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276 D.J. Steigmann, R.W. Ogden

of symmetric tensors. The tensor product of two vectors is indicated by interposing the sym-
bol ⊗, and the Euclidean inner product of tensors A and B is denoted by A · B = tr(ABT);
the associated norm is |A| = √

A · A. In terms of orthonormal components, A · B = AijBij ,
wherein the usual summation rule for repeated indices is implied. For a fourth-order ten-
sor A, the notation A[B] stands for the second-order tensor with orthonormal components
AijklBkl . Finally, D is used to denote the gradient of a vector field with respect to its argu-
ment.

2 Basic Theory

The variables that characterize an elastic–plastic solid in the static purely mechanical theory
are the deformation χ(x) and the plastic deformation tensor K(x), where x is the position
of a material point in a fixed reference placement κr of the body. The values y = χ(x) are
the positions of these points after deformation and generate the deformed placement κd of
the body as x ranges over κr. As is usual, we suppose positions in κr and κd to be in one-to-
one correspondence and thus the deformation gradient, F = Dχ to be invertible. The elastic
deformation is then defined through the tensor

H = FK. (1)

Note that the measure of plastic deformation used most frequently in the literature corre-
sponds to our K−1. We take κr to be a kinematically possible configuration of the body,
so that JF ≡ det F > 0. The elastic deformation gradient is assumed to be the value of the
deformation gradient in the absence of plastic deformation, this condition being identified
by K = I, the identity for second-order tensors. We therefore impose JH > 0 and deduce
that JK > 0. We shall also make use of an intermediate configuration, denoted κi, in which
H = I.

The elastic strain energy per unit volume of κd is denoted ψ(H), and we assume that the
material of the body is uniform in the sense that this strain-energy function does not depend
explicitly on x. The strain-energy function referred to κi is

W(H) = JHψ(H). (2)

We also define the reduced strain energy Ŵ by

Ŵ (C) = W(H), (3)

where

C = HTH (4)

is the right elastic Cauchy–Green deformation tensor. That the strain energy depends on H
via C follows from the symmetry of the Cauchy stress T, related to P by P = TF∗ (see, for
example, [6]). This, of course, is equivalent to (5)2.

The local equations of equilibrium in the case of negligible body forces are

DivP = 0, PFT ∈ Sym in κr, (5)

where Div is the referential divergence (the divergence with respect to x),

P = F� (6)
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is the first Piola–Kirchhoff stress, and � is the second Piola–Kirchhoff stress relative to κr.
This is related to the corresponding stress S = Ŝ(C) relative to κi by

� = J−1
K KSKT, (7)

where

Ŝ(C) = 2
∂Ŵ

∂C
. (8)

The strain-energy function is subject to the restriction

Ŵ (C) = Ŵ
(
QTCQ

)
(9)

associated with the transformation H → HQ, where the rotation tensor Q is an arbitrary
element of the symmetry group for the material, i.e. the symmetry group relative to the
elastically undistorted configuration κi (see [4] for further discussion). In particular, material
uniformity implies that this restriction is effective, with the same symmetry group, at every
material point. Using (8), it is straightforward to show that S → QTSQ under symmetry
transformations and hence that T is invariant.

The system (5) is augmented by suitable boundary data; in the standard case these are

χ(x) and t(x) assigned on ∂κr(χ) and ∂κr(t), respectively, (10)

where ∂κr(χ) and ∂κr(t) are complementary parts of the boundary ∂κr of κr, and

t = Pn (11)

is the traction, n being the exterior unit normal to ∂κr.
The elastic (lattice) strain

E = 1

2
(C − I), (12)

and the true dislocation density

α = JKK−1Curl
(
K−1

)
(13)

are the relevant state variables [5, 7]. Here, Curl is the referential curl operation defined in
terms of the usual vector operation by

(CurlA)c = Curl
(
ATc

)
(14)

for any fixed vector c. We note in passing that an alternative definition of the operation of
Curl on a second-order tensor is sometimes adopted in the literature, in which AT replaced
by A on the right-hand side of the above.

The dislocation measure α is true in the sense that it is invariant under smooth variations
of the spatial and reference configurations κd and κr, respectively, and is thus intrinsic to the
state of the material [7]. For this reason the (referential) gradient of the plastic deformation
necessarily manifests itself in constitutive equations via the true dislocation density.

In view of our interest in metallic crystals, it is appropriate to restrict the elastic strain to
be small. Accordingly, the strain energy and stress are approximated by

Ŵ = W̃ (E) = 1

2
E · C[E], S = S̃(E) = C[E], (15)
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respectively, where C is the fixed fourth-order tensor of elastic moduli pertaining to the
undistorted crystal, possessing the usual major and minor symmetries. We assume the strain-
energy to be a positive-definite function and thus C to be positive definite on Sym. The
assumption of small elastic strain is consistent with the presumed cessation of plastic flow,
yielding a static distribution K(x). This implies that the elastic strain (or the stress) belongs
to the interior of the elastic range of the material; the restriction is then justified in the case
of metallic crystals.

The foregoing model applies to single crystals. In crystal elasticity theory, fixed linearly
independent lattice vectors li , i ∈ {1,2,3}, associated with an undistorted stress-free state
of the crystal, are mapped to their images di in κd in accordance with the Cauchy–Born
hypothesis. That is, they are regarded as material vectors. Here, as in [1], we invoke this
hypothesis for the elastic deformation. Thus, we assume that di = Hli , where li are the
lattice vectors in κi. The di are observable in principle. In practice it is their duals di that are
measured in X-ray diffraction experiments [8].

It follows from (1) that di = Fri , where ri = Kli are the lattice vectors in κr. The plastic
deformation is then given by K = ri ⊗ li , where the li are the duals of the li . To see this
we write K = KI with I = li ⊗ li . It follows similarly that H = di ⊗ li . We assume the li
associated with a material point to be fixed material vectors. These are the lattice vectors of
the ideal undistorted stress-free lattice. In practice they are specified as data. Further, they
are uniform in the case of a materially uniform body. In effect, the set of lattice vectors is
treated as an assigned property of both the material and the body.

It is crucial that the undistorted, stress-free lattice {li}, associated with the local configu-
ration κi, be carefully distinguished from a global reference configuration κr. The latter need
only be a fixed placement that could, in principle, be occupied by the body, and need not
be stress free, whereas the former is an intrinsic property, modulo orientation, of the ideal
crystal. In materially uniform bodies such as single crystals, the same undistorted lattice is
attached to every material point of the crystal. The map of {li} via K then yields a distorted,
possibly non-uniform lattice {ri}, which is simply the image in κr of the distorted—and
hence stressed—observable lattice {di} in κd. The stress � in κr is then non-zero in general,
being simply the pull-back by F−1 to the reference configuration of the stress in κd induced
by the elastic deformation that maps {li} to {di}. In the same way the stress S is the pull-back
by H−1 of this stress to κi.

The foregoing discussion about lattices is based on Noll’s concept of materially uniform
bodies. Our interpretation of this concept follows that described in [9] where Noll’s theory
is used as the conceptual foundation for the analysis of a variety of inelastic phenomena,
including plasticity.

3 The Residual Stress Problem

To characterize the state of the material in the (distorted) reference placement κr, we evaluate
(6) at F = I, obtaining H = K and

P = �(x), (16)

with

� = J−1
K KS̃KT, (17)

where

S̃(x) = 1

2
C
[
KTK − I

]
(18)
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is the lattice stress S. Here the dependence on x is due entirely to the field K(x), which
happens to coincide with the elastic distortion field in the present circumstances.

We polar decompose K as

K = RU, (19)

where R is a rotation and U is positive-definite symmetric. To exploit the restriction to small
elastic strain we introduce

ε = U − I. (20)

This yields

E = ε + 1

2
ε2, (21)

and the restriction is then made explicit by imposing |ε| � 1, yielding E = ε to leading
order.

Grounds for restricting attention to small elastic strains have already been given. These,
however, do not yield any restriction on the rotation field, which may therefore be finite.

Henceforth we use the symbol 	 to identify expressions that are valid to linear order in
the small elastic strain. Thus, for example,

JK 	 1 + trε, S 	 C[ε], � 	 RSRT. (22)

We note that the physically accessible lattice field is di = ri , where

ri = Rli + O(|ε|). (23)

X-ray diffraction experiments are conducted on metallic crystals in which the elastic strain is
invariably small, yielding data on lattice orientation (see [10]). Such measurements supply
R directly. Further, it follows from (13) and (19) that the elastic strain yields a significant
contribution to the dislocation density only in the case of a curl-free rotation field RT. This
follows from the fact that α is otherwise determined to leading order by the field R.

In the residual stress problem κr is required to be an equilibrium placement under no
body force with zero traction assigned on the entire boundary. Thus,

Div� = 0 in κr, �n = 0 on ∂κr. (24)

This represents an under-determined system for the field K(x) and hence for the lattice-
vector fields ri (x). Thus, equilibrium considerations alone do not suffice to determine the
residual stress. We return to this issue in Sect. 5, in the context of the two-dimensional
theory.

4 Example: Cubic Crystals

For cubic crystals the strain-energy function W is invariant under the group of rotations that
map a cube to itself. To specify W , with reference to (15)1, we require the invariant functions
that are homogeneous of degree two in the elastic strain, these being common to each of the
five subclasses of cubic symmetry. They are

(trε)2, ε11ε22 + ε11ε33 + ε22ε33, ε2
12 + ε2

13 + ε2
23, (25)
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where εij = ε ·Sym(ei ⊗ej ) and {ei} is an orthonormal basis aligned with the cube axes (i.e.,
with the elements of the set {li} of lattice vectors, or their duals). We emphasize the fact that
the orthonormal basis is regarded as remaining fixed at the material point in question, and,
for materially uniform bodies, carried over without change to all material points.

Some simplification is achieved by using the deviatoric strain ε̄ = devε. This yields

ε11ε22 + ε11ε33 + ε22ε33 = 1

3
(trε)2 − 1

2

(
ε̄2

11 + ε̄2
22 + ε̄2

33

)
, (26)

and so the strain-energy function is expressible in the form [11]

W̃ (ε) = 1

2
C1(trε)

2 + 1

2
C2

(
ε̄2

11 + ε̄2
22 + ε̄2

33

) + C3

(
ε2

12 + ε2
13 + ε2

23

)
, (27)

where Ci, i = 1,2,3, are the (constant) moduli, giving the strain energy as a linear combi-
nation of three quadratic forms. (We note in passing that Eq. (89) in reference [5] is missing
the factor 1/2 in their expression corresponding to (26) above.) Because these forms are in-
dependent and each is positive definite, the basic constitutive hypothesis is met if and only
if each Ci > 0. The associated stress is given by S = C[ε], where

C[ε] = C1(trε)I + C2(ε̄11e1 ⊗ e1 + ε̄22e2 ⊗ e2 + ε̄33e3 ⊗ e3)

+ C3

[
ε12(e1 ⊗ e2 + e2 ⊗ e1) + ε13(e1 ⊗ e3 + e3 ⊗ e1) + ε23(e2 ⊗ e3 + e3 ⊗ e2)

]
.

(28)

5 Plane Strain in Cubic Crystals

We confine our further attention to the plane-strain theory for purposes of illustration. This
is most easily rendered in Cartesian coordinates, using as the basis the fixed orthonormal
triad {eα,k}, α = 1,2, aligned with the specified cubic lattice vectors {li} (equivalently,
{li}), where k (= e3) is the unit normal to the considered plane. The non-zero elements of K
in this basis are Kαβ(x1, x2) and K33 = 1, where xα are the in-plane Cartesian coordinates
associated with the lattice vectors. All equations of the model are given to linear order in the
small elastic strain.

In the general three-dimensional theory we use (14) together with the standard expression
Curlv = ejkivi,kej , in which the comma is used to denote partial differentiation with respect
to xi and eijk is the usual permutation symbol (e123 = +1), to obtain

Curl
(
K−1

) = eiklK
−1
j l,kei ⊗ ej , (29)

where K−1
j l,k = (K−1

j l ),k and K−1
j l = (K−1)jl . The specialization to the present situation is

Curl
(
K−1

) = εβαK
−1
μα,βk ⊗ eμ, (30)

where εαβ = e3αβ is the two-dimensional permutation symbol (ε12 = +1).
Equation (30) combines with (13) and K−1k = k to generate the dislocation density

α = k ⊗ a, (31)

where a = aμeμ is the 2-vector defined by

aμ = JKεβαK
−1
μα,β . (32)
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To make this explicit we use (19), (20) and (22) with ε = εαβeα ⊗ eβ and

R = cosϕ(e1 ⊗ e1 + e2 ⊗ e2) + sinϕ(e2 ⊗ e1 − e1 ⊗ e2) + k ⊗ k, (33)

where ϕ(x1, x2) is the in-plane rotation angle, together with the estimate

K−1 	 (I − ε)RT, (34)

obtaining

aμ 	 εβα

[
(1 + ελλ)Rαμ,β − εμλRαλ,β − εμλ,βRαλ

]
. (35)

The strain may be eliminated as in [1] by use of the Airy stress function χ(x1, x2) in (24);
thus,

�αβ = εαλεβμχ,λμ, (36)

which satisfies (24)1 identically in the present circumstances as the remaining stress compo-
nent, �33, is dependent only on xα . Here we have used the fact, for cubic crystals with axes
oriented as indicated, that the non-zero components of S in the lattice basis are

S11 = Aε11 +Bε22, S22 = Bε11 +Aε22, S12 = Cε12, S33 = B(ε11 +ε22), (37)

where

A = C1 + 2

3
C2, B = C1 − 1

3
C2, C = C3. (38)

Writing S for the compliance tensor, we then have ε 	 S[S], where S 	 RT�R. Explicitly,

ε11 = aS11 + bS22, ε22 = bS11 + aS22, ε12 = cS12, (39)

with

Sαβ = RμαRλβ�μλ (40)

and

a = A/
, b = −B/
, c = 1/C, where 
 = A2 −B2 = 1

3
C2

2 +2C1C2. (41)

Substitution of (36) and (40) into (39) furnishes the elastic—or lattice—strain εαβ , i.e., the
distortion of {di} relative to {li} in terms of the scalar fields ϕ and χ .

In the geometrically linear theory, for which the lattice distortion H is close to the iden-
tity (and hence so too the plastic distortion K in the residual stress problem), the dislocation
density field is imposed as data and the stress function is obtained by integrating the linear
partial differential equations expressing the incompatibility of the lattice strain [1–3]. How-
ever, we know of no rationale justifying the a priori restriction to rotations that are close to
the identity, and thus regard the geometrically linear theory as being of limited relevance.
In contrast, here the specification of dislocation density as data leads via (33) and (35) to a
coupled nonlinear system for the stress function and the lattice orientation field.

We recall that in diffraction experiments it is the lattice orientation field, relative to a
specified undistorted lattice, that is typically measured. Its specification is equivalent to that
of the rotation field R in the present circumstances. Only recently have techniques been
advanced for the empirical determination of the dislocation density [12]; these make use of

Author's personal copy



282 D.J. Steigmann, R.W. Ogden

data for the orientation and (small) elastic strain fields, from which the dislocation density
is constructed using (19) with (13), or some equivalent expression. Thus the dislocation
density is not measured directly but rather inferred from the measured lattice orientation
and strain fields. Measurement of the orientation and elastic strain fields together means
that the full distortion field K(x) is available [13], and hence that the residual stress field
is determined in principle via constitutive equations such as (22)2,3. Thus experiments that
yield the dislocation density also yield the residual stress to the same degree, at least in
principle, granted the availability of the elastic moduli. As a practical matter, this state of
affairs obviates the classical residual stress problem, in which dislocation density is specified
as data and the stress is regarded as a field to be derived, since the experimental information
needed to specify the data also furnish the solution.

The rotation field appears to be the variable that is most reliably known from the exper-
imental point of view (see [12], p. 1345). Presumably this is due to the fact that the elastic
strain is nearly negligible in practice and thus more sensitive to errors in measurement. For
this reason we regard the rotation field, rather than the dislocation density, as assigned data.
If the dislocation density were also specified then (35) would furnish an overdetermined sys-
tem for the Airy stress function. The integrability condition for this system amounts to an a
priori relationship involving the components aμ, implying that the latter may not be spec-
ified independently. Alternatively, the field χ may be specified, subject to an appropriate
boundary condition, and the dislocation density then evaluated using (35).

The traction data (24)2 impose restrictions on the derivatives of χ on the boundary curve
∂κ of the (two-dimensional) domain κ , where κr = κ ×[0,1] and ∂κr = ∂κ ×[0,1] for a slab
of unit depth, say. Using (36) with nβ = εβλx

′
λ, where xα(s) is the arclength parametrization

of ∂κ and (·)′ = d(·)/ds, we obtain

0 = �αβnβ = εαϕχ,ϕλx
′
λ = εαϕ(χ,ϕ)

′ on ∂κ, (42)

in which use has been made of εβμεβλ = δμλ (the Kronecker delta). This is equivalent to

∇χ = c on ∂κ, (43)

in which ∇ is the (two-dimensional) gradient and c is a constant vector. If ∂κ consists of
disjoint curves, then the constant vector may vary from one curve to another. In the present
interpretation in which the rotation field is assigned, an Airy stress function satisfying (43)
is selected and the associated dislocation density is obtained directly from (35). Thus the
latter is regarded as a derived quantity generated by the stress (or lattice strain), granted the
availability of the orientation field. This is in keeping with the protocol of contemporary
experiments (see, for example, [12]).

As previously mentioned, lattice strain makes a non-negligible contribution to the dislo-
cation density only if the rotation field satisfies a zero-curl condition. In the present setting
this condition is εβαRαμ,β = 0 (cf. (35)). Using (33) we reduce this to ∇ϕ = 0, in which
case (35) furnishes the connection

aμ 	 −εβαεμλ,βRαλ (44)

yielding the dislocation distribution associated with a particular Airy stress function. Alter-
natively, lattice strain may be neglected in the evaluation of dislocation density whenever
the rotation field is non-uniform.
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