = I(0; 0, x; 1)⊗ I(0; 0, 1; 1)

corresponding to LB01 ∧L
B
01(1). Finally the chord c4 gives, using the path composi-

tion and regularization relations

I(0; 0, 0, x; 1)⊗ I(x;x; 1) = I(0; 0, 0, x; 1)⊗ I(0;x; 1) + I(0; 0, 0, x; 1)⊗ I(x;x; 0)

= I(0; 0, 0, x; 1)⊗ I(0;x; 1).

Finally, ∆
′M (I(0; 0, 0, x, x; 1)) can be written as

(30)

∆
′M (I(0; 0, 0, x, x; 1)) = I(0; 0, x, x; 1)⊗ I(0; 0;x) + I(0; 0, 0, x; 1)⊗ I(0;x; 1)+

I(0;x; 1)⊗ I(0; 0, 0, 1; 1) + I(0; 0, x; 1)⊗ I(0; 0, 1; 1).

This expression corresponds to Equation (28):

d∆(L
B
0011) = −

(
LB0 ∧ L

B
011 + (LB001 − L

B
001(1)) ∧ L

B
1 + LB01 ∧ L

B
01(1)

)
.

6. Integrals and multiple zeta values

We present here a sketch of how to associate an integral to cycles L01, L101 and
L011. The author will directly follow the algorithm described in [GGL09][Section
9] and put in detailed practice in [GGL07]. There will be no general review of the
direct Hodge realization from Bloch-Kriz motives [BK94][Section 8 and 9]. Gangl,
Goncharov and Levin’s construction seems to consist in setting particular choices
of representatives in the intermediate Jacobians for their algebraic cycles.

However, the goal of this paper is not to formalize such an idea. That is why
computations below are only outlined. In particular, the lack of precise knowledge
of the “algebraico-topological cycle algebra” described in [GGL09] makes it difficult
to control how “negligible” cycles are killed looking at the H0 of its bar construction.
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6.1. An integral associated to L01 and L101. We recall the parametrized
cycle expression for L01:

L01 = [t; 1−
t

x1
, x1, 1− x1] ⊂ X ×�3.

One wants to bound L01 by an algebraic-topological cycle in a larger bar con-
struction (not described here) introducing topological variables si in real simplices

∆n
s = {0 6 s1 6 · · · 6 sn 6 1}.

Let ds : ∆n
s → ∆n−1

s denotes the simplicial differential

ds =

n∑

k=0

(−1)ki∗k

where ik : ∆n−1
s → ∆n

s is given by the face sk = sk+1 in ∆n
s with the usual

conventions for k = 0, n.
Defining

Cs,1
01 = −[t; 1−

s2t

x1
, x1, 1− x1]

for s2 going from 0 to 1, one sees that ds(Cs,1
01 ) = L01 as s2 = 0 implies that the

first cubical coordinate is 1. The algebraic boundary ∂ of Cs,1
01 is given by the

intersection with the faces of �3:

∂(Cs,1
01 ) = −[t; s2t, 1− s2t] ⊂ X ×�2.

This cycle is part of the boundary of a larger “simplicial” algebraic cycle

Cs,2
01 = −[t; s2t, 1− s1t].

Computing the simplicial differential of Cs,2
01 gives

ds(Cs,2
01 ) = [t; s2t, 1− s2t]− [t; t, 1− s1t] ⊂ X ×�2

with 0 6 s2 6 1 in the first term and 0 6 s1 6 1 in the second term.
Note that the cycle [t; t, 1− s1t] is negligible as it is a product

[t; t, 1− s1t] = L0 [t; 1− s1t]

and thus can be canceled in the bar construction setting as the multiplicative bound-
ary of

−[L0|[t, 1− s1t]].

Thus, up to negligible terms,

(ds + ∂)(Cs,1
01 + Cs,2

01 ) = L01.

Now, we fix the situation at the fiber t0 and following Gangl, Goncharov and
Levin, we associate to the algebraic cycle L01|t=t0 the integral I01(t0) of the stan-
dard volume form

1

(2iπ)2
dz1
z1
∧

dz2
z2

over the simplex given by Cs,2
01 . That is :

I01(t0) = −
1

(2iπ)2

∫

06s16s261

ds2
s2
∧
−t0 ds1
1− t0s1

=
−1

(2iπ)2

∫

06s16s261

ds1

t−1
0 − s1

∧
ds2
s2

=
−1

(2iπ)2
LiC2 (t0).
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In particular, this expression is valid for t0 = 1, as is the cycle L01|t=1, and gives
−1/(2π2)ζ(2).

Before presenting the weight 3 example of L011, we describe shortly below the

situation for L101. In the bar construction the element L1,B01 is equal to the difference
LB01 − L

B
01(1). Associating an integral to L101 works in the same way as the cycle

L01 but it also reflects the correspondence with LB01 − L
B
01(1).

The expression of L101 in terms of parametrized cycle is given by

L101 = [t;
x1 − t

x1 − 1
, x1, 1− x1]

and can be bounded using the “simplicial” algebraic cycle

Cs,1

01
= −[t;

x1 − s2t

x1 − s2
, x1, 1− x1].

Now, the algebraic boundary of Cs,1

01
gives two terms

∂(Cs,1

01
) = −[t; s2t, 1− s2t] + [t; s2, 1− s2].

Then one defines Cs,2

01
for simplicial variables 0 6 s1 6 s2 6 1 as

Cs,2

01
= −[t; s2t, 1− s1t] + [t; s2, 1− s1]

whose simplicial boundary cancels ∂(Cs,1

01
) up to negligible cycles. Again, fixing a

fiber t0 the integral associated to L101|t=t0 is the integral of the standard volume

form over the Cs,2

01
:

I01(t0) = −
1

(2iπ)2

(∫

06s16s261

ds2
s2
∧
−t0 ds1
1− t0s1

+

∫

06s16s261

ds2
s2
∧
−ds1
1− s1

)
.

This expression is exactly the difference

I01(t0) =
−1

(2iπ)2
(
LiC2 (t0)− LiC2 (1)

)
.

6.2. An integral associated to L011. Let’s recall the expression of L011 as
parametrized cycle:

L011 = −[t; 1−
t

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1].

As previously, one wants to bound L011 by an algebraic-topological cycle. Hence
we define

Cs,1
011 = [t; 1−

s3t

x2
, 1− x2,

x1 − x2

x1 − 1
, x1, 1− x1]

for s3 going from 0 to 1. Then ds(Cs,1
011) = L011 as s3 = 0 implies that the first

cubical coordinate is 1.
Now the algebraic boundary ∂ of Cs,1

011 is given by the intersection with the
codimension 1 faces of �5:

∂(Cs,1
011) = [t; 1− s3t,

x1 − s3t

x1 − 1
, x1, 1− x1].

We can again bound this cycle by introducing a new simplicial variable 0 6 s2 6 s3
and the cycle

Cs,2
011 = [t; 1− s3t,

x1 − s2t

x1 − s2/s3
, x1, 1− x1].
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The intersection with the face of the simplex {0 6 s2 6 s3 6 1} given by s2 = 0
leads to an empty cycle (as one cubical coordinate equals 1) while the intersection

with face s3 = 1 leads to a “negligible” cycle. Thus, the simplicial boundary of Cs,2
011

satisfies (up to a negligible term)

ds(Cs,2
011) = −∂(C

s,1
011) = −[t; 1− s3t,

x1 − s3t

x1 − 1
, x1, 1− x1].

Its algebraic boundary is given by

∂(Cs,2
011) = −[t; 1− s3t, s2t, 1− s2t] + [t; 1− s3t,

s2
s3

, 1−
s2
s3

].

Finally, we introduce a last simplicial variable 0 6 s1 6 s2 and a purely topological
cycle

C̃011

s,3
= −[t; 1− s3t, s2t, 1− s1t] + [t; 1− s3t,

s2
s3

, 1−
s1
s3

]

whose simplicial differential is (up to negligible terms) given in one hand by the
face s1 = s2:

[t; 1− s3t, s2t, 1− s2t]− [t; 1− s3t,
s2
s3

, 1−
s2
s3

]

which is equal to −∂(Cs,2
011); and in the other hand by the face s2 = s3:

−[t; 1− s3t, s3t, 1− s1t].

In order to cancel this extra term, we defined Cs,3
011 by

Cs,3
011 = C̃011

s,3
+ [t; 1− s2t, s3t, 1− s1t]

whose algebraic boundary is 0 (up to negligible terms).
Finally one has

(ds + ∂)(Cs,1
011 + Cs,2

011 + Cs,3
011) = L011

up to negligible terms.
Now, we fix the situation at the fiber t0 and following Gangl, Goncharov and

Levin, we associate to the algebraic cycle L011|t=t0 the integral I011(t0) of the
standard volume form

1

(2iπ)3
dz1
z1
∧

dz2
z2
∧

dz3
z3

over the simplex given by Cs,3
011. That is :

I011(t0) = −
1

(2iπ)3

∫

06s16s26s361

t0 ds3
1− t0s3

∧
ds2
s2
∧

t0 ds1
1− t0s1

+
1

(2iπ)3

∫

06s361

t0 ds3
1− t0s3

∫

06s16s261

ds2
s2
∧

ds1
1− s1

+
1

(2iπ)3

∫

06s16s26s361

t0ds2
1− t0s2

∧
ds3
s3
∧

t0ds1
1− t0s1

.

Taking care of the change of sign due to the numbering, the first term in the
above sum is (for t0 6= 0 and up to the factor (2iπ)−3) equal to

LiC1,2(t0) =

∫

06s16s26s361

ds1

t−1
0 − s1

∧
ds2
s2
∧

ds3

t−1
0 − s3

while (up to the same multiplicative factor) the second term is equal to

−LiC1 (t0)Li
C
2 (1)
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and the third term is equal to
LiC2,1(t0).

Globally the integral is well defined for t0 = 0 and, which is the interesting
part, also for t0 = 1 as the divergencies as t0 goes to 1 cancel each other in the
above sum. A simple computation and the shuffle relation for LiC1 (t0)Li

C
2 (t0) show

that the integral associated to the fiber of L011 at t0 = 1 is given by

(2iπ)3I011(1) = −Li
C
2,1(1) = −ζ(2, 1).
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