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This paper describes a modeling technique for developing the motion equation of a motorcycles vehicle. Based on the Jourdain's principle approach, the derived model presents a nice analytical formulation with recursive Jacobian matrices computation. The synthesized model takes in consideration the main forces and moments affecting the behavior of the motorcycle and allowing the simulation of 11DOF.

I. INTRODUCTION

Riding a two-wheeled vehicle is not simple and intuitive like driving a car vehicle. Involved accelerations, critical equilibrium, aerodynamic effects, trajectory anticipation are, among others, many points that make driving a motorbike to be a complicated exercise.

To predict the behavior of such a system, one method is to model it. In the study of mechanical systems, modeling usually leads to a set of differential algebraic equations (DAE) derived from laws of mechanics. In this field, two approaches are proposed: the analytical approach and the numerical one. In this later, many tools were developed such MSC ADAMS [START_REF]ADvAnced Multi-body Simulation[END_REF], simMechanics [2], Dymola [START_REF] Modeling | [END_REF], etc.. The alternative approach is the development of symbolic equations of motion. It is very time consuming method, however, it offers more flexibilities in the system description. In this case, using a dedicated packages implemented in a computer algebra software, like TsiProPac [4] or MBsymba [START_REF] Lot | A Symbolic Approach for Automatic Generation of the Equations of Motion of Multibody Systems[END_REF], is highly recommended.

Many works have been addressed the modeling of the twowheeled vehicles. Indeed, the first study on the stability and balance of a bicycle vehicle were performed by Whipple [START_REF] Whipple | Stability of the motion of a bicycle[END_REF]. This bicycle is represented by two bodies linked via the steering mechanism. Wheels are modeled as circular thin disks where the gyroscopic effect is taken into account. After Whipple, other work has been undertaken [START_REF] Bower | Steering and stability of single track vehicles[END_REF], [START_REF] Pearsall | The stability of the bicycle[END_REF], [START_REF] Kondo | Theoretical study on the ruuning stability of twowheelers[END_REF]. In all these studies, the tire-road interaction has been neglected. In 1971, Sharp integrated tires' efforts [START_REF] Sharp | The stability and control of motorcycles[END_REF]. The objective of this study is to examine the effect on stability of a variation in the vehicle's parameters. His model is represented as a set of two rigid bodies connected by the steering mechanism, which can simulate 4 Degrees of Freedom (DOF).

So far, in all these models, the longitudinal velocity was assumed to be constant and the vehicle suspension movements were ignored. It was interesting to examine how these factors influenced the frequency characteristics of the different stability modes. These aspects have been investigated in a further work of Sharp in 1974 [START_REF] Sharp | The influence of frame flexibility on the lateral stability of motorcycles[END_REF]. In 1978, Weir made the first approach to stabilize a motorcycle by including a human in the simulation loop [START_REF] Weir | Motorcycle handling[END_REF]. In 1994 Sharp published a paper, in which, the motorcycle is represented by a set of four rigid bodies to simulate 8DOF. The originality of this model lies in the integration of flexibilities and the rider tilting motion [START_REF] Sharp | Vibrational modes of motorcycles and their design parameter sensitivities[END_REF].

In the same vein, a model incorporating the suspension travels and a more complex representation of the tire-road interaction is presented in [START_REF] Sharp | A Motorcycle Model for Stability and Control Analysis[END_REF]. The advances made by this model have allowed to explore the dynamics of such a vehicle for a large motion around equilibrium. In this case, the interaction between the in-plane and the out-of-plane motion is best described. More recently, the project FastBike presents a nonlinear model of a motorcycle described as a set of 6 bodies and simulating 11DOF. Each body is identified by its natural coordinates and the assembly is done by introducing the geometric constraints [START_REF] Cossalter | A motorcycle multibody model for real time simulation based on the natural coordinates approach[END_REF]. Finally, a modeling technique based on the recursive Newton-Euler approach is adapted to derive a motorcycle dynamics model intended for a two-wheeled simulator application [START_REF] Hima | Suitable Two Wheeled Vehicle Dynamics Synthesis for Interactive Motorcycle Simulator[END_REF].

In the present paper, a modeling technique based on the Jourdain's principle is used to develop the motion equation of a motorcycles vehicle.

II. JOURDAIN'S PRINCIPLE

A. Preliminaries

Consider a mechanical system of n bodies described by m natural coordinates. We assume that the system dynamics will be expressed into a moving reference frame ℜ v . The configuration of the moving reference ℜ v with respect to (w.r.t) the inertial reference ℜ o is given by the position vector rov = [w, y, z] T and orientation vector qv = [ϕ, θ, ψ] T . The position of a body i w.r.t the inertial reference ℜ o expressed in this latter is given by: 

ro oi = ro ov + ro vi (1) 
and:

ωo ov = R o→v ωv ov → ǭv ov = ωv ov (7) 
By projecting equations ( 3) and ( 5) into the ℜ v reference and by using ( 6) and [START_REF] Bower | Steering and stability of single track vehicles[END_REF] we can define the linear and angular acceleration of the each body i as following:

āv oi = vv ov + ωv ov × rv vi + rv vi + ωv ov × ( ṙv vi + vv oi ) (8) and: 
ǭv oi = ωv ov + ωv ov × ωv vi + ωv vi (9) 
Equation ( 8) and ( 9) are useful to deduce Jacobian matrices, as it will be demonstrated in the next sub-section.

B. Jourdain's principle

Suppose that the kinematics of the mechanical system is characterized by k generalized speeds θ = [v v ov , ωv ov , qs ] corresponding to m natural coordinates χ = [r o ov , qv , qs ]. Consequently, the linear and angular velocity of each body can be expressed as followings (henceforth, all vectors are expressed in ℜ v reference unless otherwise stated):

voi = voi ( θ, χ) ωoi = ωoi ( θ, χ)
Then, the linear acceleration is expressed by:

āoi = ∂v oi ( θ, χ) ∂ θ θ + ∂v oi ( θ, χ) ∂χ χ
and the same equation for ωoi can be deduced. The partial derivatives are called Jacobian matrices. Let the position and the angular rates of the i-th body w.r.t the ℜ v to be:

ṙv vi = ᾱi qs ωv vi = βi qs (10) 
Now, it is easy to construct the i-th Jacobian matrix as shown in the following two equations:

∂v oi ∂ θ = I 3 -r vi ᾱi (11) 
∂ ωoi ∂ θ = 0 3 I 3 βi
Now, all kinematics quantities are defined, then we introduce the principle of the virtual power called also Jourdain's principle. Jourdain's principle states that the virtual power done by motion compatible constraint efforts Fi,c / Mi,c is null [START_REF] Rill | Simulation von Kraft-fahrzeugen[END_REF], then:

n δv T oi Fi,c + δ ωT oi Mi,c = 0 (12)
Next, the Newton/Euler dynamics principle allows to express the constraint efforts w.r.t to the external applied efforts Fi,e / Mi,e as:

m i āoi = Fi,c + Fi,e I i ǭoi + ωoi × I i ωoi = Mi,c + Mi,e
By replacing this equations into [START_REF] Weir | Motorcycle handling[END_REF], and after some algebraic manipulations, we deduce the dynamics motion expression as following:

M θ = Q ( 13 
)
where M is the mass matrix obtained by the direct calculation of Jacobian matrices:

M = m i ∂v T oi ∂ θ ∂v oi ∂ θ + ∂ ωT oi ∂ θ I i ∂ ωoi ∂ θ (14) 
and the vector Q of the generalized efforts can be split into two parts Q = Qe -Qr , Qe is the generalized efforts vector associated to the external applied efforts and Qr is the generalized efforts vector associated to the acceleration residual terms in acceleration equations [START_REF] Pearsall | The stability of the bicycle[END_REF][START_REF] Kondo | Theoretical study on the ruuning stability of twowheelers[END_REF]. Hence:

Qr = m i ∂v T oi ∂ θ ∂v oi ∂ χ χ (15) 
+ ∂ ωT oi ∂ θ ∂ ωoi ∂ χ χ + ωoi × I i ωoi (16) 
Qe = ∂v T oi ∂ θ Fi,e + ∂ ωT oi ∂ θ Mi,e (17) 

III. VEHICLE KINEMATICS

In this section, a direct application of the Jourdain's principle (section II) to the motorcycle modeling is exposed. For this, the kinematics of each body w.r.t the moving reference ℜ v is demonstrated.

At first, we highlight the different motion reference frames used in the current modeling work. As shown in figure [START_REF]ADvAnced Multi-body Simulation[END_REF], the moving reference ℜ v is obtained after two successive rotations w.r.t the inertial reference ℜ O . First, a yaw rotation ψ around ℜ o z-axes is done to give an intermediate reference

ℜ ψ . Next, ℜ v is obtained by a roll rotation ϕ around ℜ ψ x- axes. The origin v of ℜ v is defined by χv = [r o ov , qv ].
The motorcycle is considered as a set of six bodies (Fig. 1). The main body G r , the front assembly G f including the handlebar, steering column and the higher fork part, the unsprung front assembly G u , the rear swing arm G s and the two wheels G Rf , G Rr . The mass of the front wheel is included in the unsprung front assembly, only its rotation will be considered as an independent DOF. The rider motion is not taken into account and is considered to be rigidly attached to the main body G r .

In order to completely define the configuration of the motorcycle, a set of 11DOF has been considered. A full characterization of motorcycle's kinematics includes :

• the longitudinal, lateral and vertical position (x, y, z) of the main body, • the roll, pitch and yaw orientation (ϕ, θ, ψ) of the main body, • the steering angle δ,

• the front suspension travel λ f and the swing arm rotation µ, • and finally, the front and rear tires spinning, ξ f and ξ r . In the following subsections, the kinematics of each body is presented.

A. Main body G r

The main body G r has 1DOF w.r.t ℜ v which represents the vertical displacement z. Then, its position vector is: [START_REF] Sharp | The stability and control of motorcycles[END_REF], we conclude that: ᾱGr = ēz 0 3,6 βGr = 0 3,7

rv vGr = 0 0 z + h r T → ṙv vGr = żē z From equation

B. Front body G f

The front body G f is belonging to the fixed-body reference frame ℜ b and has 2DOF w.r.t the main body G r . ℜ b frame is obtained by a three successive rotations namely, pitch θ about the y-axis of ℜ v , caster ǫ about the same axes and the steer δ about the ℜ b z-axis. The position vector of the front body w.r.t ℜ v is:

rv vG f = rv vGr + R v→g (r v GrB + R g→b rb BG f )
Knowing that vectors rb BG f and rv GrB are constant, we can write :

ṙv vG f = ṙv vGr + ωv vg × rv GrG f + ωv gb × rv BG f
where ωv vg = θē y and ωv gb = δē δ . In this case, ᾱG f = ᾱGr + ᾱ′ G f where:

ᾱ′ G f = 0 3,1 ēy × rv GrG f ēδ × rv BG f 0 3,4
In the other hand, the angular rates is ωv vG f = ωv vg + ωv gb , and hence:

βG f = 0 3,1 ēy ēδ 0 3,4
It can be seen that the advantage of this method, is that the computation of Jacobian matrices can be obtained recursively. At each step, only the contribution of the considered body is calculated.

C. Front unsprung body G u

The front unsprung body has 1DOF w.r.t G f representing the suspension travel λ f . Its position vector is:

rv vGu = rv vG f + R v→g R g→b rb G f Gu
Herein, rb G f Gu = (λ f + λ f 0 )ē z where λ f 0 is the initial fork suspension length. By differentiation of the position equation, we can write :

ṙv vGu = ṙv vG f + (ω v vg + ωv gb )r v G f Gu + λf ēδ
Consequently, ᾱGu = ᾱG f + ᾱ′ Gu , where:

ᾱ′ Gu = 0 3,1 ēy × rv G f Gu ēδ × rv G f Gu ēδ 0 3,4
Finally, since there is no rotation between the two front bodies: βGu = βG f .

D. Swing arm body G s

The swing arm body is belonging to the fixed-body reference frame ℜ p and has 2DOF w.r.t the main body G r . ℜ p frame is obtained by two successive rotations, pitch θ and swing arm pitch µ around the y-axis of ℜ v . Its position vector is expressed by::

rv vGs = rv vGr + R v→g (r g GrP + R g→p rp P Gs
) and the corresponding position rate is :

ṙv vGs = ṙv vGr + ωv vg × rv GrGs + ωv gp × rv P Gs
where ωv gp = μē y . Then, ᾱGs = ᾱGr + ᾱ′ Gs , where:

ᾱ′ Gs = 0 3,1 ēy × rv GrGs 0 3,2 ēy × rv P Gs 0 3,2
In the other hand, the angular rates is ωv vGs = ωv vg + ωv gp , and hence: βGs = 0 3,1 ēy 0 3,2 ēy 0 3,2

E. Front and rear wheels body

The two wheels has one independent generalized velocity w.r.t to their respective previous body (it means G u for the front wheel and G s for the rear one), which consist simply on tire rotation around wheel spin axes ēyR . It follows that ωv vGRr = ωv vGs + ξr ēy this leads to :

βGRr = βGs + 0 3,6 ēyR,r
The same reasoning can be followed for the front wheel:

βG Rf = βGu + 0 3,5 ēyR,f 0 3,5

At now, the whole motorcycle kinematics is defined. Matrix mass M and the first part of generalized efforts Qr (equations 14, 15) are fully defined. In the next section, we look for the development of the generalized efforts vector associated to external applied efforts.

IV. VECTOR OF GENERALIZED EFFORTS

To express generalized efforts vector associated to external applied efforts, one can make use of equation ( 16). First, it is essential two establish the set of all efforts exerted on each body. This method may be a tedious one especially one the number of applied efforts is much high. So, it is most convenient to find the virtual power done by each effort and find the associated generalized effort.

As an example, consider a body i under a force vector Fe applied at a point j ∈ i and a moment vector Fe around an axes belonging to this body. The resulting virtual power can be expressed as:

δP = δv T oj Fe + δ ωT i Me = δ θT Q
By replacing δv oj and δ ωi by their Jacobians, we obtain the following equation:

Q = ∂v oj ∂ θ T Fe + ∂ ωoi ∂ θ T Me (18) 
The only difference w.r.t equation ( 16) is the use of the Jacobian related to the force point application velocity (v oj ) instead of that of the body center of mass voi . In the following, we use equation [START_REF] Rill | Simulation von Kraft-fahrzeugen[END_REF] for each external force/moment exerted on the motorcycle vehicle.

A. Front and rear suspension

The front suspension force Fsf is applied between the the front body G f and the front unsprung body G u . The contribution of this force in the total generalized effort is given by using equation [START_REF] Rill | Simulation von Kraft-fahrzeugen[END_REF], like following:

Qsf = ∂ ∂ θ voG f -voGu T Fsf (19) 
By replacing each Jacobian by its expression and after some algebraic manipulations we get: Knowing that the force suspension vector can be written as Fsf = F sf ūsf , where, ūsf = ēδ is the unit vector, then:

Qsf =   0 3,3 (λ f + λ f 0 )ẽ T δ -ᾱ ′T   Fsf (20) 
Qsf = -F sf ∂ λf ∂ϑ (21) 
Doing the same for the rear suspension, we conclude :

Qsr =   0 8,1 (ē y × rv P s l ) T ūsr 0 2,1   F sr (22) 
Equation ( 21) shows that the rear suspension force can be viewed as a stiffness torque about the swing arm pivot P .

B. Gravity forces

Each body is subject to the gravity force created by its own mass. The contribution of this force in Q is directly given by:

Q g = n m i ∂v oi ∂ϑ T ḡ (23) 

C. Rider action

The rider's torque τ r exerted on the motorcycle's handlebar is considered to be the most important input for the vehicle driving. This torque acts around the steering axis and hence jointly on the main body G r and front body G f . The contribution of this torque in Q is defined by:

Qτr = ∂ ∂ θ ωG f -ωGr T τ r ēδ =   0 8,1 τ r 0 4,1   (24) 

D. Propulsion and braking torques

For the front wheel, braking force acts between the wheel rim and unsprung assembly G u which contains braking disk. For the rear wheel, the braking torque is exerted between the rear wheel body and the swing arm assembly. In addition to the propulsive torque, the contribution of these torques is expressed by:

QDB = ∂ ∂ θ ωG Rf -ωGu T τ bf ēyR,f + ∂ ∂ θ (ω GRr -ωGs ) T (τ br + τ D )ē yR,r
After simplification we get:

Gu QDB =   0 11,1 τ bf τ br + τ D   (25) 
In the next section, we expose the tire-road interaction to fully defining the vector of the generalized efforts Q.

V. TIRES KINEMATICS AND DYNAMICS

A. Tires kinematics

To describe the tire motion, a new reference frame ℜ T (C, ēxT , ēyT , ēzT ) is introduced at the contact point C. ēzT is the normal vector to the road surface. Vector ēxT is obtained as ēxT = ēyR × ēzT and ēyT completes the reference axis. As shown in figure 3, the camber angle is an important variable in the motorcycle safety studies. This variable is expressed by the following equation:

sin γ = ēT yR ēzT (26) 
The position of the contact point w.r.t the inertial frame is expressed by:

ro oC = ro oGR -R rm ēo zR -R cr ēo zT (27) 
Where, R rm is the wheel rim radius, R cr is the dynamic tire crown radius and ēzR = ēxT × ēyR . By differentiating this equation, one obtains the contact point velocity vector, as:

vo oC = vo oGR -R rm ėo zR -Ṙcr ēo zT (28) 
Knowing that the contact point C is belonging always to the road surface (Fig. 4) then, R cr et Ṙcr are obtained by performing a product scalar of equations (26,27) by ēo zT . Once the tire's kinematics is established, the equivalent tire forces/moments wrench at the center of each wheel is given by the following expressions: 

QT = j ∂v oGRj ∂ θ T FT + ∂ ωoGRj ∂ θ T MT (29) 
With QT , the vector of the generalized efforts Qe is fully defined, and:

Qe = Qsf + Qsr + Qg + Qτr + QDB + QT (30) 

VI. SIMULATION

To test the behavior of the developed motorcycle model, a linear PID controller is synthesized for the longitudinal speed regulation. This controller acts like an acceleration/braking torque directly applied on the rear wheel. The control torque is saturated by the maximum torque admissible by the engine at the rear tire axis. For this test, we drive the motorcycle from an initial speed of 10 km/h to a desired velocity of 72 km/h. Figure [START_REF] Lot | A Symbolic Approach for Automatic Generation of the Equations of Motion of Multibody Systems[END_REF] shows the control driving torque as computed by the PID controller and the longitudinal speed profile. Figure [START_REF] Whipple | Stability of the motion of a bicycle[END_REF] describes the resulting longitudinal acceleration and the front and rear suspension travels. Finally, figure [START_REF] Bower | Steering and stability of single track vehicles[END_REF] represents the vertical force F z applied at the contact point of each tire. the two hiccups in the speed vs time curve (and in the other figures) are due to the gear changes introduced by a simple logic switching (transmission model is not described in this paper). Although we have no experimental data, these simulations seems to be very correct in comparison with a previously published work in literature. The lateral dynamics simulation is very hard to carried out. Indeed, the motorcycle vehicle is highly unstable and a suitable controller must be synthesized.

VII. CONCLUSION

Based on the virtual power principle, called also Jourdain's principle, a motorcycle dynamic model is proposed. The development method is chosen for its simplicity and its fine analytical derivation with an acceptable calculation burden. A first test is presented to show the ability of the proposed model to simulate the longitudinal/vertical motion.Future works will focus on the lateral mode simulation by implementing a suitable controller especially for trajectory tracking like cornering, slalom and lane changes. 
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