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to the description of incompressible magnetic elastomers under
going large deformations. A summary of the relevant equations is
given followed by discussions of restrictions associated with
stable equilibria and the specialization of the theory to isotropic
materials.

2.1. Basic equations

The local equation of motion in the absence of electric fields or
applied (as distinct from electromagnetic) body forces is [9,17]

div T¼ ry in R, ð1Þ

where

T¼ rðxFÞF
t
þm0ðh� h 1

2jhj
2IÞþm0h�m qI ð2Þ

is the magnetoelastic Cauchy stress; xðF,mÞ is the free energy per
unit mass; r is the mass density (mass per unit current volume);
h is the magnetic field; m is the magnetization per unit current
volume; F¼Dv is the gradient of the deformation function
y¼ vðx,tÞ in which x is the position of a material point in a fixed
reference configuration k and D is the gradient with respect to x;
superposed dots are used to denote material derivatives; R is the
configuration occupied by the body at time t; and m0ð40Þ is the
free space permeability. Here I is the unit tensor, div is the spatial
divergence based on y and q is a Lagrange multiplier field
associated with the incompressibility constraint.

Maxwell’s equations may be used [9] to show that

divfh� ðhþmÞ 1
2jhj

2Ig ¼ ðgrad hÞm, ð3Þ

where grad is the gradient with respect to y, and thus furnish an
equivalent equation of motion:

div½rðxFÞF
t qI�þm0ðgrad hÞm¼ ry , ð4Þ

which proves, for reasons discussed below, to be more convenient
for our purposes. Here we have suppressed time derivatives in
Maxwell’s equations. This is justified in the absence of electric
fields if, as assumed here, there are no free charges or currents
and the body is not electrically polarized (see [17]).

If ta is the applied (i.e, non electromagnetic) traction acting on
a part @Rt of the boundary @R, then [9]

rðxFÞF
tn qn¼ taþ

1
2m0ðm � nÞ

2n on @Rt : ð5Þ

Typical boundary value problems, including those considered
here, entail the assignment of y on the complement @R\@Rt . This
system is augmented by the incompressibility constraint

rðvðx,tÞ,tÞ ¼ rkðxÞ; equivalently, J¼ 1, where J¼ detF: ð6Þ

Our further considerations require equations involving a
referential divergence operator. For (4), this is easily achieved
via the Piola transformation:

P¼ ½rðxFÞF
t qI�Fn

¼WF qFn, ð7Þ

where

WðF,mÞ ¼ rkx ð8Þ

is the referential strain energy density, and

Fn
¼ JF�t

ð9Þ

is the cofactor of the deformation gradient. Thus,

J div½rðxFÞF
t qI� ¼Div P, ð10Þ

where Div is the referential divergence based on x; therefore,
(4) is equivalent to

Div Pþm0ðgrad hÞm¼ rky , ð11Þ

in which J¼1 has been imposed. Further, we find the referential
form of the boundary condition (5) to be

PN¼ paþ
1
2m0ðm � nÞ

2FnN on @kt , ð12Þ

where @Rt ¼ wð@ktÞ, having used Nanson’s formula:

an¼ FnN, ð13Þ

where a¼ jFnNj is the local areal dilation of @kt : Here,

pa ¼ ata ð14Þ

is the applied traction measured per unit area of @kt :

The magnetic field is the sum [9]

h¼ haþhs ð15Þ

of an applied field ha, generated by remote sources, and the self

field hs generated by the magnetized body. In the present
circumstances both satisfy the relevant Maxwell equation with
out time derivatives; thus

curl ha ¼ 0 ð16Þ

in all of three space, denoted by E, where curl is the spatial curl
operation based on y, whereas

curl hs ¼ 0 ð17Þ

in E\@R: The self field and the magnetization are subject to the
jump condition [9]:

½hs� ¼ ðn �mÞn on @R, ð18Þ

where ½�� is the difference between the exterior and interior limits
of the enclosed variable on @R, and to Maxwell’s equation [9]:

div hs ¼ div m in R¼ 0, and in E\R: ð19Þ

The field ha is assumed to be assigned as a function that is
continuously differentiable everywhere in E except at a finite
number of singularities in E\R:

In the examples discussed in Section 5 we study the response
of the material to an applied field generated by a dipole source
with the poles aligned along a fixed unit vector k. Accordingly [7],

haðyÞ ¼ D
‘3½3ða � kÞa k�, ð20Þ

where the (signed) constant D is the dipole strength, ‘ is the
distance from the source to the point with position yAE, and

‘a¼ y yd, ð21Þ

in which jaj ¼ 1, is position measured from the source, located at
yd. This has an isolated singularity at the source. The associated
gradient, required in (11), is [7]

grad ha ¼ 3D‘�4f½ða � kÞIþa� k�P ½3ða � kÞa k� � ag,

where P¼ I a� a, ð22Þ

and is symmetric in accordance with (16).
From (17) (19) we have

hs ¼ grad js, ð23Þ

where the scalar field js satisfies

½grad js� ¼ ðn �mÞn on @R ð24Þ

and the magnetostatic equation:

divðgrad jsÞ ¼ div m in R¼ 0, and in E\R: ð25Þ

At any given time the unique solution satisfying js � jyj
�1 as

jyj-1 is [14,16]

4pjsðyÞ ¼
Z
@R

mðy0Þ � nðy0Þ

jy y0j
daðy0Þ

Z
R

div mðy0Þ

jy y0j
dvðy0Þ for y=2@R:

ð26Þ
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The magnetization and magnetic field are related constitu
tively by [9]

Wm ¼ m0h¼ m0ðha grad jsÞ: ð27Þ

Thus, if the constitutive function WðF,mÞ is known, Eqs. (11) (14)
and (23), (26), (27) yield a coupled integro differential system to
be solved for the deformation and magnetization. This presents
considerable analytical and numerical challenges [18]. In [7] these
were avoided by considering the limit of a weakly magnetized
body in the presence of a strong applied field. In this limit the
self field may be generated from (26) a posteriori, and plays only a
passive role in the analysis. Alternatively, a direct simulation of
the field may be based on a discretization of Maxwell’s equations
in the space surrounding the body [4,19]. In Section 3 we use a
result derived in [8] for thin films to show that the tractability of
the formulation adopted in [7] is retained when the magnetiza
tion and applied fields are comparable in magnitude. This yields a
conventional differential algebraic system to be solved on a
reference surface associated with the thin film.

To facilitate subsequent analysis, we use a pull back M of m
defined by
Z

s
m � n da¼

Z
S

M � N dA, ð28Þ

in which S� k is an arbitrary orientable surface and s¼ wðS,tÞ � R

is its image in the current configuration. Nanson’s formula then
furnishes

M¼ JF�1m: ð29Þ

In particular, this yields the convenient connections

am � n¼M �N and J div m¼Div M, ð30Þ

which enable us to use, in place (12) and (26), respectively, the
equivalent expressions

PN¼ paþ
1
2m0a�2ðM � NÞ2FnN on @kt ð31Þ

and

4pjsðy,tÞ ¼

Z
@k

Mðx,tÞ � NðxÞ

jy vðx,tÞj
dAðxÞ

Z
k

Div Mðx,tÞ

jy vðx,tÞj
dVðxÞ, for x=2@k,

ð32Þ

in which the role of time has been made explicit and incompres
sibility has been imposed.

2.2. Stability and strong ellipticity

A magneto mechanical energy balance may be derived from
(11), (12), (18), (19). Thus [9,20],

d

dt
Kþ

Z
R
rx dvþM m0

Z
R

ha �m dv

� �
¼

Z
@Rt

ta � _y da, ð33Þ

where

K ¼
1

2

Z
R
rj _yj2 dv ð34Þ

is the conventional kinetic energy and [3,9,15,16]

M¼
1

2
m0

Z
R

hs �m dv ð35Þ

is the magnetostatic energy of the self field. In this work we
consider conservative applied tractions for whichZ
@Rt

ta � _y da¼
d

dt
L, ð36Þ

where L is a suitable load potential. We then have the conserva
tion law

d
dtE
0 ¼ 0, where E0 ¼ KþE ð37Þ

is the total magneto mechanical energy in which

E¼

Z
R
rx dvþM m0

Z
R

ha �m dv L ð38Þ

is the magnetoelastic potential energy. We remark that our
energy balance excludes certain terms that are present in the
balance discussed in [20]. These vanish collectively when the
applied field is assigned as a stationary function of y, as assumed
here; that is, as a function which is independent of t in the spatial
description [9]. Further, the results of [9] may be used to show
that the static specialization of (11), in which inertia is sup
pressed, furnishes an Euler Lagrange equation for E.

In this work we consider pressure acting on a part @Rt of the
boundary formed by the union of two surfaces, @Rþt and @R�t ,
having no points in common. Uniformly distributed pressures, Pþ

and P�, respectively, are acting on these surfaces. Let S be a fixed
orientable surface such that @S¼ C, the curve bounding @R�t : We
choose S such that its closure, and that of @R�t , intersect only in C,
so that S [ @R�t encloses a well defined volume V� � E: In the
applications of interest here, @Rþt and @R�t , respectively are the
‘upper’ and ‘lower’ lateral surfaces of a thin sheet which, together
with S, contains a compressible gas that transmits a pressure
P� to the lower surface. In Section 5 we identify S with the
reference plane for the sheet. The upper surface is subjected to a
fixed pressure Pþ supplied by a large reservoir.

This loading is conservative, and the associated potential,
modulo an unimportant constant, is [9]

L¼

Z V

P�ðvÞ dv Pþ ðVþV�Þ, ð39Þ

where P�ðV�Þ is the pressure volume relation for the compres
sible gas and V is the volume of the body in configuration R. In the
present context, the incompressibility of the magnetoelastic
material allows us to suppress V on the right hand side. Further,

V� ¼
1

3

Z
@kt

y � FnN dA, ð40Þ

where @k�t is the pre image of @R�t in the reference configuration
with exterior unit normal N [9].

In a full thermodynamic treatment accounting for dissipative
effects, the energy balance (37) is replaced by the imbalance
dE0=dtr0 [20], so that if a state with vanishing initial velocity
tends asymptotically to an equilibrium state, then the latter
minimizes the potential energy E [5,20]; i.e., it furnishes a value
of the potential energy not exceeding that supplied by the initial
state. Because K is a positive definite function of the velocity, it
follows that E0 delivers a Lyapunov function for the dynamical
system provided that the potential energy is strictly minimized at
the equilibrium state. The considered equilibrium state is then
stable. Without further qualification, this claim applies rigorously
only to finite dimensional systems [21]. Thus, we apply it only to
the system that has been discretized for the purpose of numerical
analysis. This is the basis of a dynamic relaxation method for
computing equilibria (Section 5).

In particular, then, an asymptotically stable equilibrium state
minimizes the potential energy. In the purely mechanical setting,
it is well known that a minimizing deformation necessarily
satisfies the (local) strong ellipticity inequality pointwise (see,
for example, [22]). In the present setting this is replaced by the
magnetoelastic strong ellipticity inequalities [5]:

a � AðbÞa40 and c � ðWmmÞc40, ð41Þ
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where AðbÞ is the acoustic tensor defined by

a � AðbÞa¼ a� b � fWFF WFmðWmmÞ
�1WmFg½a� b�: ð42Þ

These inequalities apply for all non zero vectors a,b,c, with a and
b subject to the restriction:

a � Fnb¼ 0 ð43Þ

associated with incompressibility. The second inequality implies
that Wmm is invertible, as required by the first inequality. In terms
of Cartesian components, inequalities ð41Þ1,2 are

AijðbÞaiaj40 and ð@2W=@mi@mjÞcicj40, ð44Þ

where

AijðbÞ ¼ f@
2W=@FiA@FjB ð@

2W=@FiA@mkÞðWmmÞ
�1
kl ð@

2W=@ml@FjBÞgbAbB:

ð45Þ

They furnish pointwise restrictions on energy minimizing states
of deformation and magnetization jointly, which in turn play a
central role in reducing the three dimensional theory to a two
dimensional membrane model (Section 3).

2.3. Reduced constitutive equations and isotropic materials

Balance of moment of momentum requires that the Cauchy
stress tensor be symmetric in the absence of electric fields
[14,17]. Using (2), the symmetry requirement may be reduced
to the statement:

ðWFÞF
t
þWm �m is symmetric, ð46Þ

which is found, following [7], to be equivalent to the requirement:

WðF,mÞ ¼WðQF,QmÞ for all rotations Q , ð47Þ

and this in turn is satisfied if and only if [7]

WðF,mÞ ¼W ðC,MÞ ð48Þ

for some function W , where

C¼ FtF and M ¼ Ftm: ð49Þ

The latter is related to the pull back M by (cf. (29))

JM ¼ CM, ð50Þ

and so W may be written as a (different) function of C and M, if
desired. We make use of this function in Section 3.

We assume the material to be isotropic, with a center of
symmetry, relative to the reference configuration k: Then [7]

W ðC,MÞ ¼W ðRtCR,RtMÞ for all orthogonal R: ð51Þ

For R¼ I this yields W ðC,MÞ ¼W ðC, MÞ, which is satisfied if
and only if [9] W ðC,MÞ ¼ Ŵ ðC,M �MÞ for some function Ŵ

subject to the restriction:

Ŵ ðC,M �MÞ ¼ Ŵ ðRtCR,Rt
ðM �MÞRÞ for all orthogonal R: ð52Þ

For incompressible materials, standard representation theory
[23] implies that Ŵ ¼UðI1,I2,I4 I6Þ for some function U, where

I1 ¼ trC, I2 ¼
1
2½I

2
1 trðC2

Þ�, I4 ¼ C �M �M,

I5 ¼ C2
�M �M, I6 ¼M �M: ð53Þ

Proceeding as in [9] we then obtain

WF ¼ 2FðSym W CÞþm�W M and Wm ¼ FW M , ð54Þ

with

Sym W C ¼ ðU1 I1U2ÞIþU2CþU4M �MþU5½CðM �MÞþðM �MÞC�

and W M ¼ 2ðU4CþU5C2
þU6IÞM, ð55Þ

where Uk ¼ @U=@Ik:

To use this formalism we adopt a magnetoelastic extension of
the classical Mooney Rivlin strain energy function proposed in
[5] and defined by

U ¼ m
2fðC10þC11J1=M

2

s ÞðI1 3ÞþðC20þC21J1=M
2

s ÞðI2 3Þ

þC01J1=M
2

s þC02J2=M
2

s þCn

01½coshðJ1=M
2

s Þ 1�g, ð56Þ

where

J1 ¼ I5 I1I4þ I2I6 and J2 ¼ I6, ð57Þ

in which detF¼ 1 has been imposed. Here m is the ground state
shear modulus, Ms is the saturation value of magnetization per
unit volume, and the Cij are dimensionless constants. Numerical
values of m, Cij and m0Ms are given in Ref. [5, Table 2], where m0 is
the free space permeability. The symbols J1,2 are used in [5] to
denote invariants based on magnetization per unit mass. These
are recovered on dividing our invariants by r2

k, and (56) takes this
adjustment into account. Further, we have used ð49Þ2 and (53) to
express the invariants adopted in [5], here based on magnetiza
tion per unit volume, in terms of the Ik. In [5] it is claimed that
(56) satisfies ð41Þ1 without qualification. This comports with the
fact that the standard Mooney Rivlin model satisfies the purely
mechanical strong ellipticity condition at all deformations [24].
Inequality ð41Þ2 was also shown in [5] to be satisfied over a
substantial range of strain.

3. Membrane approximation

We consider a body whose reference configuration k is a
prismatic region generated by the parallel translation of a simply
connected plane O with piecewise smooth boundary curve @O:
The closure of k is O � ½ h=2,h=2�, where O ¼O [ @O and h is the
(uniform) thickness. Let l be another length scale such as the
diameter of a hole in O or a typical spanwise dimension. We
assume that E6h=l51, and, in the theoretical development,
adopt l as the unit of length (l¼1). We derive a two dimensional
membrane model by estimating the equations of the three
dimensional theory to leading order in E: Further, we suppose
the deformation to be C2 and the magnetization to be C1 in the
interior of the body, so that the local equations of the foregoing
theory apply almost everywhere.

With minor loss of generality we assume the dipole in (20) to
be orthogonal to the plane O, which is thus oriented by the unit
vector k: The projection onto the plane is

1¼ I k� k ð58Þ

and generates the orthogonal decomposition

P¼ P1þPk� k ð59Þ

of the Piola transform (7). Let B be a linear coordinate in the
direction of k, and suppose B¼ 0 on O. Eq. (11) is then equivalent
to

DivJðP1ÞþP0kþm0ðgrad hÞm¼ rky , ð60Þ

where ð�Þ0 ¼ @ð�Þ=@B and DivJ is the (referential) two dimensional

divergence with respect to position u on O, where

x¼ uþBk: ð61Þ

This holds at all points in the interior of the body and therefore at
B¼ 0 in particular. Thus,

DivJðP01ÞþP00kþm0ðgrad hÞ0m0 ¼ rk0y0, ð62Þ

where the subscript 0 identifies the values of functions at B¼ 0;
i.e., on the plane O: For example,

P0 ¼WFðF0,m0Þ q0Fn

0 and m0h0 ¼WmðF0,m0Þ ð63Þ
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in which [11]

F0 ¼ fþd� k, ð64Þ

where

f ¼rr, ð65Þ

rðu,tÞð ¼ y0Þ and dðu,tÞ are the restrictions to O of v and v0,
respectively, and r is the two dimensional gradient on O; i.e.,
the gradient with respect to u: We note that rðu,tÞ maps O to the
deformed membrane surface o¼ wðO,tÞ: Accordingly, f maps O0,
the translation space associated with the plane O, to To, the
tangent plane to o at the material point uA O.

To accommodate the constraint of bulk incompressibility we
impose

1¼ detF0 ¼ Fn

0k � F0k¼ an � d, ð66Þ

where (64) and Nanson’s formula (13) have been used in the final
equality. Here, a is the local areal dilation of O and n is the
orientation of the surface onto which O is deformed; i.e., the unit
normal to To: The general solution is

d¼ a�1nþfe, ð67Þ

where eAO0 is arbitrary. Further, Eqs. (13) and (64) yield

an¼ fi1 � fi2, ð68Þ

where iaAO0 are subject only to the requirement that fi1,i2,kg be
a positively oriented orthonormal set. Thus F0 is determined by
f and e, regarded as independent variables. The associated
Cauchy Green deformation tensor, C0 ¼ Ft

0F0, is

C0 ¼ cþce� kþk� ceþða�2þe � ceÞk� k,

where c¼ ftf ð69Þ

and a is obtained by evaluating the norm of (68), yielding

a¼ detc
p

: ð70Þ

3.1. The leading order model

The foregoing equations, holding on O, are exact consequences
of the three dimensional theory. Approximations arise in using
them to represent material response in O� ½ E=2,E=2�: Let P7 be
the interior limits of P as B-7E=2, where the exterior unit
normals are N7

¼ 7k: Their Taylor expansions yield

PþNþ þP�N� ¼ EP00kþoðEÞ and PþNþ P�N� ¼ 2P0kþoðEÞ:
ð71Þ

On the left hand sides we use (12) together with the estimates

ðFnNÞ7 ¼ 7ðFn
Þ
7 k¼ 7Fn

0kþðE=2ÞðFn
Þ00kþoðEÞ ð72Þ

and

a7 ¼ a07ðE=2Þa00þoðEÞ, ð73Þ

where

a00 ¼ a
�1
0 Fn

0k � ðFn
Þ00k, ð74Þ

which follows on differentiation of a¼ jFnkj: After some algebra
we obtain

PþNþ þP�N� ¼ pþa þp�a þEm0a�2
0 M0f½M

0
0 ða

0
0=a0ÞM0�

�Fn

0kþ1
2M0ðF

n
Þ00kgþoðEÞ ð75Þ

and

PþNþ P�N� ¼ pþa p�a þm0a�2
0 M2

0Fn

0kþOðEÞ, ð76Þ

where p7
a are the applied tractions at the lateral surfaces and

M¼M � k: The role of the latter suggests the decomposition

M¼ 1 MþMk, ð77Þ

which yields

Div M¼DivJð1 MÞþM0: ð78Þ

It follows from (71) and (75) that (62) yields a well defined
differential equation in the limit of small E only if P00k remains
bounded. Further, (63) implies that the deformation gradient and
magnetization are bounded on O only if P0 is bounded. From (75)
and (76) it is therefore necessary that

pþa þp�a ¼ EpþoðEÞ and pþa p�a ¼ 2qþoð1Þ, ð79Þ

where p and q are of order unity in magnitude. It follows that, to
leading order in E,

P00k¼ pþm0a�2
0 M0f½M

0
0 ða

0
0=a0ÞM0�F

n

0kþ1
2M0ðF

n
Þ00kg

and P0k¼ qþ1
2m0a�2

0 M2
0Fn

0k: ð80Þ

3.2. Estimate of the self field

Before proceeding we obtain an estimate of the leading order
self field potential (32). An elementary calculation based on (77)
and (78) gives

4pjsðy,tÞ ¼ E
Z
@O

1 M0 � m
jy rj

dS

Z
O

½DivJð1 M0ÞþM00�

jy rj
dA

� �

þ

Z
@kþ

Mþ

jy vþ j
dA

Z
@k

M�

jy v�j
dAþoðEÞ, ð81Þ

where the superscripts 7 identify the values of functions at the
upper and lower lateral surfaces @k7 ¼O� f7E=2g and mAO0 is
the unit normal exterior to O: This is valid provided that yarðu,tÞ
for any uAO: To estimate the associated integrals we compute
jvj0 ¼ jvj�1v � v0, where v¼ y vðx,tÞ and the derivative is with
respect to B at fixed y. Accordingly, v0 ¼ Fk, and (64) gives

jy vj00 ¼
ðy rÞ

jy rj
� d: ð82Þ

For yar this yields

1

jy vj7
¼

1

jy rj
17

E
2

ðy rÞ

jy rj2
� d

� �
þoðEÞ, ð83Þ

which, when combined with

M7 ¼M07 ðE=2ÞM00þoðEÞ, ð84Þ

results in

4pjsðy,tÞ=E¼
Z
@O

1 M0 � m
jy rj

dSþ

Z
O

M0

jy rj2
ðy rÞ � d

�

DivJð1 M0Þ

jy rj

�
dAþoðEÞ=E, ð85Þ

provided that (83) is uniformly valid over the domain. This
limitation effectively restricts the use of (85) to points y whose
distances from the membrane are of order unity compared to E;
that is, to points in space whose minimum distances from the
deforming membrane surface are large compared to membrane
thickness. Accordingly, it may not be used to describe the self
field in the interior of the material.

To characterize the magnetic state inside the film, we estimate
(32) at an interior point xAk. For points x near x, the presumed
differentiability of the deformation implies that jy vðx,tÞj ¼
OðjnjÞ, where n¼ x x and y ¼ vðx,tÞ: The self field is obtained
by computing the gradient of js with respect to y and evaluating
the result at y ; thus, for x=2@k,

4phsðyÞ ¼

Z
@k

ðM � NÞu

jy vðxÞj2
dA

Z
k

ðDiv MÞu

jy vðxÞj2
dV ,

where u¼ ðy vðxÞÞ=jy vðxÞj, ð86Þ
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in which t has been suppressed. The singularity is of order jnj2,
which is integrable in k. Therefore the volume integral makes a
contribution of order E. The boundary integral includes a con
tribution from the surface @O� ð E=2,E=2Þ, on which jy vðxÞj is
strictly bounded away from zero for any E: Accordingly, this too
contributes at order E, leaving

4phsðyÞ ¼

Z
@kþ [@k

ðM �NÞu

jy vðxÞj2
dAþOðEÞ, ð87Þ

in which M � N¼ 7M7 on @k7 , respectively. Thus,

Z
@kþ [@k

ðM � NÞu

jy vðxÞj2
dA

�����
�����r
Z
@kþ [@k

jM7 j

jy vðxÞj2
dA

r max
@kþ [@k

jM7 j

Z
@kþ [@k

1

jy vðxÞj2
dA: ð88Þ

The integrand in the final integral is dominated by its asymptotic
behavior near x; i.e., by jnj�2. For small thickness, the integral may
then be shown to be OðjlnEjÞ in magnitude. In view of (84), the
upper bound remains finite in the limit only if maxOjM0j ¼ 0, in
which case it is of order jElnEj: This guarantees that jhsðyÞj is finite
and vanishes with E. In particular, then,

hs vanishes on O, at leading order: ð89Þ

The alternative (M0a0Þ yields an upper bound of order jlnEj,
which allows the self field to grow without bound as thickness
tends to zero. In this case the magnetostatic energy, and therefore
the potential energy, may become unbounded. However, this
alternative does not require the self field to become unbounded,
and so our analysis, while suggestive, is not conclusive. In other
words, we have only shown that the constraint:

M0 ¼ 0 on O ð90Þ

is sufficient for (89) and for boundedness of the magnetostatic
energy. Using (64) and (77), we then derive

m0ATo on o, at every uAO: ð91Þ

To explore this issue further, consider the part of the potential
energy involving magnetization. This is (cf. (35), (36) and (38))

Emag ¼

Z
k
½W

1

2
ðhþhaÞ �m� dV ð92Þ

in which y and F are fixed, and reduces to

Emag ¼

Z
k
ðW ha �mÞ dV ð93Þ

if the self field is negligible; i.e., if (91) holds. Here the magne
tization is obtained by solving (27) in which the self field is
suppressed, so that Emag is controlled entirely by the deformation.
This effectively eliminates the magnetization as an independent
variable. In the work of Gioia and James [8] on non deforming
films it is proved that minimizers of (92) furnish energies that
converge to (93) as film thickness tends to zero. It was also
proved that optimal states of magnetization necessarily satisfy
(91) and that the residual self field vanishes, in accordance with
(89) (see also [9]). Further, in [8] it is shown that there is no
residual magnetostatic equation to leading order; indeed, the
solution (26) to (25) has already been used in the course of
obtaining (91) and therefore plays no further role. These results
imply that (89) and (91) characterize optimal states of magneti
zation in a sufficiently thin film, at any fixed deformation. In
particular, the magnetostatic energy is negligible at leading order.
The Euler equation for the deformation that emerges from this
leading order approximation is given by (11) [9], but with grad h
replaced by grad ha. This follows from the fact that the variational
derivative of ha, identified by a superposed dot, is purely
convective; i.e., _ha ¼ ðgrad haÞ _y , if the applied field is a stationary

function of y. The claim then follows from (16), which is
equivalent to the symmetry of grad ha: Strictly, these results are
known to be necessary only for optimal (energy minimizing)
states of magnetization and so may not apply to dynamical states.
However, in this work we use dynamics solely to facilitate the
computation of equilibria. We do not model actual dynamic
interactions. Accordingly, we restrict attention to states of mag
netization that are energetically optimal at any deformation,
equilibrated or otherwise.

Eq. (90) affords the important simplifications:

P00k¼ p and P0k¼ q: ð94Þ

For points remote from the deforming film (85) is applicable and
simplifies, by virtue of (90), to

4pjsðy,tÞ=E¼
Z
O

1 M0 � r
1

jy rj

� 	
dAþoðEÞ=E, ð95Þ

where r is the two dimensional gradient with respect to uAO
and Green’s theorem has been used to combine terms. Proceeding
as in the calculation leading to (85), we put vðu,tÞ ¼ y rðu,tÞ and
use (65) to derive

dðjvj�1Þ ¼ jvj�3v � dv, where dv¼ drðuÞ ¼ fðduÞ, ð96Þ

yielding

r
1

jy rj

� 	
¼ jy rj�3ft

ðy rÞ ð97Þ

and

4pjsðy,tÞ=E¼
Z
O

fM0

jy rj3
� ðy rÞ dAþoðEÞ=E: ð98Þ

A straightforward computation based on (23) generates the scaled
self field in the surrounding space:

4phsðy,tÞ=E¼
Z
O

GðfM0Þ dAðuÞþoðEÞ=E,

where G¼
3

jy rj5
ðy rÞ � ðy rÞ

1

jy rj3
I ð99Þ

in which rðu,tÞ is the membrane position field at time t. Thus, the
leading order model generates the dominant part of the self field
in the surrounding space (which is of order EÞ a posteriori.

3.3. Loading

Turning now to the loading, suppose the lateral surfaces are
subjected to pressures P7 . The applied tractions are

p7
a ¼ 8ðP7 ÞðFn

Þ
7 k, ð100Þ

and we assume that

P7 ¼ Ep7 þoðEÞ, ð101Þ

where p7 are of order unity. In this case q¼ 0 and

p¼ aðDpÞn ð102Þ

in (94), where Dp¼ p� pþ is the net lateral pressure across the
membrane.

Invoking (89) and the foregoing thin film approximations, we
find that (62) reduces to

DivJðP01ÞþaðDpÞnþm0ðgrad haÞ0m0 ¼ rk0r, ð103Þ

to leading order, where ðgrad haÞ0 is evaluated using (21) and (22)
with y replaced by r, and

P0 ¼WFðF0,m0Þ q0F�t
0 : ð104Þ

This is augmented by the algebraic constraints ð63Þ2 and
ð94Þ2. Using (100), (101) and y0 ¼ vðu,tÞ ¼ r, the leading order
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constraints are found to be

WmðF0,m0Þ ¼ m0haðrÞ and P0k¼ 0: ð105Þ

Together with (64), (67), (77), (90) and (104), these furnish a
system for the determination of rðu,tÞ, eðu,tÞ, M0ðu,tÞð ¼ 1 M0Þ and
q0ðu,tÞ: In practice we solve the equation obtained on multiplying
(103) through by E: This yields the equation of motion for the
membrane, which in turn furnishes the leading order approxima
tion to that for a thin sheet. Our preference for (4) over (1) is due
the availability of an explicit formula for the gradient of the
applied field (cf. (22)). From ð105Þ1 and (64) it is clear that the
constraint (91) imposes a restriction, not only on the magnetiza
tion, but also on the deformation and director fields r and e, and
thus on the geometry of the film in the presence of an applied
field. In particular, this allows the orientation of the tangent plane
to the membrane to adjust in response to the applied field.

The literature on magnetoelasticity in thin structures is typi
cally based on an a priori constraint of the Kirchoff Love type
(i.e., e¼ 0Þ on the director field (e.g. [10]). However, in Section 5
we find that solutions deviate substantially from Kirchhoff Love
kinematics. Because we have confined attention to states of
magnetization that are optimal at any deformation, and thereby
eliminated magnetization as an independent variable, it follows
by relaxation of constraints that restrictions of the Kirchhoff Love
type impede the attainment of minima of the overall potential
energy. Indeed, the analysis of [7] indicates that the Kirchhoff
Love constraint is generally incompatible with (91). Therefore the
present model is optimal relative to formulations in which such
constraints are imposed at the outset. Kirchhoff Love kinematics
obtain if the effects of deformation and magnetization are
uncoupled in the expression for the strain energy function, as in
weakly magnetized materials subjected to applied fields of
sufficient intensity [7].

Standard mixed traction/position problems consist of the
specification of r and the traction:

s¼ P01m, ð106Þ

on complementary parts of the boundary curve @O: Here s is the
value on @O of the exact traction field acting on a part of the
cylindrical generating surface of the body where tractions are
assigned. In this work we assume position to be prescribed on
@O� ½ E=2,E=2� and thus assign r everywhere on @O:

3.4. Solvability of the constraints

We demonstrate the solvability of the constraints ð105Þ1,2 for
M and e at a given deformation rðu,tÞ of O. To ease the notation,
here and henceforth the subscript 0 is suppressed on the under
standing that all fields discussed are the restrictions to O of three
dimensional fields identified by the same symbol. We impose (90)
at the outset, and thus find it more convenient to work with a
formulation based on the use of F and M, rather than F and m, as
independent variables. To this end we invoke bulk incompressi
bility and use (29) to define the function:

~W ðF,MÞ ¼WðF,FMÞ for MAO0: ð107Þ

Consider a one parameter family of magnetizations MðuÞAO0.
Using a superposed dot to denote the derivative with respect to
the parameter, we derive ~W M �

_M ¼Wm � F _M at fixed F, and
therefore

½ ~W M Ft
ðWmÞ� �

_M ¼ 0 for all _MAO0, ð108Þ

wherein ~W MAO0. It follows that ~W M ¼ 1Ft
ðWmÞ, where 1Ft

¼ ft

by virtue of (64); Eq. (108) then implies that

~W M ¼ m0fthaðrÞ: ð109Þ

We regard this as an equation for M in which r, f and e (hence FÞ
are assigned. To investigate its solvability we compute another
derivative, again at fixed F, obtaining

ð ~W MMÞ
_M ¼ ft

ðWmmÞ _m ¼ ½f
t
ðWmmÞf� _M: ð110Þ

Therefore,

_M � ð ~W MMÞ
_M ¼ f _M � ðWmmÞf _M, ð111Þ

which is positive for all non zero _M by virtue of ð41Þ2. Accord
ingly, ~W MM is positive definite and ~W ðF,�Þ is strictly convex.
Eq. (109) therefore possesses a unique solution M̂ which mini
mizes ~W at fixed F: This in turn determines the magnetization
m¼ fM̂, which furnishes the unique solution to

Wm ¼ m0haðrÞ: ð112Þ

Next, we fix f and define

Gðe,mÞ ¼Wðfþdðf,eÞ � k,mÞ, ð113Þ

where dðf,eÞ is the function defined by (67), in which a and n are
determined by f via (68) and (70). Consider one parameter
families eðuÞ and mðuÞ: The former induces the one parameter
family FðuÞ of deformation gradients with derivative _F ¼ f _e � k
(cf. (64) and (67)). Accordingly,

_G ¼ _e � ft
ðWFÞkþ _m �Wm,

yielding Ge ¼ ft
ðWFÞk and Gm ¼Wm: ð114Þ

Using (104) and the invertibility of Ft , we find the constraint
ð105Þ2 to be equivalent to

Ge ¼ 0 and q¼ d � ðWFÞk: ð115Þ

To address the first of these equations, we keep f fixed and
compute:

ðGeÞ
�
¼ ft
fWFF½f _e � k�þðWFmÞ _mgk: ð116Þ

Here we regard mðuÞ as the magnetization induced by eðuÞ via
(112); that is, we use the unique solution M¼ M̂ðeÞ to (109),
associated with fixed r and f, to generate mðuÞ ¼ fM̂ðeðuÞÞ: This
satisfies (112) identically for all eðuÞ with u in some open interval.
It follows that

_m ¼ ðWmmÞ
�1
ðWmFÞðf _e � kÞ, ð117Þ

so that (116) reduces to

ðGeÞ
�
¼ ft
fAðkÞgðf _eÞ, ð118Þ

where Að�Þ is defined by (42).
With these results in hand, we define a function GðeÞ by

GðeÞ ¼ Gðe,fM̂ðeÞÞ m0haðrÞ � fM̂ðeÞ, ð119Þ

at the same r and f: Inserting eðuÞ and evaluating the derivative,
we find from (112) and ð114Þ2 that

_G ¼ Ge � _e ð120Þ

for all u in some open interval. Then,

G ¼ ðGeÞ
�
� _eþGe � e: ð121Þ

The domain of Gð�Þ is the linear space O0, a convex set. If e1,2

belong to this domain, then so do all points on the straight line
path

eðuÞ ¼ ue2þð1 uÞe1; uAð0,1Þ, ð122Þ

on which (121) reduces to

G ¼ f _e � fAðkÞgðf _eÞ; _e ¼ e2 e1a0: ð123Þ

Setting a¼ f _eATo and b¼ k, we find that (43) is satisfied because
Fnk¼ an is orthogonal to To (cf. (68)). Accordingly, the strong
ellipticity inequality ð41Þ1 is applicable and implies that G40.
Integration of this result over ð0,uÞ and then again over (0,1)
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yields the conclusion that GðeÞ is strictly convex; i.e.,

Gðe2Þ Gðe1Þ4Geðe1Þ � ðe2 e1Þ ð124Þ

for all unequal pairs e1,2, wherein Ge ¼ Ge by virtue of (120).
Because strictly convex functions possess unique stationary
points, we conclude that ð115Þ1 has a unique solution en: In
particular, this solution satisfies GðeÞ4GðenÞ for all eaen and
therefore furnishes the unique minimizer of GðeÞ: With this
solution in hand, the unique magnetization field associated with
a given deformation rðu,tÞ, and attendant gradient f, is given by
m¼ fM̂ðenÞ:

3.5. Lyapunov functions

We have shown that the constraints (109) and ð115Þ1 possess
unique solutions e and M at fixed r and f: To obtain them, use
may be made of the Newton Raphson method, for example. The
convexity conditions established in the foregoing ensure that the
associated iterates converge to a unique solution. Alternatively,
we may embed (109) and ð115Þ1 into the artificial dynamical
problems:

mMþc _Mþ ~W M ¼ m0fthaðrÞ and meþc _eþGe ¼ 0, ð125Þ

respectively, in which m and c are positive constants and the
superposed dots in the two equations now identify derivatives
with respect to time like parameters t1,2, respectively. Equilibria
of this system are precisely the unique solutions to (109) and
ð115Þ1. Further, solutions to this system satisfy the energy
balances:

d

dt1

1

2
mj _Mj2þ ~W

� 	
¼ cj _Mj2 and

d

dt2

1

2
mj _ej2þG

� 	
¼ cj _ej2:

ð126Þ

Standard theory for ordinary differential equations then ensures
the existence of trajectories of ð125Þ1,2 for arbitrary initial data on
which

L1 ¼
1
2 mj _Mj2þ ~W and L2 ¼

1
2mj _ej2þG ð127Þ

are strictly decreasing. Our results concerning the minimizing
properties of equilibria then imply that L1,2 furnish Lyapunov
functions for ð125Þ1,2, respectively. All trajectories tend asympto
tically to solutions of the constraints (109) and ð115Þ1, and these
are stable equilibria of the dynamical system [21]. The imple
mentation of these results is discussed in Section 4.

Finally, we use the energy balance (37) to construct a Lyapu
nov function for the motion rðu,tÞ: To this end we observe, using
(34) (36), (38) and (39) that

K ¼ EKMþoðEÞ, L¼ ELMþoðEÞ and E¼ EEMþoðEÞ, ð128Þ

where

KM ¼
1

2

Z
O
rkj_rj

2 dA, LM ¼

Z V

p�ðvÞ dv pþV

and EM ¼

Z
O

WðF,mÞ dA m0

Z
O

haðrÞ �m dA LM , ð129Þ

respectively, are the leading order (membrane) approximations
to the kinetic energy, pressure potential, and potential energy, in
which

V ¼
1

3

Z
O
an � r dA ð130Þ

is the volume of the compressible gas contained by the mem
brane. From the leading order equation of motion (103), we
obtain

_K M ¼

Z
O
_r � ½DivJðP1ÞþaðDpÞnþm0ðgrad haÞm� dA: ð131Þ

Using [9]

_LM ¼

Z
O
aðDpÞn � _r dA ð132Þ

this is reduced to

_K M ¼
_LMþm0

Z
O

m � _ha dAþ

Z
@O

P1m � _r dS

Z
O

P1 � _f dA, ð133Þ

where we have used _ha ¼ ðgrad haÞ_r for stationary applied fields,
together with the symmetry of grad ha. In this work we assume r
to be fixed on @O and accordingly suppress the integral over @O.
We now use ð105Þ1 and combine the result with ð129Þ3 to derive

d

dt
ðKMþEMÞ ¼

Z
O
ðWF �

_F P1 � _f Þ dA: ð134Þ

Using (104) with the constraint of bulk incompressibility in the
form F�t

� _F ¼ 0, together with (59) and (64), we find that

WF �
_F ¼ P � _F ¼ P1 � _fþPk � _d ð135Þ

and thereby reduce (134) to

d

dt
ðKMþEMÞ ¼

Z
O

Pk � _d dA, ð136Þ

which vanishes by virtue of (105). Thus the leading order model
yields the conservation law ðd=dtÞðKMþEMÞ ¼ 0, which is replaced,
in the presence of dissipation, by the imbalance ðd=dtÞ

ðKMþEMÞr0: This observation suggests that a dissipative numer

ical scheme may be based on a discretization of the artificial

dynamical equation:

DivJðP1ÞþaðDpÞnþm0ðgrad haÞm¼ rkrþc _r, ð137Þ

where c is a suitable constant. It is straightforward to show that if
this equation is used in place of (103), then the leading order
energy balance is replaced by

d

dt
ðKMþEMÞ ¼ c

Z
O
j_rj2 dA: ð138Þ

Our earlier observation that stable equilibria minimize E implies
that EM is minimized, to leading order in thickness. Indeed, it is
easily verified that (112) and the static specialization of (103)
furnish the Euler Lagrange equations for EM. Consequently,
KMþEM decays on trajectories of (137), provided that c40, and
achieves a strict minimum at a stable equilibrium. It therefore yields
a Lyapunov function for (137), whose equilibria coincide with those
of (103). This conclusion applies strictly only to a finite dimensional
projection of the problem associated with a spatial discretization of
the equations on O: It also presumes that equilibria are minimizers
of EM : Here, however, we have only imposed necessary conditions
for a minimum of the energy. In particular, in the purely mechanical
specialization of the theory it is known that these conditions are
insufficient to preclude compressive stresses in equilibrium, which
violate the Legendre Hadamard necessary condition for minimizers
of EM [25]. In such circumstances the existence of minimizers may
be restored by replacing the membrane energy with a suitable
relaxation [25 28] which excludes compressive stress a priori via the
mechanism of fine scale wrinkling. This is the subject of tension field

theory [29]. In this work we apply the theory to problems that do
not exhibit wrinkling and therefore do not require the explicit
relaxation.

We emphasize the fact that (137) does not describe the actual
dynamics of the membrane. Rather, it is used here solely to
expedite the computation of equilibria by embedding the equili
brium problem into an artificial (finite dimensional) dynamical
system whose equilibria coincide with those of the physical
problem. As such, it furnishes a convenient regularization of the
equations. The strictly dissipative nature of this system is a
feature shared by actual equations of motion that account for
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dissipation through constitutive equations rather than through
modification of the equation of motion. However, (137) proves
more convenient for the purpose of generating equilibria because
it allows the discrete equations associated with the temporal
evolution to be decoupled, affording a more efficient solution
procedure. This is discussed in the next section.

4. Finite-difference scheme

Equation (137) is discretized by using a finite difference
scheme derived from Green’s theorem. The application of this
scheme to plane strain problems in non linear elasticity theory is
described by Silling [30]. Its adaptation to membrane theory is
developed in [26,27]. Here, we summarize the method and
describe its extension to magnetoelasticity.

The reference plane O is covered by a grid consisting of cells of
the kind depicted in Fig. 1. Nodes are labeled using integer

superscripts ði,jÞ: Thus, ui,j
a are the referential coordinates of node

ði,jÞ, where ua ¼ u � ia; a¼ 1,2: The four regions formed by a node,
together with its nearest neighbor nodes, are called zones. Zone
centered points, identified by open circles in Fig. 1, are labeled
using half integer superscripts.

Green’s theorem may be stated in the form:Z
D
sa,a da¼ eab

Z
@D
sa dub, ð139Þ

where saðu1,u2Þ is a smooth two dimensional vector field, D is an
arbitrary simply connected subregion of O and commas followed
by subscripts identify partial derivatives with respect to the
indicated coordinates. To approximate the divergence sa,a at
node (i,j) we identify D with the quadrilateral contained within
the dashed contour of Fig. 1. The left hand side of (114) is
estimated as the nodal value of the integrand multiplied by
the area of D; the right hand side as the zone centered values
of the integrand on each of the four edges of @D multiplied by the
appropriate edge length. Thus [26],

2Ai,jðsa,aÞ
i,j
¼ eab½s

iþ1=2,jþ1=2
a ðui,jþ1

b uiþ1,j
b Þ

þsi�1=2,jþ1=2
a ðui�1,j

b ui,jþ1
b Þ

þsi�1=2,j�1=2
a ðui,j�1

b ui�1,j
b Þ

þsiþ1=2,j�1=2
a ðuiþ1,j

b ui,j�1
b Þ�, ð140Þ

where

Ai,j ¼ 1
4½ðu

i�1,j
2 uiþ1,j

2 Þðui,jþ1
1 ui,j�1

1 Þ ðui�1,j
1 uiþ1,j

1 Þðui,jþ1
2 ui,j�1

2 Þ�

ð141Þ

is one half the area of the quadrilateral.
We also have need of gradients of various functions at zone

centered points. First, we apply (139) with sa ¼ casðu1,u2Þ, where
s is a smooth scalar field and ca are arbitrary constants. This
yieldsZ

D
s,a da¼ eab

Z
@D
s dub: ð142Þ

We now identify D with the shaded region in the figure. The left
hand side is approximated by the product of the shaded area with
the integrand, evaluated at the zone centered point, and the four
edge contributions to the right hand side are approximated by
replacing the integrand in each with the average of the nodal
values at the endpoints. This gives [26]

2Aiþ1=2,jþ1=2ðsiþ1=2,jþ1=2
,a Þ ¼ eab½ðsiþ1,jþ1 si,jÞðui,jþ1

b uiþ1,j
b Þ

ðsi,jþ1 siþ1,jÞðuiþ1,jþ1
b ui,j

b Þ�, ð143Þ

where

Aiþ1=2,jþ1=2 ¼ 1
2½ðu

i,jþ1
2 uiþ1,j

2 Þðuiþ1,jþ1
1 ui,j

1 Þ ðu
i,jþ1
1 uiþ1,j

1 Þ

ðuiþ1,jþ1
2 ui,j

2 Þ�: ð144Þ

The magnetoelastic equilibrium equation is given by (137) in
which the right hand side is suppressed. To facilitate its discre
tization, we exploit the fact that the term an associated with the
pressure load may be expressed as a divergence on O [31]. Thus,
n¼ nkik, where i3 ¼ k,

ank ¼
1
2eijkeabfiafjb ¼ Gkb,b, ð145Þ

and

Gkb ¼
1
2eijkeabfiarj ð146Þ

in which eijk and eab, respectively, are the three and two
dimensional unit alternators (e123 ¼ e12 ¼ þ1Þ: This result is use
ful in the present circumstances because the net lateral pressure
on the membrane is uniformly distributed. Thus, the equilibrium
equation is equivalent to the system

Tka,a ¼ Rk, where Tka ¼ PkaþðDpÞGka and Rk ¼ m0hðaÞk,i fiaMa:

ð147Þ

Here Pka ¼ P� ik � ia are the components of P1, hðaÞk ¼ ik � ha are the
components of the applied field, fka ¼ f � ik � ia ¼ rk,a are the
components of the surface deformation gradient, rk ¼ ik � r are
the Cartesian coordinates of a material point on the deformed
surface and Ma ¼M � ia are the magnetization components.

Each of Eqs. (147) is of the form:

sa,a ¼ f , ð148Þ

where sa ¼ Tka and f ¼ Rk; k¼ 1,2,3: The sa, in turn, depend on
the magnetization and on the gradients of s¼ rk ðk¼ 1,2,3Þ. To
solve (148) at node (i,j) we integrate it over the region enclosed by
the dashed quadrilateral of Fig. 1 with vertices at the nearest
neighbor nodes, obtaining

Si,j
¼ Fi,j, ð149Þ

where

Si,j
¼ 2Ai,jðsa,aÞ

i,j
ð150Þ

and

Fi,j ¼ 2Ai,jf i,j: ð151ÞFig. 1. Finite-difference mesh.
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In (150) the right hand side is evaluated in terms of the zone
centered values of sa via (140). The latter are determined
constitutively by corresponding zone centered values of magne
tization together with the gradients s,a which, in turn, are given
via (143) by the values of s at the nodes located at the vertices of
the shaded region of Fig. 1. The scheme is seen to require one
degree less differentiability than that required by the local
differential equations. Discussions of the associated truncation
errors are given by Silling [30] and Hermann and Bertholf [32].

To solve Eq. (149) we introduce a regularization based on the
artificial dynamical system (cf. (137)):

Si,j,n
¼mi,js i,j,n

þci,j _s i,j,n
þFi,j,n, ð152Þ

where mi,j ¼ 2Ai,jr is the nodal mass, ci,j ¼ 2Ai,jc is the nodal
damping coefficient, n is the time step, and superposed dots refer
to derivatives with respect to (artificial) time. This is not the
discrete form of the actual dynamical equations. Rather, it is an
artificial system introduced solely to expedite the computation of
equilibria. The basic method, known as dynamic relaxation [33], is
a powerful tool for generating equilibria in a wide variety of non
linear problems. It was developed for membrane theory in a
purely mechanical setting in [26 28] and extended to coupled
thermoelasticity in [31].

We observe that the matrix Gkb associated with lateral pres
sure is evaluated at zone centered points (cf. (147) and (150)).
However, this involves the deformation rk (cf. (146)), a nodal
variable. The required evaluation is based on the average of the
deformations at the four adjacent nodes. Similarly, (147) requires
nodal values of fkaMa, which are obtained by averaging values at
the four adjacent zone centered points.

In the case of volume dependent pressure loading it is neces
sary to evaluate the volume enclosed by the deformed membrane
and the plane O: This is obtained from (130) in which an � r¼
1
2eijkeabfiafjbrk: The domain is divided into zones the shaded
regions in Fig. 1 and the integral over each is estimated as the
zone centered value of the integrand multiplied by the shaded
area, given by (144). Similarly, the scaled self field at a given
position y in the surrounding space is obtained by using (99), in
which the integral is replaced by the sum of the integrals over the
zones. Each of these is approximated by multiplying the value of
the integrand at the relevant zone centered point by the shaded
area. The integrand is formed from zone centered values of f and
M and the averaged values of the nodal membrane position r.

The time derivatives in (152) are approximated by the central
differences:

_sn
¼

1

2
ð _snþ1=2

þ _sn�1=2
Þ, sn

¼
1

h
ð _snþ1=2 _sn�1=2

Þ,

_sn�1=2
¼

1

h
ðsn sn�1Þ, ð153Þ

where h is the time increment and the node label (i,j) has been
suppressed. Substitution into (152) furnishes the explicit,
decoupled system:

ðh�1þc=2Þmi,j _s i,j,nþ1=2
¼ ðh�1 c=2Þmi,j _s i,j,n�1=2

þSi,j,n Fi,j,n,

si,j,nþ1 ¼ si,j,nþh _s i,j,nþ1=2, ð154Þ

which is used to advance the solution in time node by node. The
stress at zone centered points is updated by using (64), (65),
(104), in which the reactive constraint pressure q is computed
from (67), (68) and ð115Þ2.

The starting procedure is derived from the quiescent initial
conditions:

si,j,0 ¼ s0ðu
i,j
a Þ, _s i,j,0

¼ 0, ð155Þ

where s0ðuaÞ is assigned. Thus, from (154) we obtain

ð2=hÞmi,j _s i,j,1=2
¼Si,j,0 Fi,j,0, ð156Þ

in which the right hand side is determined by the function s0:

The system is non dimensionalized and the solution is advanced
to the first tn such that max

i,j jS
i,j,n Fi,j,njod, a suitable tolerance.

We remark that because only long time limits of solutions are
relevant, temporal accuracy is not an issue. Stability is addressed
by using sufficiently small time steps selected on the basis of
successive trials based on a sequence of values of h.

A similar temporal discretization is used to update the magne
tization and director fields M and e at zone centered points.
Consistency with the derivation of the Lyapunov functions L1,2 of
Section 3 requires the use of a staggered scheme in which the
predicted position field at time step nþ1 is fixed while integrating
(126). We then start the integration of ð126Þ2 using the value of e
at step n as the initial condition (with the initial value _e ¼ 0Þ. This
calculation proceeds in increments of the time like variable t2. We
fix the predicted value of e at the subsequent step and use this
value to integrate ð126Þ1 with respect to t1, using the value of M
generated by the previous value of e as the initial condition (with
initial value _M ¼ 0Þ. This continues until convergence is achieved,
yielding the magnetization associated with the predicted value
of e: The integration with respect to t2 then resumes and the cycle
is repeated until convergence is achieved, yielding the values of e
and M associated with the position field at step nþ1: The process
is repeated until the deformation field converges, yielding the final
equilibrium position, magnetization and director fields over all
nodes and zone centered points. However, numerical experiments
indicate that this computationally intensive double staggered
scheme is not required in practice. Instead, we find that equili
brium states may be achieved by treating all fields on an equal
basis as far as temporal integration is concerned.

The magnetization at step n¼0 is set to zero. This is the unique
solution to (112) if the applied field vanishes. Accordingly, the
applied field intensity is first set to a small value and the
equilibrium fields are obtained by the foregoing procedure.
Successive equilibria are then computed for a sequence of
increasing field intensities, using the equilibria associated with
each member of the sequence as initial values for the next
member.

5. Examples

In this final section we discuss the results of some numerical
experiments. All examples pertain to a membrane that is initially

square, of side 8 mm and thickness h¼ 50� 10�3 mm: The latter
is used in place of E in the formula (99) for the self field, which
was derived using a scheme in which E is interpreted as (dimen

sionless) thickness. The mass density is r¼ 1750 kg=m3; the free

space permeability is m0 ¼ 4p� 10�7 N=A2 (Newton per square

Ampere) [14]; and the dipole source is centrally located above the

plane at yd ¼ ð8 mmÞk. We find that convergence is achieved in all
cases using a regular 33�33 mesh. Material parameters are taken
to be those suggested in [34]. Thus, the saturation magnetization

is Ms ¼ m0=2, the shear modulus is m¼ 1:0� 106 N=m2, and the

remaining parameters in (56) are C10 ¼ 1:0, C20 ¼ 0:625, C11 ¼

0:0791, C21 ¼ 0:0, C01 ¼ b=6 and C02 ¼ b=2, where b¼ m0M
2

s =2:

Fig. 2 depicts the deformation of the membrane under zero
pressure in response to a dipole of strength D¼ 160� 10�6 A m2

(cf. (20)). The vertical and in plane dimensions are scaled differ
ently to aid in visualization. We have used the data generated by
the simulation, together with (69), to verify that the three
dimensional principal stretches on the membrane surface are
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well within the limits required for the validity of ð41Þ2. The
referential in plane magnetization field M is shown in Fig. 3.

This field is directed everywhere toward the center of the
membrane, where differentiability requires that it diminish to
zero in intensity. This and the constraint (91) cause the interac
tion with the applied field to weaken near the center, resulting in
a deformed surface that is relatively flat under the dipole source.

Fig. 4 shows the variation of the in plane part, e, of the director
field with respect to position on the reference plane. The defor
mation deviates from Kirchhoff Love kinematics wherever this is
non zero. This reflects the bias induced by the dipole source at
points lying off the dipole axis, causing the director d on the
deformed surface to tilt relative to the tangent plane as the
membrane adjusts to the applied field. The effect diminishes near
the corners of the membrane where the field is relatively weak,
and near the center where the field lines intersect the membrane
orthogonally and the associated bias vanishes; in either case the
kinematics revert to the Kirchhoff Love mode. Fig. 5 illustrates
the self field generated by the membrane, computed post facto

using (99), in a plane of symmetry obtained by fixing a reference
coordinate at the value zero.

Finally, the effects of pre stretch and pressure are displayed in
Fig. 6, in which the height of the deformed surface, at a point on
the dipole axis, is plotted against dipole strength. The open circles
and crosses correspond to zero applied pressure; the former
corresponding to no pre stretch and the latter to a uniform pre
stretch of 1.2 induced by an outward displacement of nodes
on the boundary; these are subsequently fixed in the course of
the simulation. Pre stretch is seen to stiffen the membrane

dramatically, resulting in a much smaller deflection at any given
field strength. The effect of pressure (at no pre stretch) is
illustrated by the dotted and starred data, the former correspond
ing to a fixed inflation pressure P¼ 2:0� 105 Pa acting on the

Fig. 2. Deformed membrane at D 160� 10 6 A m2.

Fig. 3. Referential magnetization at D 160� 10 6 A m2 on the reference plane.

Fig. 4. In-plane part, e, of director field, at D 160� 10 6 A m2.

Fig. 5. Self-field in space at D 160� 10 6 A m2, in the plane defined by u2 0.

Fig. 6. Membrane displacement under the dipole source, as a function of dipole

strength. Effect of pre-stretch indicated by circles (3) and crosses (�); effect of

fixed or volume-dependent pressure is indicated by dots (�) and stars (*),

respectively (see text).
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interior of the membrane; the external pressure is assumed to
vanish. This is regarded as being supplied by a large reservoir
with an opening on the reference plane. The stars correspond to a
volume-dependent pressure in which the product of the pressure
and the enclosed volume remains constant, as in an ideal gas at
fixed temperature. The constant is derived by using (130) to
compute the contained volume generated in response to the fixed
pressure at zero field strength. As expected, pressure has a
significant effect on deformation at small field intensities, but
its relative importance diminishes with increasing intensity.
Moreover, at any value of field intensity the volume-dependent
pressure yields a smaller displacement than that produced by the
fixed pressure. The discrepancy increases with field intensity due
to the attendant increase in volume, which causes the volume-
dependent pressure to be reduced in magnitude. In all cases an
upper limit is predicted for the deformation that can be main-
tained in equilibrium. Such limits are identified by the failure of
the dynamic relaxation method to generate equilibria when the
field intensity is increased above a critical value. Our results thus
establish the existence of a limit-point instability at sufficiently
high field intensities. This corroborates the analysis of [35], based
on a low-order finite-dimensional projection of the model devel-
oped in [7].
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