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Magnetoelasticity of highly deformable thin films: Theory and simulation™
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ABSTRACT

A non linear two dimensional theory is developed for thin magnetoelastic films capable of large
deformations. This is derived directly from the three dimensional theory. Significant simplifications
emerge in the descent from three dimensions to two, permitting the self field generated by the body to
be computed a posteriori. The model is specialized to isotropic elastomers and numerical solutions are
obtained to equilibrium boundary value problems in which the membrane is subjected to lateral
pressure and an applied magnetic field.

1. Introduction

There is considerable current interest among mechanicians in
non linear magnetoelasticity [1 5]. This is due to the develop
ment of highly deformable magnetizable materials synthesized
from elastomers infused with micro or nano scopic ferrous
particles [6]. Such materials are capable of large deformations
induced by magnetic fields. This property may be used to
facilitate controlled pumping of fluid, for example, via remote
actuation. In the present work we continue our development [7]
of a membrane theory for thin films compeosed of such materials.
This is used to simulate membrane response to an applied
magnetic field and to a pressure transmitted to the material by
a confined gas.

Section 2 contains a summary of three dimensional magne
toelasticity and its specialization to isotropic elastomers. A
corresponding membrane model is derived in Section 3 directly
from the equations of the three dimensional theory. It incorpo
rates a constraint requiring the magnetization to remain tangen
tial to the film as it deforms. This is motivated by the fact that
such states are energetically optimal in thin films [8,9]. Likewise,
we impose the constraint of bulk incompressibility, and thus
exclude dilational modes of deformation that are energetically
unfavorable in typical elastomers. However, unlike incompressi
bility, the constraint on magnetization is not of the kind that
requires a reactive Lagrange multiplier in the relevant constitu
tive equation. Rather, it is a restriction involving the deformation,
allowing local membrane geometry to adjust in response to an
applied field. Constraints on the deformation of the Kirchhoff
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Love type are typically imposed at the outset in theories of thin
magnetoelastic plates [10]. However, in general such constraints
impede the attainment of minima of the overall energy because,
by confining attention to states of magnetization that are optimal
at any deformation, we effectively eliminate magnetization as an
independent variable. The bias induced by an applied field then
yields deformations that violate constraints of the Kirchhoff Love
type. Here, this is addressed via a director field which emerges
naturally from the underlying three dimensional theory in the
manner described in [11] for the purely mechanical problem,
without restricting the nature of the deformation in thin bodies.

In Section 4 we use a finite difference method to discretize the
model spatially and discuss the solution of the resulting equations
by the method of dynamic relaxation, in which equilibria are
obtained as long time limits of solutions to an artificial dynamical
system with viscosity. The method is applied, in Section 5, to
determine the deformation, magnetization and magnetic field
generated by a thin film in response to an applied dipole field and
pressure load.

Notation follows standard usage in non linear continuum
mechanics [12]. Thus, boldface is used to denote vectors and
tensors, bold subscripts are used to denote derivatives with
respect to the indicated tensor or vector variables, the superscript
t is used to denote transposition, and the superscripts 1 and ¢
to denote the inverse and inverted transpose. The symbol ® refers
to the tensor product of vectors. A dot between variables in bold
face is used to denote the standard Euclidean inner product, and
| - | refers to the induced norm.

2. Three-dimensional magnetoelasticity

The background material on continuum electromagnetism
underlying this work may be found in [9,13 17]. We apply this



to the description of incompressible magnetic elastomers under
going large deformations. A summary of the relevant equations is
given followed by discussions of restrictions associated with
stable equilibria and the specialization of the theory to isotropic
materials.

2.1. Basic equations

The local equation of motion in the absence of electric fields or
applied (as distinct from electromagnetic) body forces is [9,17]

divT=py in R, @))
where
T=pEpF +uth@h JhP*h+uheom gl @)

is the magnetoelastic Cauchy stress; £(F,m) is the free energy per
unit mass; p is the mass density (mass per unit current volume);
h is the magnetic field; m is the magnetization per unit current
volume; F=Dy is the gradient of the deformation function
y = x(x,t) in which x is the position of a material point in a fixed
reference configuration x and D is the gradient with respect to x;
superposed dots are used to denote material derivatives; R is the
configuration occupied by the body at time t; and py( > 0) is the
free space permeability. Here I is the unit tensor, div is the spatial
divergence based on y and q is a Lagrange multiplier field
associated with the incompressibility constraint.
Maxwell’s equations may be used [9] to show that

divih® (h+m) 1h? I} = (grad hym, 3)

where grad is the gradient with respect to y, and thus furnish an
equivalent equation of motion:

div[p(¢p)F* qll+ pio(grad hym = py, 4)

which proves, for reasons discussed below, to be more convenient
for our purposes. Here we have suppressed time derivatives in
Maxwell’s equations. This is justified in the absence of electric
fields if, as assumed here, there are no free charges or currents
and the body is not electrically polarized (see [17]).

If t4 is the applied (i.e, non electromagnetic) traction acting on
a part oR; of the boundary oR, then [9]

p(EpFn

Typical boundary value problems, including those considered
here, entail the assignment of y on the complement &R\0R;. This
system is augmented by the incompressibility constraint

where | =detF. (6)

gn=t;+lu(m-ny’n on &R (5)

p(x(X,t),t) = p,.(X); equivalently, J=1,

Our further considerations require equations involving a
referential divergence operator. For (4), this is easily achieved
via the Piola transformation:

=[p(¢pF" qIF* =W qF, @)
where
W(F,m)=p, <& ®)

is the referential strain energy density, and

F*=JF )
is the cofactor of the deformation gradient. Thus,

] div[p(ép)F* ql]=Div P, (10)

where Div is the referential divergence based on x; therefore,
(4) is equivalent to

Div P+ py(grad hym=p. y, 1

in which J=1 has been imposed. Further, we find the referential
form of the boundary condition (5) to be

PN =p, +iuo(m-n)’F*N on ok, (12)
where oR; =

on = F*N, (13)

%(0K;), having used Nanson’s formula:

where o = |[F*N| is the local areal dilation of dx;. Here,
Py =0ty (14)

is the applied traction measured per unit area of ox;.
The magnetic field is the sum [9]

h =h,+h 15)

of an applied field h,, generated by remote sources, and the self
field h; generated by the magnetized body. In the present
circumstances both satisfy the relevant Maxwell equation with
out time derivatives; thus

curlh, =0 (16)

in all of three space, denoted by &, where curl is the spatial curl
operation based on y, whereas

curlhy =0 a7

in £\6R. The self field and the magnetization are subject to the
jump condition [9]:

[hs]=(m-m)n on OR, (18)

where [-] is the difference between the exterior and interior limits
of the enclosed variable on 6R, and to Maxwell’s equation [9]:

divhy= divm in R=0, and in &R (19)

The field h, is assumed to be assigned as a function that is
continuously differentiable everywhere in £ except at a finite
number of singularities in £\R.

In the examples discussed in Section 5 we study the response
of the material to an applied field generated by a dipole source
with the poles aligned along a fixed unit vector k. Accordingly [7],

h,(y)=3[3@ ka k] (20)
where the (signed) constant D is the dipole strength, ¢ is the
distance from the source to the point with position y € £, and
ta=y yq, 21)
in which |a] =1, is position measured from the source, located at
yq- This has an isolated singularity at the source. The associated
gradient, required in (11), is [7]

grad h, =3D¢*{[(a-KI+ax K [3@-ka kl®a),

where IT=1 a®a, (22)

and is symmetric in accordance with (16).
From (17) (19) we have

hy= grad ¢, (23)
where the scalar field ¢, satisfies

[grad o, ]= (m-m)n on &R (24)
and the magnetostatic equation:

div(grad ;)=divm in R=0, and in &R. (25)

At any given time the unique solution satisfying ¢, ~ |y|~! as
ly| - oo is [14,16]

Anp,(y) = /Rm‘y) Y gaqy'y / d“’m(y )dv<y) for ygoR.

(26)



The magnetization and magnetic field are related constitu
tively by [9]

Wi = pioh = pg(hs  grad ¢;). 27

Thus, if the constitutive function W(F,m) is known, Eqgs. (11) (14)
and (23), (26), (27) yield a coupled integro differential system to
be solved for the deformation and magnetization. This presents
considerable analytical and numerical challenges [18]. In [7] these
were avoided by considering the limit of a weakly magnetized
body in the presence of a strong applied field. In this limit the
self field may be generated from (26) a posteriori, and plays only a
passive role in the analysis. Alternatively, a direct simulation of
the field may be based on a discretization of Maxwell’s equations
in the space surrounding the body [4,19]. In Section 3 we use a
result derived in [8] for thin films to show that the tractability of
the formulation adopted in [7] is retained when the magnetiza
tion and applied fields are comparable in magnitude. This yields a
conventional differential algebraic system to be solved on a
reference surface associated with the thin film.

To facilitate subsequent analysis, we use a pull back M of m
defined by

/m‘ndaz/M~NdA, (28)
s JS

in which S c k is an arbitrary orientable surface and s = y(S,t) CR
is its image in the current configuration. Nanson’s formula then
furnishes

M=JF 'm. (29)
In particular, this yields the convenient connections
om-n=M-N and Jdivm=DivM, 30)

which enable us to use, in place (12) and (26), respectively, the
equivalent expressions

PN =p,+31oe 2(M-N’F*N on  or 3D
and
M, 1) - N(x) iv M(x,t)
4 = dv fi oK,
moy.0= [ X A / v g VO for xeox
(32)

in which the role of time has been made explicit and incompres
sibility has been imposed.

2.2. Stability and strong ellipticity

A magneto mechanical energy balance may be derived from

(11), (12), (18), (19). Thus [9,20],
d I<+/pédv+M ,uo/ha-mdv :/ t, -y da, 33
dt R R AR
where
1/ .
=35 / pIyI* dv (34)
R

is the conventional kinetic energy and [3,9,15,16]
M= 1u0/hs.mdu 35)
27" Jk

is the magnetostatic energy of the self field. In this work we
consider conservative applied tractions for which

. d
/athmyda: aL, (36)

where L is a suitable load potential. We then have the conserva
tion law

4F =0, where E =K+E 37)

is the total magneto mechanical energy in which
E=/p¢dv+M uo/ha-mdv L 38
R R

is the magnetoelastic potential energy. We remark that our
energy balance excludes certain terms that are present in the
balance discussed in [20]. These vanish collectively when the
applied field is assigned as a stationary function of y, as assumed
here; that is, as a function which is independent of t in the spatial
description [9]. Further, the results of [9] may be used to show
that the static specialization of (11), in which inertia is sup
pressed, furnishes an Euler Lagrange equation for E.

In this work we consider pressure acting on a part oR; of the
boundary formed by the union of two surfaces, oR;t and oR;,
having no points in common. Uniformly distributed pressures, P*
and P-, respectively, are acting on these surfaces. Let S be a fixed
orientable surface such that 65=C, the curve bounding éR;. We
choose S such that its closure, and that of éR;, intersect only in C,
so that SUOR; encloses a well defined volume V— cé&. In the
applications of interest here, oR;* and oR;, respectively are the
‘upper’ and ‘lower’ lateral surfaces of a thin sheet which, together
with S, contains a compressible gas that transmits a pressure
P~ to the lower surface. In Section 5 we identify S with the
reference plane for the sheet. The upper surface is subjected to a
fixed pressure P+ supplied by a large reservoir.

This loading is conservative, and the associated potential,
modulo an unimportant constant, is [9]

v
L=/ P-w)dv P*(V4+V-), 39)

where P~(V~) is the pressure volume relation for the compres
sible gas and V is the volume of the body in configuration R. In the
present context, the incompressibility of the magnetoelastic
material allows us to suppress V on the right hand side. Further,

V- = ! y - F*N dA, (40)
3. oK,

where ok is the pre image of éR; in the reference configuration

with exterior unit normal N [9].

In a full thermodynamic treatment accounting for dissipative
effects, the energy balance (37) is replaced by the imbalance
dE/dt <0 [20], so that if a state with vanishing initial velocity
tends asymptotically to an equilibrium state, then the latter
minimizes the potential energy E [5,20]; i.e., it furnishes a value
of the potential energy not exceeding that supplied by the initial
state. Because K is a positive definite function of the velocity, it
follows that E' delivers a Lyapunov function for the dynamical
system provided that the potential energy is strictly minimized at
the equilibrium state. The considered equilibrium state is then
stable. Without further qualification, this claim applies rigorously
only to finite dimensional systems [21]. Thus, we apply it only to
the system that has been discretized for the purpose of numerical
analysis. This is the basis of a dynamic relaxation method for
computing equilibria (Section 5).

In particular, then, an asymptotically stable equilibrium state
minimizes the potential energy. In the purely mechanical setting,
it is well known that a minimizing deformation necessarily
satisfies the (local) strong ellipticity inequality pointwise (see,
for example, [22]). In the present setting this is replaced by the
magnetoelastic strong ellipticity inequalities [5]:

a-Ab)a>0 and c-(Wpm)c>0, 41



where A(b) is the acoustic tensor defined by
a-Aba=a®b (Wi Winm(Wmm) ' Wmrlla®b]. (42)

These inequalities apply for all non zero vectors a,b,c, with a and
b subject to the restriction:

associated with incompressibility. The second inequality implies
that Wmm is invertible, as required by the first inequality. In terms
of Cartesian components, inequalities (41), , are

Aj(b)aa; >0 and (W /omem;)cici > 0, (44)

where

Ajj(b) = (*W /0F4Fjg  (6°W /OFin0m)(Wimm ' (6> W /0m,0F;)}babs.
(45)

They furnish pointwise restrictions on energy minimizing states
of deformation and magnetization jointly, which in turn play a
central role in reducing the three dimensional theory to a two
dimensional membrane model (Section 3).

2.3. Reduced constitutive equations and isotropic materials

Balance of moment of momentum requires that the Cauchy
stress tensor be symmetric in the absence of electric fields
[14,17]. Using (2), the symmetry requirement may be reduced
to the statement:

(WpF'+Wp @ m  is symmetric, (46)
which is found, following [7], to be equivalent to the requirement:
W(F,m)=W(QF,Qm) for all rotations Q, (47)
and this in turn is satisfied if and only if [7]

W(F,m) = W(C,M) (48)
for some function W, where

C=FF and M=Fm. (49)
The latter is related to the pull back M by (cf. (29))

JM =CM, (50)

and so W may be written as a (different) function of C and M, if
desired. We make use of this function in Section 3.

We assume the material to be isotropic, with a center of
symmetry, relative to the reference configuration x. Then [7]
W(C,M)=W(R'CR,R'M) for all orthogonal R. (51)
For R= I this yields W(C,M)=W(C, M), which is satisfied if
and only if [9] W(C,M)=W (M @ M) for some function W
subject to the restriction:

W(CM @ M)=WR'CRR(M @ M)R) for all orthogonal R. (52)
For incompressible materials, standard representation theory
[23] implies that W = U(I4,I5,I4 Ig) for some function U, where

L=tC L=Y? tr(C], ,=C-MaM,

I5=C>-M®M, I[g=M-M. (53)
Proceeding as in [9] we then obtain

Wr=2FSymWo)+m® Wy and Wy =FWy, (54)
with

SymWe=U; LU)I+U;C+UsM @ M+Us[CM ® M)+ (M @ M)C]
and Wy = 2(UsC+UsC + UshM, (55)
where Uy = oU/dly.

To use this formalism we adopt a magnetoelastic extension of
the classical Mooney Rivlin strain energy function proposed in
[5] and defined by

U=5(Cio+Ci1)x /Mf)(ll 3)+(Co+Cor)y /Mz)(fz 3)
+Cou1 /M + CoaJ2 /M +Ciy[cosh(y /M2) 1)), (56)
where

Ji=Is Lils+hLls and J,=I, (57)

in which detF =1 has been imposed. Here u is the ground state
shear modulus, M; is the saturation value of magnetization per
unit volume, and the C; are dimensionless constants. Numerical
values of u, C; and uM; are given in Ref. [5, Table 2], where p is
the free space permeability. The symbols J;, are used in [5] to
denote invariants based on magnetization per unit mass. These
are recovered on dividing our invariants by p2, and (56) takes this
adjustment into account. Further, we have used (49), and (53) to
express the invariants adopted in [5], here based on magnetiza
tion per unit volume, in terms of the I;. In [5] it is claimed that
(56) satisfies (41); without qualification. This comports with the
fact that the standard Mooney Rivlin model satisfies the purely
mechanical strong ellipticity condition at all deformations [24].
Inequality (41), was also shown in [5] to be satisfied over a
substantial range of strain.

3. Membrane approximation

We consider a body whose reference configuration x is a
prismatic region generated by the parallel translation of a simply
connected plane 2 with piecewise smooth boundary curve 6%2.
The closure of is @ x [ h/2,h/2], where Q = Q U 6Q and h is the
(uniform) thickness. Let | be another length scale such as the
diameter of a hole in 2 or a typical spanwise dimension. We
assume that e=h/lI<1, and, in the theoretical development,
adopt [ as the unit of length (I=1). We derive a two dimensional
membrane model by estimating the equations of the three
dimensional theory to leading order in ¢. Further, we suppose
the deformation to be C? and the magnetization to be C! in the
interior of the body, so that the local equations of the foregoing
theory apply almost everywhere.

With minor loss of generality we assume the dipole in (20) to
be orthogonal to the plane 2, which is thus oriented by the unit
vector k. The projection onto the plane is

1=1 kok (58)
and generates the orthogonal decomposition
P=P1+Pk® k (59)

of the Piola transform (7). Let ¢ be a linear coordinate in the
direction of k, and suppose ¢ =0 on Q. Eq. (11) is then equivalent
to

Div(P1)+P'Kk+ py(grad hm=p.y, (60)

where (Y =d(-)/o¢ and Div, is the (referential) two dimensional
divergence with respect to position u on 2, where

x=u+ck. 61)

This holds at all points in the interior of the body and therefore at
¢ =0 in particular. Thus,

Div(Po1)+Pok+ pp(grad h)yymo = p, Yo, (62)

where the subscript 0 identifies the values of functions at ¢ =0;
i.e., on the plane Q. For example,

Py = Wr(Fo,mg) qoFy and pohg = W (Fo,mp) (63)



in which [11]

Fo=f+dok, (64)
where
f=Vr, (65)

r(u,t)(=y,) and d(u,t) are the restrictions to Q of y and Y/,
respectively, and V is the two dimensional gradient on Q; i.e.,
the gradient with respect to u. We note that r(u,t) maps £ to the
deformed membrane surface w = y(Q,t). Accordingly, f maps ¢/,
the translation space associated with the plane 2, to T, the
tangent plane to w at the material point ue Q.

To accommodate the constraint of bulk incompressibility we
impose
1 =detFy =Fjk-Fok=on-d, (66)
where (64) and Nanson'’s formula (13) have been used in the final
equality. Here, o is the local areal dilation of © and n is the

orientation of the surface onto which Q is deformed; i.e., the unit
normal to T,,. The general solution is

d=o"'n+fe, (67)
where e e ' is arbitrary. Further, Egs. (13) and (64) yield
on = fi] X ﬁz, (68)

where i, € Q" are subject only to the requirement that {i;,i,,K} be
a positively oriented orthonormal set. Thus Fy is determined by
f and e, regarded as independent variables. The associated
Cauchy Green deformation tensor, Co = F5Fy, is

Co=ct+ceek+k®ce+(@?+e-ce)kak,
where c=f'f (69)
and o is obtained by evaluating the norm of (68), yielding

o = +/detc. (70)

3.1. The leading order model

The foregoing equations, holding on Q, are exact consequences
of the three dimensional theory. Approximations arise in using
them to represent material response in Q x [ ¢/2,¢/2]. Let P* be
the interior limits of P as ¢— 4 ¢/2, where the exterior unit
normals are N* = + k. Their Taylor expansions yield

P*N* +P N" =cP,k+0(€) and PTN* PN~ =2Pk+o0(c).

(71)
On the left hand sides we use (12) together with the estimates
FN)* = + (F)* k= + F{k+(¢/2)(F*),k+0(c) (72)
and
ot =og + (€/2)ap+0(€), (73)
where
oy = oy 'Fek - (F¥)k, (74)

which follows on differentiation of o = |[F*K|. After some algebra
we obtain

P NT +P N~ =p;} +p; +cligog Mo{[Mp (cp/%)Mo]
xFgK+3iMo(F*)pK} +o(¢) (75)

and

P*N* P N =p; p;+ue0g>MEFk+0(e), (76)

where p; are the applied tractions at the lateral surfaces and
M =M - k. The role of the latter suggests the decomposition

M=1M+MK, (77)

which yields
Div M = Divy(1 M)+M'. (78)

It follows from (71) and (75) that (62) yields a well defined
differential equation in the limit of small € only if Pyk remains
bounded. Further, (63) implies that the deformation gradient and
magnetization are bounded on Q only if Py is bounded. From (75)
and (76) it is therefore necessary that

P +P; =cp+o(¢) and p; Pp; =2q+o(1), (79)
where p and q are of order unity in magnitude. It follows that, to
leading order in ¢,

Pyk = p+ ugog*Mo([Mp (ot /00)MolFgK+3Mo(F*) Kk}

and Pok=q-+1u,05°M3F;k. (80)

3.2. Estimate of the self field

Before proceeding we obtain an estimate of the leading order
self field potential (32). An elementary calculation based on (77)
and (78) gives

1M v / [Divy(1 Mo)+Mj] }
4 )= ds [ 20T o) Mol ga
s E{/g ly Tl 2 ly Tl

M+ M-
f M s / dA+0(0), 81
/é’;ﬁ y x*| ac 1Y x| © S

where the superscripts + identify the values of functions at the
upper and lower lateral surfaces ok * =Q x {+¢/2} and ve Q' is
the unit normal exterior to Q. This is valid provided that y # r(u,t)
for any ue Q. To estimate the associated integrals we compute
v|'=|v|"'v.v, where v=y yx(x,t) and the derivative is with
respect to ¢ at fixed y. Accordingly, v'= Fk, and (64) gives

v,

0= 82
ly 2o v T (82)
For y #r this yields
1 1 c(y r) }
= + 3 -d ?+0(¢), 83
ly 21ty r\{ 2y r? «© ©
which, when combined with
* = Mo + (¢/2)Mg+o0(¢), (84)
results in
-1 Mo -V " MO
4np it e:/ ds+/[ n.d
e T A T
W] dA+o(0)/c, (85)

provided that (83) is uniformly valid over the domain. This
limitation effectively restricts the use of (85) to points y whose
distances from the membrane are of order unity compared to ¢;
that is, to points in space whose minimum distances from the
deforming membrane surface are large compared to membrane
thickness. Accordingly, it may not be used to describe the self
field in the interior of the material.

To characterize the magnetic state inside the film, we estimate
(32) at an interior point X € k. For points X near X, the presumed
differentiability of the deformation implies that |y x(Xt)|=
O(1¢|), where £=X x and ¥y = y(X,t). The self field is obtained
by computing the gradient of ¢, with respect to y and evaluating
the result at y; thus, for X¢ox,

_ (M- N)u (Div M)u
4thsW)= | — dA [ = ,
hs(¥) /a y 2P ey P
where u=(y xX)/ly 1Xl, (86)



in which t has been suppressed. The singularity is of order |&|2,
which is integrable in k. Therefore the volume integral makes a
contribution of order ¢. The boundary integral includes a con
tribution from the surface 0Q2 x ( €/2,¢/2), on which |y x(X)| is
strictly bounded away from zero for any ¢. Accordingly, this too
contributes at order ¢, leaving

47hy(y) = / M-Nu

v 1Y TP dA+0(e), 87)

in which M-N= +M* on ok *, respectively. Thus,

. . £
/ 4£M N u2 dA| < / ,lM—lz
Jacruac Y X acruar Y X

< max [M*| _;ZdA. (88)
OK UK OKc+ UdKC |y Z(X)|

The integrand in the final integral is dominated by its asymptotic
behavior near X; i.e., by |£|=2. For small thickness, the integral may
then be shown to be O(|In¢|) in magnitude. In view of (84), the
upper bound remains finite in the limit only if maxo|Mp| =0, in
which case it is of order |eln¢|. This guarantees that |hs(y)| is finite
and vanishes with e. In particular, then,

h; vanisheson €, atleading order. (89)

The alternative (Mg # 0) yields an upper bound of order |Ine|,
which allows the self field to grow without bound as thickness
tends to zero. In this case the magnetostatic energy, and therefore
the potential energy, may become unbounded. However, this
alternative does not require the self field to become unbounded,
and so our analysis, while suggestive, is not conclusive. In other
words, we have only shown that the constraint:

Mo=0 on Q (90)

is sufficient for (89) and for boundedness of the magnetostatic
energy. Using (64) and (77), we then derive

myeT, on w, atevery ueQ. 91

To explore this issue further, consider the part of the potential
energy involving magnetization. This is (cf. (35), (36) and (38))

1
Emag = /[W 5 () mjdv 92)
JK
in which y and F are fixed, and reduces to
Emag = / W hg-m)dV 93)
JK

if the self field is negligible; i.e., if (91) holds. Here the magne

tization is obtained by solving (27) in which the self field is
suppressed, so that Ep,qg is controlled entirely by the deformation.
This effectively eliminates the magnetization as an independent
variable. In the work of Gioia and James [8] on non deforming
films it is proved that minimizers of (92) furnish energies that
converge to (93) as film thickness tends to zero. It was also
proved that optimal states of magnetization necessarily satisfy
(91) and that the residual self field vanishes, in accordance with
(89) (see also [9]). Further, in [8] it is shown that there is no
residual magnetostatic equation to leading order; indeed, the
solution (26) to (25) has already been used in the course of
obtaining (91) and therefore plays no further role. These results
imply that (89) and (91) characterize optimal states of magneti

zation in a sufficiently thin film, at any fixed deformation. In
particular, the magnetostatic energy is negligible at leading order.
The Euler equation for the deformation that emerges from this
leading order approximation is given by (11) [9], but with grad h
replaced by grad h,. This follows from the fact that the variational
derivative of h,, identified by a superposed dot, is purely
convective; i.e., hy = (grad h,)y, if the applied field is a stationary

function of y. The claim then follows from (16), which is
equivalent to the symmetry of grad h,. Strictly, these results are
known to be necessary only for optimal (energy minimizing)
states of magnetization and so may not apply to dynamical states.
However, in this work we use dynamics solely to facilitate the
computation of equilibria. We do not model actual dynamic
interactions. Accordingly, we restrict attention to states of mag
netization that are energetically optimal at any deformation,
equilibrated or otherwise.
Eq. (90) affords the important simplifications:

P,k=p and Pyk=q. 94)
For points remote from the deforming film (85) is applicable and
simplifies, by virtue of (90), to
1
ly 1
where V is the two dimensional gradient with respect to ue Q
and Green’s theorem has been used to combine terms. Proceeding

as in the calculation leading to (85), we put v(u,t) =y r(u,t) and
use (65) to derive

A (y.0)/c = /Q 1M, V( >dA+o(e)/e, (95)

dqgv = |v|3v.-dv, where dv= dru)= f(du), (96)
yielding
1 _ _3gt
V<W)—ly iy 97)
and
M
4n(p5(y,t)/6:/ 03-(y r) dA+o(e)/e. (98)
ely 1|

A straightforward computation based on (23) generates the scaled
self field in the surrounding space:

MmWﬂk=éGﬂ%MNw+mWa

where G = %Is(y Ny r)

ly
in which r(u,t) is the membrane position field at time t. Thus, the
leading order model generates the dominant part of the self field
in the surrounding space (which is of order ¢) a posteriori.

B | 99
ly r? ©9)

3.3. Loading

Turning now to the loading, suppose the lateral surfaces are
subjected to pressures P*. The applied tractions are

i = FPHEF)K (100)
and we assume that
PE =¢p* +0(0), (101)
where p* are of order unity. In this case q =0 and
p=a(Ap)n (102)

in (94), where Ap=p~ p™ is the net lateral pressure across the
membrane.
Invoking (89) and the foregoing thin film approximations, we

find that (62) reduces to
Div(Po1)+a(Ap)n+ py(grad hy)gmg = p, T, (103)

to leading order, where (grad hy), is evaluated using (21) and (22)

with y replaced by r, and
Py = We(Fo,mg) qoFy". (104)

This is augmented by the algebraic constraints (63), and
(94),. Using (100), (101) and y, = x(u,t)=r, the leading order



constraints are found to be
W (Fp,mg) = ,Lloha(l') and Pok =0. (105)

Together with (64), (67), (77), (90) and (104), these furnish a
system for the determination of r(u,t), e(u,t), Mo(u,t)(=1 Mp) and
go(u,t). In practice we solve the equation obtained on multiplying
(103) through by ¢. This yields the equation of motion for the
membrane, which in turn furnishes the leading order approxima
tion to that for a thin sheet. Our preference for (4) over (1) is due
the availability of an explicit formula for the gradient of the
applied field (cf. (22)). From (105); and (64) it is clear that the
constraint (91) imposes a restriction, not only on the magnetiza
tion, but also on the deformation and director fields r and e, and
thus on the geometry of the film in the presence of an applied
field. In particular, this allows the orientation of the tangent plane
to the membrane to adjust in response to the applied field.

The literature on magnetoelasticity in thin structures is typi
cally based on an a priori constraint of the Kirchoff Love type
(i.e., e=0) on the director field (e.g. [10]). However, in Section 5
we find that solutions deviate substantially from Kirchhoff Love
kinematics. Because we have confined attention to states of
magnetization that are optimal at any deformation, and thereby
eliminated magnetization as an independent variable, it follows
by relaxation of constraints that restrictions of the Kirchhoff Love
type impede the attainment of minima of the overall potential
energy. Indeed, the analysis of [7] indicates that the Kirchhoff
Love constraint is generally incompatible with (91). Therefore the
present model is optimal relative to formulations in which such
constraints are imposed at the outset. Kirchhoff Love kinematics
obtain if the effects of deformation and magnetization are
uncoupled in the expression for the strain energy function, as in
weakly magnetized materials subjected to applied fields of
sufficient intensity [7].

Standard mixed traction/position problems consist of the
specification of r and the traction:

T="Polv, (106)

on complementary parts of the boundary curve 6Q. Here 7 is the
value on 69 of the exact traction field acting on a part of the
cylindrical generating surface of the body where tractions are
assigned. In this work we assume position to be prescribed on
02 x [ €/2,6/2] and thus assign r everywhere on 6Q.

3.4. Solvability of the constraints

We demonstrate the solvability of the constraints (105), , for
M and e at a given deformation r(u,t) of Q. To ease the notation,
here and henceforth the subscript 0 is suppressed on the under
standing that all fields discussed are the restrictions to Q of three
dimensional fields identified by the same symbol. We impose (90)
at the outset, and thus find it more convenient to work with a
formulation based on the use of F and M, rather than F and m, as
independent variables. To this end we invoke bulk incompressi
bility and use (29) to define the function:

W(F,M)=WFFM) for MeQ. (107)

Consider a one parameter family of magnetizations M(u) e Q'.
Using a superposed dot to denote the derivative with respect to
the parameter, we derive Wy -M =Wy, -FM at fixed F, and
therefore

Wnm F(Wm)]-M=0 forall MeQ, (108)

wherein Wy e Q. It follows that Wy = 1F(Wy,), where 1F =f'
by virtue of (64); Eq. (108) then implies that

W = tof hy (). (109)

We regard this as an equation for M in which r, f and e (hence F)
are assigned. To investigate its solvability we compute another
derivative, again at fixed F, obtaining

WnmM = £ (Winm)m = [f'(Wmnm)fIM. (110)
Therefore,
M - (WM = fM - (Winm)fM, (111)

which is positive for all non zero M by virtue of (41),. Accord
ingly, Wy is positive definite and W(F,) is strictly convex.
Eq. (109) therefore possesses a unique solution M which mini
mizes W at fixed F. This in turn determines the magnetization
m = fM, which furnishes the unique solution to

Win = tioha(r). (112)
Next, we fix f and define
Ge,m) = W(f+d(f,e) ® k,m), (113)

where d(f,e) is the function defined by (67), in which o and n are
determined by f via (68) and (70). Consider one parameter
families e(u) and m(u). The former induces the one parameter
family F(u) of deformation gradients with derivative F =fé @ k
(cf. (64) and (67)). Accordingly,

G=é. ft(Wp)k+m - W,

yielding Ge=f (Wpk and Gpn=Wn. (114)

Using (104) and the invertibility of F', we find the constraint
(105), to be equivalent to

Ge=0 and g=d-(Wpk (115)

To address the first of these equations, we keep f fixed and
compute:

(Ge) = {Wig[fé ® K]+ (Wgm)m k. (116)

Here we regard m(u) as the magnetization induced by e(u) via
(112); that is, we use the unique solution M=M(e) to (109),
associated with fixed r and f, to generate m(u) = fM(e(u)). This
satisfies (112) identically for all e(u) with u in some open interval.
It follows that

m= (Wmm) '(Wnp)(feé @ k), (117)
so that (116) reduces to
(Ge) =F'{AK)}(fé), (118)

where A(-) is defined by (42).

With these results in hand, we define a function I'(e) by
I'(e)=G(e,fM(e)) piohg(r) - fM(e), (119)

at the same r and f. Inserting e(u) and evaluating the derivative,
we find from (112) and (114), that

['=Ge-é (120)
for all u in some open interval. Then,
I' =(Ge) -€+Ge - €. (121)

The domain of I'(-) is the linear space €', a convex set. If e;
belong to this domain, then so do all points on the straight line
path

e(u)=ue,+(1 uwey; ue(0,1), (122)
on which (121) reduces to
I =fé.{Ak)feé), eé=e, e #0. (123)

Setting a =fé e T,, and b =k, we find that (43) is satisfied because
F*k=oan is orthogonal to T, (cf. (68)). Accordingly, the strong
ellipticity inequality (41); is applicable and implies that I" > 0.
Integration of this result over (0,u) and then again over (0,1)



yields the conclusion that I'(e) is strictly convex; i.e.,

I'(e;) I'(eq)>Te(er) (ex e) (124)

for all unequal pairs e;,, wherein I'e = Ge by virtue of (120).
Because strictly convex functions possess unique stationary
points, we conclude that (115); has a unique solution e*. In
particular, this solution satisfies I'(e) > I'(e*) for all e e* and
therefore furnishes the unique minimizer of I'(e). With this
solution in hand, the unique magnetization field associated with
a given deformation r(u,t), and attendant gradient f, is given by
m = fNI(e¥).

3.5. Lyapunov functions

We have shown that the constraints (109) and (115); possess
unique solutions e and M at fixed r and f. To obtain them, use
may be made of the Newton Raphson method, for example. The
convexity conditions established in the foregoing ensure that the
associated iterates converge to a unique solution. Alternatively,
we may embed (109) and (115), into the artificial dynamical
problems:

MM +cM + Wy = uof'hy(r) and me+cé+Ge =0, (125)

respectively, in which m and c are positive constants and the
superposed dots in the two equations now identify derivatives
with respect to time like parameters 7, », respectively. Equilibria
of this system are precisely the unique solutions to (109) and
(115);. Further, solutions to this system satisfy the energy
balances:

d (1o =\ _— d /1_ ., L
d—ﬁ<§m|M| +W)_ cIM|~ and E<jm|e| +F>_ clel-.

(126)

Standard theory for ordinary differential equations then ensures
the existence of trajectories of (125); , for arbitrary initial data on
which

Li=lmMP+W and L,=lmé?+r (127)

are strictly decreasing. Our results concerning the minimizing
properties of equilibria then imply that L;, furnish Lyapunov
functions for (125); ,, respectively. All trajectories tend asympto
tically to solutions of the constraints (109) and (115),, and these
are stable equilibria of the dynamical system [21]. The imple
mentation of these results is discussed in Section 4.

Finally, we use the energy balance (37) to construct a Lyapu
nov function for the motion r(u,t). To this end we observe, using
(34) (36), (38) and (39) that

K=eKy+o(), L=ely+o() and E=eEy+0(c), (128)
where
1), v .
I(M:E/Qp,cll‘l dA, LM:/ p~wdv p*V
and Ey— / WEm) dA 1, / ho(r) - mdA Ly, (129)
Q Q

respectively, are the leading order (membrane) approximations
to the kinetic energy, pressure potential, and potential energy, in
which

1
V=§/chn.rdA

is the volume of the compressible gas contained by the mem
brane. From the leading order equation of motion (103), we
obtain

(130)

Ky = /Q I - [Divy(P1)+c(Ap)n+ piy(grad hy)m] dA. 131)

Using [9]

Ly= /Qot(Ap)n T dA (132)

this is reduced to

1'<M=LM+;¢0/Am-ha dA+ / Plv. i dS /.Pl‘fdA, (133)
JQ JoQ JQ

where we have used h, = (grad h,)¥ for stationary applied fields,

together with the symmetry of grad h,. In this work we assume r

to be fixed on 022 and accordingly suppress the integral over 6.

We now use (105); and combine the result with (129); to derive

%(1<M+EM) - / (We-E P1.1)dA. (134)
JQ

Using (104) with the constraint of bulk incompressibility in the
form F' . F =0, together with (59) and (64), we find that

Wg F=P.F=P1.f+Pk.-d (135)
and thereby reduce (134) to

g(1<,V,+E,V,):/Pk-c'l dA, (136)
dt Q

which vanishes by virtue of (105). Thus the leading order model
yields the conservation law (d/dt)(Ky + En) = 0, which is replaced,
in the presence of dissipation, by the imbalance (d/dt)
(Kv +Epn) < 0. This observation suggests that a dissipative numer
ical scheme may be based on a discretization of the artificial
dynamical equation:

Div(P1)+a(Ap)n+ uy(grad hy)m = p, r+cr, 137)

where c is a suitable constant. It is straightforward to show that if
this equation is used in place of (103), then the leading order
energy balance is replaced by
9 K+ Ev) = c/m2 dA. (138)
dt o

Our earlier observation that stable equilibria minimize E implies
that Ey, is minimized, to leading order in thickness. Indeed, it is
easily verified that (112) and the static specialization of (103)
furnish the Euler Lagrange equations for Ep. Consequently,
Ky +Ey decays on trajectories of (137), provided that ¢ >0, and
achieves a strict minimum at a stable equilibrium. It therefore yields
a Lyapunov function for (137), whose equilibria coincide with those
of (103). This conclusion applies strictly only to a finite dimensional
projection of the problem associated with a spatial discretization of
the equations on Q. It also presumes that equilibria are minimizers
of Ey;. Here, however, we have only imposed necessary conditions
for a minimum of the energy. In particular, in the purely mechanical
specialization of the theory it is known that these conditions are
insufficient to preclude compressive stresses in equilibrium, which
violate the Legendre Hadamard necessary condition for minimizers
of Ep [25]. In such circumstances the existence of minimizers may
be restored by replacing the membrane energy with a suitable
relaxation [25 28] which excludes compressive stress a priori via the
mechanism of fine scale wrinkling. This is the subject of tension field
theory [29]. In this work we apply the theory to problems that do
not exhibit wrinkling and therefore do not require the explicit
relaxation.

We emphasize the fact that (137) does not describe the actual
dynamics of the membrane. Rather, it is used here solely to
expedite the computation of equilibria by embedding the equili
brium problem into an artificial (finite dimensional) dynamical
system whose equilibria coincide with those of the physical
problem. As such, it furnishes a convenient regularization of the
equations. The strictly dissipative nature of this system is a
feature shared by actual equations of motion that account for



dissipation through constitutive equations rather than through
modification of the equation of motion. However, (137) proves
more convenient for the purpose of generating equilibria because
it allows the discrete equations associated with the temporal
evolution to be decoupled, affording a more efficient solution
procedure. This is discussed in the next section.

4. Finite-difference scheme

Equation (137) is discretized by using a finite difference
scheme derived from Green’s theorem. The application of this
scheme to plane strain problems in non linear elasticity theory is
described by Silling [30]. Its adaptation to membrane theory is
developed in [26,27]. Here, we summarize the method and
describe its extension to magnetoelasticity.

The reference plane Q is covered by a grid consisting of cells of
the kind depicted in Fig. 1. Nodes are labeled using integer

superscripts (i,j). Thus, u’ are the referential coordinates of node
(i,j), where u, =u - i,; « =1,2. The four regions formed by a node,
together with its nearest neighbor nodes, are called zones. Zone
centered points, identified by open circles in Fig. 1, are labeled
using half integer superscripts.

Green'’s theorem may be stated in the form:

./DGW da= ea,;'/aDaa dug,

where 7, (u,U,) is a smooth two dimensional vector field, D is an
arbitrary simply connected subregion of 2 and commas followed
by subscripts identify partial derivatives with respect to the
indicated coordinates. To approximate the divergence o,, at
node (i,j) we identify D with the quadrilateral contained within
the dashed contour of Fig. 1. The left hand side of (114) is
estimated as the nodal value of the integrand multiplied by
the area of D; the right hand side as the zone centered values
of the integrand on each of the four edges of 6D multiplied by the
appropriate edge length. Thus [26],

(139)

2Ai*"(aa,a)"'j _ ealf[0&+1/z,j+1/z(uiﬁ'j+1 u;;l.j)

+0&71/2J+1/2(u;}71,j u;ﬁl)
i-1/2,j-1/2,, ij-1 i-1j
+0; /2.J-1/ (u;{ u’/j J)

+0L+1/2J71/2(u;3+]‘j u;;jfl)], (140)

i+1,j-1

i-1,j-1

Fig. 1. Finite-difference mesh.

where
ij 1 i—1,j i+1,j ij+1 ij—1 i—1,j i+1j ij+1 ij—1
AY _3[(u2 u2 )(ul ul ) (u1 u1 )(uz u2 )]
(141)

is one half the area of the quadrilateral.

We also have need of gradients of various functions at zone
centered points. First, we apply (139) with g, = c,0(uq,u;), where
o is a smooth scalar field and c, are arbitrary constants. This
yields

/O"gg da:ea[;/ O'dU/;.
D oD

We now identify D with the shaded region in the figure. The left

hand side is approximated by the product of the shaded area with
the integrand, evaluated at the zone centered point, and the four
edge contributions to the right hand side are approximated by
replacing the integrand in each with the average of the nodal
values at the endpoints. This gives [26]

(142)

2Ai+1/2,]'+1/2(6f;'1/2J+1/2) — eaﬁ[(gi+1,j+1 Givj)(u;;;l'+] u;;—l,j)

(gH+1 o.i+l,j)(u;+1'j+1 ug)], (143)
where
Ai+1/2,j+1/2:%[(u;.j+1 ui2+1.j)(uz'1+1J+l u'{j) (uif”l ui]+1J)
@y by, (144)

The magnetoelastic equilibrium equation is given by (137) in
which the right hand side is suppressed. To facilitate its discre
tization, we exploit the fact that the term on associated with the
pressure load may be expressed as a divergence on Q [31]. Thus,
n = ni,, where iz =Kk,

ony = Seiespfinfip = Gip.po (145)
and
Gy = Leikespfial; (146)

in which ey and e, respectively, are the three and two
dimensional unit alternators (e123 = ey, = +1). This result is use
ful in the present circumstances because the net lateral pressure
on the membrane is uniformly distributed. Thus, the equilibrium
equation is equivalent to the system

Tkot,:x =Ry, where Tk, = Proyy+(AD)Giy and Ry = ﬂoh;fi)ﬁaMoc-
(147)

Here Py, =P iy ® i, are the components of P1, h{"’ = i - h, are the
components of the applied field, fi, =f iy ®i,=ry, are the
components of the surface deformation gradient, r, =i, -r are
the Cartesian coordinates of a material point on the deformed
surface and M, =M - i, are the magnetization components.

Each of Eqs. (147) is of the form:

Oo,0 :f- (148)

where 6, =Ty, and f =Ry; k=1,2,3. The oy, in turn, depend on
the magnetization and on the gradients of ¢ =1, (k=1,2,3). To
solve (148) at node (i,j) we integrate it over the region enclosed by
the dashed quadrilateral of Fig. 1 with vertices at the nearest
neighbor nodes, obtaining

St _ Fid, (149)
where

S 24 (g ) (150)
and

FiJ = 2AWf, (151)



In (150) the right hand side is evaluated in terms of the zone
centered values of g, via (140). The latter are determined
constitutively by corresponding zone centered values of magne
tization together with the gradients ¢, which, in turn, are given
via (143) by the values of ¢ at the nodes located at the vertices of
the shaded region of Fig. 1. The scheme is seen to require one
degree less differentiability than that required by the local
differential equations. Discussions of the associated truncation
errors are given by Silling [30] and Hermann and Bertholf [32].

To solve Eq. (149) we introduce a regularization based on the
artificial dynamical system (cf. (137)):
SN _ i glin | digiin g piin (152)
where mi/ =2A%p is the nodal mass, ¢/ =2A¥c is the nodal
damping coefficient, n is the time step, and superposed dots refer
to derivatives with respect to (artificial) time. This is not the
discrete form of the actual dynamical equations. Rather, it is an
artificial system introduced solely to expedite the computation of
equilibria. The basic method, known as dynamic relaxation [33], is
a powerful tool for generating equilibria in a wide variety of non
linear problems. It was developed for membrane theory in a
purely mechanical setting in [26 28] and extended to coupled
thermoelasticity in [31].

We observe that the matrix Gys associated with lateral pres
sure is evaluated at zone centered points (cf. (147) and (150)).
However, this involves the deformation r, (cf. (146)), a nodal
variable. The required evaluation is based on the average of the
deformations at the four adjacent nodes. Similarly, (147) requires
nodal values of fi,M,, which are obtained by averaging values at
the four adjacent zone centered points.

In the case of volume dependent pressure loading it is neces
sary to evaluate the volume enclosed by the deformed membrane
and the plane Q. This is obtained from (130) in which on-r=
lejieqpfifistc. The domain is divided into zones the shaded
regions in Fig. 1 and the integral over each is estimated as the
zone centered value of the integrand multiplied by the shaded
area, given by (144). Similarly, the scaled self field at a given
position y in the surrounding space is obtained by using (99), in
which the integral is replaced by the sum of the integrals over the
zones. Each of these is approximated by multiplying the value of
the integrand at the relevant zone centered point by the shaded
area. The integrand is formed from zone centered values of f and
M and the averaged values of the nodal membrane position r.

The time derivatives in (152) are approximated by the central
differences:

G %(d_n+1/2+d.n—l/2)' o = %(d.n+l/2 G172y,
"1 = %(a" "), (153)

where h is the time increment and the node label (ij) has been
suppressed. Substitution into (152) furnishes the explicit,
decoupled system:

(h—l +C/2)mi,jd_ij,n+l/2 — (h—l C/z)mi,jo-_i,j,n—l/2+zi,j,n Fij.n'
ghin+1 = ghin 4 peiin+1/2. (154)
which is used to advance the solution in time node by node. The
stress at zone centered points is updated by using (64), (65),
(104), in which the reactive constraint pressure q is computed
from (67), (68) and (115),.

The starting procedure is derived from the quiescent initial
conditions:

G0 — Go(ui;j). G0 0, (155)

where o(u,) is assigned. Thus, from (154) we obtain

Q/hymii gt/ = 310 Fiio, (156)

in which the right hand side is determined by the function .
The system is non dimensionalized and the solution is advanced
to the first t, such that m®|X%" Fiin <4, a suitable tolerance.
We remark that because only long time limits of solutions are
relevant, temporal accuracy is not an issue. Stability is addressed
by using sufficiently small time steps selected on the basis of
successive trials based on a sequence of values of h.

A similar temporal discretization is used to update the magne
tization and director fields M and e at zone centered points.
Consistency with the derivation of the Lyapunov functions L, , of
Section 3 requires the use of a staggered scheme in which the
predicted position field at time step n+1 is fixed while integrating
(126). We then start the integration of (126), using the value of e
at step n as the initial condition (with the initial value é = 0). This
calculation proceeds in increments of the time like variable 7,. We
fix the predicted value of e at the subsequent step and use this
value to integrate (126); with respect to 7y, using the value of M
generated by the previous value of e as the initial condition (with
initial value M = 0). This continues until convergence is achieved,
yielding the magnetization associated with the predicted value
of e. The integration with respect to 7, then resumes and the cycle
is repeated until convergence is achieved, yielding the values of e
and M associated with the position field at step n+1. The process
is repeated until the deformation field converges, yielding the final
equilibrium position, magnetization and director fields over all
nodes and zone centered points. However, numerical experiments
indicate that this computationally intensive double staggered
scheme is not required in practice. Instead, we find that equili
brium states may be achieved by treating all fields on an equal
basis as far as temporal integration is concerned.

The magnetization at step n=0 is set to zero. This is the unique
solution to (112) if the applied field vanishes. Accordingly, the
applied field intensity is first set to a small value and the
equilibrium fields are obtained by the foregoing procedure.
Successive equilibria are then computed for a sequence of
increasing field intensities, using the equilibria associated with
each member of the sequence as initial values for the next
member.

5. Examples

In this final section we discuss the results of some numerical
experiments. All examples pertain to a membrane that is initially
square, of side 8 mm and thickness h =50 x 10~> mm. The latter
is used in place of ¢ in the formula (99) for the self field, which
was derived using a scheme in which ¢ is interpreted as (dimen
sionless) thickness. The mass density is p = 1750 kg/m?3; the free
space permeability is 1, =4m x 1077 N/A? (Newton per square
Ampere) [14]; and the dipole source is centrally located above the
plane at y,; = (8 mm)k. We find that convergence is achieved in all
cases using a regular 33 x 33 mesh. Material parameters are taken
to be those suggested in [34]. Thus, the saturation magnetization
is My = uy/2, the shear modulus is g = 1.0 x 10° N/m2, and the
remaining parameters in (56) are Cio=1.0, Cy0 =0.625, C;; =

0.0791, C3; =0.0, Cop1 = /6 and Gy = f5/2, where ﬁ:uomf/z.
Fig. 2 depicts the deformation of the membrane under zero
pressure in response to a dipole of strength D =160 x 10~% A m?
(cf. (20)). The vertical and in plane dimensions are scaled differ
ently to aid in visualization. We have used the data generated by
the simulation, together with (69), to verify that the three
dimensional principal stretches on the membrane surface are
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Fig. 2. Deformed membrane at D 160 x 10 A m2.
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Fig. 3. Referential magnetization at D 160 x 10 ® Am? on the reference plane.

well within the limits required for the validity of (41),. The
referential in plane magnetization field M is shown in Fig. 3.

This field is directed everywhere toward the center of the
membrane, where differentiability requires that it diminish to
zero in intensity. This and the constraint (91) cause the interac
tion with the applied field to weaken near the center, resulting in
a deformed surface that is relatively flat under the dipole source.

Fig. 4 shows the variation of the in plane part, e, of the director
field with respect to position on the reference plane. The defor
mation deviates from Kirchhoff Love kinematics wherever this is
non zero. This reflects the bias induced by the dipole source at
points lying off the dipole axis, causing the director d on the
deformed surface to tilt relative to the tangent plane as the
membrane adjusts to the applied field. The effect diminishes near
the corners of the membrane where the field is relatively weak,
and near the center where the field lines intersect the membrane
orthogonally and the associated bias vanishes; in either case the
kinematics revert to the Kirchhoff Love mode. Fig. 5 illustrates
the self field generated by the membrane, computed post facto
using (99), in a plane of symmetry obtained by fixing a reference
coordinate at the value zero.

Finally, the effects of pre stretch and pressure are displayed in
Fig. 6, in which the height of the deformed surface, at a point on
the dipole axis, is plotted against dipole strength. The open circles
and crosses correspond to zero applied pressure; the former
corresponding to no pre stretch and the latter to a uniform pre
stretch of 1.2 induced by an outward displacement of nodes
on the boundary; these are subsequently fixed in the course of
the simulation. Pre stretch is seen to stiffen the membrane
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Fig. 4. In-plane part, e, of director field, at D 160 x 10 5 Am2.
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Fig. 5. Self-field in space at D 160 x 10 ® Am?, in the plane defined by u, 0.
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Fig. 6. Membrane displacement under the dipole source, as a function of dipole
strength. Effect of pre-stretch indicated by circles (-) and crosses (x); effect of
fixed or volume-dependent pressure is indicated by dots (-) and stars (),
respectively (see text).

dramatically, resulting in a much smaller deflection at any given
field strength. The effect of pressure (at no pre stretch) is
illustrated by the dotted and starred data, the former correspond
ing to a fixed inflation pressure P=2.0 x 10° Pa acting on the



interior of the membrane; the external pressure is assumed to
vanish. This is regarded as being supplied by a large reservoir
with an opening on the reference plane. The stars correspond to a
volume-dependent pressure in which the product of the pressure
and the enclosed volume remains constant, as in an ideal gas at
fixed temperature. The constant is derived by using (130) to
compute the contained volume generated in response to the fixed
pressure at zero field strength. As expected, pressure has a
significant effect on deformation at small field intensities, but
its relative importance diminishes with increasing intensity.
Moreover, at any value of field intensity the volume-dependent
pressure yields a smaller displacement than that produced by the
fixed pressure. The discrepancy increases with field intensity due
to the attendant increase in volume, which causes the volume-
dependent pressure to be reduced in magnitude. In all cases an
upper limit is predicted for the deformation that can be main-
tained in equilibrium. Such limits are identified by the failure of
the dynamic relaxation method to generate equilibria when the
field intensity is increased above a critical value. Our results thus
establish the existence of a limit-point instability at sufficiently
high field intensities. This corroborates the analysis of [35], based
on a low-order finite-dimensional projection of the model devel-
oped in [7].
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