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Magneto-electro-elastic and multiferroic materials can be combined in appealing nanostructures characterized
by the coexistence and coupling of electric, magnetic, and mechanical phases with potential applications in novel
multifunctional devices. Here, we derive a theory for nonvolatile room-temperature memory elements composed
of magnetostrictive nanoparticles embedded in a piezoelectric matrix: two stable orthogonal magnetization states
are obtained by the competition of anisotropy and external magnetic polarization. The innovative nontoggle
switching between the states is modeled by a thorough combination of the nanomechanical Eshelby approach
with the nanomagnetic Landau-Lifshitz-Gilbert formalism, yielding a robust picture of the dynamical behavior
and allowing the improvement of the energetic efficiency.
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I. INTRODUCTION

Magneto-electro-elastic and multiferroic heterostructures
have become one of the hottest topics of condensed mat-
ter physics in recent years.1–5 The coexistence of electric,
magnetic, and elastic subsystems brings out novel physical
phenomena and offers possibilities for new devices, such as
sensors, actuators, transducers, and memories.6 Of paramount
interest is the cross coupling between the magnetic and
electric orders. In fact, the magnetic field control of electric
polarization and the electric field control of magnetization have
been observed in different materials.7,8 However, because of
the weak magnetoelectric coupling of most single-phase sys-
tems, the introduction of composites, such as ferromagnetic-
ferroelectric heterostructures, offers a promising route for
obtaining strong cross couplings. In these structures, the
coupling between polarization and magnetization is me-
chanically mediated through the magnetostrictive and the
piezoelectric properties of the components. Typically, the
heterogeneous structure is multilayered or composed of a
ferromagnetic nanoparticle in contact with or embedded into
a ferroelectric substrate or matrix.5 The determination of
the exact distribution of the elastic fields in the structure
is crucial for quantifying the coupling between the ferroic
phases. Therefore the nanomechanical techniques,9 e.g., based
on the multiphysics Eshelby theory,10 are of primary impor-
tance and must be combined with ferromagnetic11,12 and/or
ferroelectric13 models in order to obtain the whole picture of
the heterostructures behavior.

One of the most important reasons for considering multifer-
roic materials and structures comes from the global demand
for low-power devices. In fact, it is generally accepted that
the factor limiting the down scaling and the high integration
level in standard semiconductor electronics is the power
dissipation.14 The energy needed for switching the state of
a bit in a standard electronic device is equal to at least
NkBT ln(1/p), where N is the numbers of electrons (weakly
or noninteracting carriers) involved in the process, kB is the
Boltzmann constant, T is the temperature and p is the bit error
probability. On the other hand, if the information is encoded in
the magnetization state of a monodomain ferromagnet (with

M strongly interacting spins), the switching process dissipates
an energy equal to about kBT ln(1/p), independently of the
number M of spins.15 Because of this remarkable result,
ferromagnetic and multiferroic nanolayers and nanoparticles
are attracting increasing attention for computing architectures
and for systems based on energy harvesting techniques.16,17

In particular, mechanically induced rotation of magnetization
consumes extremely low energies and is very appropriate for
nanomagnetic logic.18,19

Among all the above mentioned applications, multifer-
roic or magnetoelectric random access memories (RAM)
are paradigmatic examples promising nonvolatile magnetic
storage and low power consumption. In these devices, the
information is stored in different magnetization states of
a ferromagnetic phase and the switching is controlled by
electric and/or elastic actions. The exploiting of single-phase
multiferroic barriers into magnetic tunneling junctions allowed
the implementation of memory cells, but still far below room
temperature.20 Also the direct control of magnetization by
electric field is achieved at very low temperatures in GaMnAs
semiconductors.21,22 For practical applications, the weak mag-
netoelectric interactions of room temperature multiferroics
such as bismuth ferrite (BiFeO3) or chromium oxide (Cr2O3)
can be amplified using specific interfacial properties, but this
approach requires high-quality crystals and interfaces.23–25

Besides intrinsic multiferroics, several multiphase het-
erostructures have been proposed in order to control the
memory effect with electric and elastic external fields.26–28

However, difficulties in precisely controlling the local magne-
tization switching and in obtaining the nonvolatile requirement
induced further researches. Of particular interest are the
solutions based on a temporary magnetic anisotropy induced
by a pulse of electric field. In fact, controlled pulses allow
the magnetization switching between two opposite states.29–31

Detailed and refined simulations have been recently performed
to evaluate the performances of this technique.32 It allows a
180◦ “ballistic switch” of the magnetization, but still presents
some limitations: (i) for symmetry reasons, the system is a
toggle memory, which means that the state of the system must
be known prior writing new information, and (ii) since it relies
on precession of the magnetization toward the new state after
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the electric pulse, it implies a very precise control of this pulse
in the subnanosecond time scale.

To circumvent these issues, we suggest to spatially break
the symmetry of the equilibrium positions. This point can be
simply realized by considering two orthogonal magnetization
states.33 In this paper, we are concerned with this approach,
here implemented in a new paradigmatic (nontoggle and
nonvolatile) memory structure. We suppose to introduce a
magnetostrictive nanoparticle into a piezoelectric matrix. In
this structure, it is possible to obtain two orthogonal stable po-
sitions of the magnetization generated by the competition be-
tween anisotropic and Zeeman energies.33–35 The action of the
piezoelectric matrix, coupled with the magnetostriction of
the particle, is able to yield (i) a nontoggle switching between
the states of the memory (it means that it is possible to write
new information without the knowledge of the stored bit) and
(ii) a commutation process that does not depend on the shape
and on the timing of the applied electric pulse.

The present investigation is relevant from the technological
point of view because of the proposed innovative structure.
On the other hand, a continuum model is here developed,
fully describing the physics of the system in both static
and dynamic regimes. In fact, for studying particle/matrix
heterostructures, we develop a general and versatile procedure
based on the combination of the Eshelby nanomechanical
method9,10 with the Landau-Lifshitz-Gilbert (LLG) nanomag-
netism formalism.11,12

We have chosen a geometry based on an ellipsoidal
particle embedded in a matrix for two main reasons: firstly,
the choice of a particle makes possible the large-scale
integration in a planar array of elements, and secondly, it
is well known that the physical fields, induced within an
ellipsoidal inhomogeneity by remotely applied sources, are
always uniform assuring the easy control of the internal
magnetization. However, the determination of the internal
fields in an ellipsoidal particle from the externally applied
ones requires a refined theory based on the Eshelby formalism,
generalized in order to consider the electro-magneto-elastic
coupling.9,10 The thorough analysis of the elastic fields is
crucial for evaluating the magnetoelectric interaction, which
is mediated by the mechanical stress distributed over the
particle-matrix interface. Hence, we developed the complete
theoretical procedure for determining all the electromagnetic
and mechanical fields in the structures. In particular, it predicts
the existence of two stable magnetization states and allows us
to define the switching scheme, controlled by the piezoelectric
matrix. Then, this first theoretical device was combined with
the LLG equation, which is able to describe the dynamic
behavior of the magnetization vector within the particle.11,12

We therefore studied the intriguing and complex dynamic
scenario framing the time evolution of the magnetization in
a ferromagnetic nanoparticle embedded in the piezoelectric
matrix. It is important to observe that only a given range of
values for the electric field is appropriate for obtaining a correct
switching behavior. This point is strongly related to the com-
plicated and tortuous three-dimensional trajectories followed
by the magnetization during the dynamical phases. Finally,
we established a robust picture of the commutation strategy,
we performed the energetic analysis and we determined the
switching times of the device.

The structure of the paper is the following. In Sec. II, we in-
troduce the memory element constituted of the ferromagnetic
particle embedded into the piezoelectric matrix and we define
the theoretical formalism used for its description. In Secs. III
and IV, we analyze in detail the coupling with the externally
applied magnetic and electro-mechanic fields, respectively.
Here, we make extensive use of the multiphysics Eshelby
theory. In Sec. V, we summarize the set of equations describing
the memory element and we obtain the static behavior of the
system. In particular, we prove the possibility to obtain the
bistable character of the magnetization with two orthogonal
orientations. In Sec. VI, we apply the LLG equation to describe
the dynamic response of the system. We demonstrate the
thermal stability, the high switching rapidity, and the energetic
efficiency of the device.

II. THE MEMORY ELEMENT

We briefly introduce here the principle of operation of the
memory element. We take into consideration a magnetoelastic
particle embedded in a piezoelectric matrix, as represented
in Fig. 1. The particle shows two kinds of anisotropy: the
geometrical one, caused by the prolate shape of the ellipsoid,
and the physical one, induced through technological processes.
Both of them tend to align the magnetization along the x

axis (without any preference between positive and negative
directions). We now propose to apply a magnetic field along
the y axis. From the technological point of view, this field can
be obtained, for example, through a permanent nanomagnet.
The competition between the anisotropy and the applied
magnetic field generates two energetically equivalent stable
orientations for the magnetization. They are represented by
the quite orthogonal red and blue arrows in Fig. 1. Of course,
to obtain an usable memory element, we must be able to switch
the magnetization between these states with a reversible and
versatile mechanism. To do this, we take advantage of the
magnetostriction of the particle coupled with the piezoelectric
matrix. In fact, the magnetostrictive ellipsoid exhibits two
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FIG. 1. (Color online) Scheme of the magnetoelastic (ME)
particle embedded in the piezoelectric (PE) matrix. The easy axis
(EA) and the hard axis (HA) of the particle are aligned with the
reference frame (x,y). The electrodes e1 and e2 generate the electric
field �E∞ at ϕ = 3π/4 while the magnetic field �H∞ is applied at
ϕ = π/2. The resulting two stable positions for �M correspond to the
values “0” and “1” of the stored bit.
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properties: (i) when magnetized, it changes its shape extending
in the direction of the magnetization and shrinking in the
orthogonal plane, and (ii) conversely, when arbitrarily strained,
the resulting magnetization tends to align with the direction
of the larger elongation. We can exploit this latter property
as follows: a varying (positive or negative) electric field
applied to the system generates, through the piezoelectric
effect, a tensile or compressive stress along the direction at
ϕ = 3π/4 (see Fig. 1). Independently of the initial state of
the memory, a tensile stress leads to the recording of the
bit “1,” while a compressive stress leads to the bit “0.” We
have therefore obtained a nontoggle switching mechanism,
which will be thoroughly modeled in the following. The
reading of the recorded state can be realized through the
magnetoresistance property in a magnetic tunneling junction
(vertically assembled on the memory element).36

To be concrete, we consider the ellipsoidal nanoparticle
depicted in Fig. 1 made of TbFe2 (terfenol) with the following
dimensions: 2a1 = 45 nm along x, 2a2 = 25 nm along y,
2a3 = 20 nm along z. We suppose that the size of the particle
is small enough to assure that the particle can be treated as a
single ferromagnetic domain: a uniform magnetization �M =
Ms �γ appears, where Ms = 64 × 104A/m is the magnetization
at saturation and �γ is a unit vector. The first aim of the following
procedure is that of determining the orientation �γ in terms of
the externally applied fields and of the environment where the
particle is embedded. It can be obtained by minimizing the
energy function as follows:37

w( �γ ) = −μ0Ms �γ · �H + ϕa( �γ ) − T̂ : ε̂μ( �γ ). (1)

The first term represents the Zeemann energy and describes
the influence of the local magnetic field �H on the orientation
of �γ . The second term ϕa( �γ ) represents the anisotropic energy.
It is possible to induce in TbFe2 an uniaxial anisotropy that
tries to align the magnetization along the x direction, called
easy axis, EA (on the other hand, the y direction is named
hard axis, HA). Therefore we have an anisotropic energy
ϕa( �γ ) = −(1/2)μ0MsHaγ

2
x where it is possible to get an

effective magnetic field Ha = 18 × 104A/m.33,38 The third
term represents the elastic interaction energy, where T̂ is the
local stress tensor and ε̂μ( �γ ) is the strain tensor induced by
the magnetization (magnetostriction). As terfenol is supposed
to be amorphous, the magnetostriction coefficient can be
evaluated using λ111 = 1.7 × 10−3 and λ100 = 0.1 × 10−3 into
the averaging formula λs = 3

5λ111 + 2
5λ100 ≈ 1.06 × 10−3.39

The corresponding strain is given by ε̂μ( �γ ) = (λs/2)(3 �γ ⊗
�γ − Î ), where Î is the identity tensor. We can say that w

represents the thermodynamic potential of the particle at given
�H and T̂ .

It is important to remark that the local magnetic field and
the local stress tensor enter the energy function as parameters.
Therefore the nonlinear minimization furnishes the direction
in terms of the magnetic field and the stress tensor:

min
�γ : ‖ �γ ‖=1

w( �γ ; �H,T̂ ) ⇒ �γ = �γ ( �H,T̂ ). (2)

The constitutive equations of the particle follow: from the
magnetic point of view, we have

�B = μ0( �H + �M) = μ0[ �H + Ms �γ ( �H,T̂ )], (3)

where �B is the magnetic induction. From the elastic point of
view, we have

T̂ = L̂2{ε̂0 − ε̂μ( �γ )} = L̂2{ε̂0 − ε̂μ[ �γ ( �H,T̂ )]}, (4)

where ε̂0 is the local strain tensor (measured with respect to
the demagnetized particle) and L̂2 is the stiffness tensor of the
particle (it shows an isotropic behavior characterized by
the Young modulus E = 110 GPa and by the Poisson ratio
ν = 0.35).

Finally, we underline that the local magnetic field �H and the
stress tensor T̂ inside the particle depend on the environment
where the particle is embedded and on the external fields
applied to the structure. This point will be treated in the
following two sections.

III. COUPLING WITH THE EXTERNAL
MAGNETIC FIELD

As stated above, the magnetic field �H entering the energy
function is the local (internal) magnetic field and, therefore,
it is important to obtain its relationships with the externally
applied magnetic field �H∞. To this aim, we can utilize a
recent result, which is valid for an arbitrary nonlinear and
anisotropic ellipsoidal particle embedded in a linear but
anisotropic matrix.40–42 We consider a nonlinear ellipsoidal
inhomogeneity (having semiaxes a1, a2, and a3) described
by the (magnetic field dependent) permeability tensor μ̂2 =
μ̂2( �H ) embedded in a linear matrix with permeability tensor
μ̂1. In these conditions, we have the implicit equation

�H = {
Î − Ŝm

[
Î − μ̂−1

1 μ̂2( �H )
]}−1 �H∞, (5)

where Ŝm is the magnetic Eshelby tensor given by41

Ŝm = det(â)

2

∫ +∞

0

(â2 + sμ̂1)−1μ̂1√
det(â2 + sμ̂1)

ds. (6)

Here, â is a tensor defining the geometry of the ellipsoid: â =
diag(a1,a2,a3). Interestingly enough, we note that the magnetic
Eshelby tensor depends only on the geometry of the system and
on the matrix permeability tensor. Equation (5) is implicit and
therefore it should be solved in order to find �H as function
of �H∞. Using the definition of the nonlinear constitutive
equation of the particle �B = μ̂2( �H ) �H = μ0( �H + �M), we can
write Eq. (5) in a different form. In our case, the nonlinear
behavior is introduced by the arbitrary relation between the
magnetization �M and the local magnetic field �H [defined
through the minimization problem stated in Eq. (1)]. From
Eq. (5), we simply obtain

�H − Ŝm
�H + Ŝmμ̂−1

1 μ̂2( �H ) �H = �H∞. (7)

and, using Eq. (3), we have

�H − Ŝm
�H + Ŝmμ̂−1

1 μ0 �H + Ŝmμ̂−1
1 μ0Ms �γ = �H∞. (8)

Finally, after straightforward calculations, we obtain

�H = [
Î − Ŝm

(
Î − μ̂−1

1 μ0
)]−1[ �H∞ − Ŝmμ̂−1

1 μ0Ms �γ ]
= Â �H∞ + N̂ �γ , (9)

where the tensors Â and N̂ can be identified by the first line of
Eq. (9). It is not difficult to prove that the tensor N̂ is always
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symmetric, i.e., Nij = Nji . At the end, the local magnetic field
has been explicitly written in terms of the remotely applied
magnetic field and of the internal magnetization orientation
�H = �H ( �H∞, �γ ). This is the most important achievement of

this section.
Equation (9) can be simplified for an isotropic or crystalline

cubic matrix. In this case, we have μ̂1 = μ1Î , where μ1

is the scalar permeability and Î is the identity tensor.
Therefore we obtain a simpler version of the magnetic Eshelby
tensor Ŝm = diag(L1,L2,L3), where the Li’s are the so-called
depolarization factors43,44

Li = a1a2a3

2

∫ +∞

0

dη(
a2

i + η
) ∏3

j=1

√
a2

j + η
. (10)

So, the local magnetic field is given by the relation

Hi = μ1H
∞
i − Liμ0Msγi

(1 − Li)μ1 + Liμ0
(11)

controlled by the above defined depolarization factors. Finally,
in the more specific case with μ1 = μ0, we obtain the very
simple result

Hi = H∞
i − LiMsγi, (12)

which is standard in many micromagnetic developments.45

IV. COUPLING WITH THE EXTERNAL ELECTRIC
AND ELASTIC FIELDS

The coupling with the external electric and elastic fields
is mediated by the piezoelectric matrix, where the particle is
embedded. We search for the relationship between the local
stress T̂ and the applied electric field �E∞ and the remote elastic
strain ε̂∞. We begin this analysis by defining the constitutive
equation of the matrix

T̂ = L̂1ε̂ + Q̂1 �E, (13)

�D = R̂1ε̂ + ε̂1 �E, (14)

where L̂1 is the elastic stiffness tensor, ε̂1 is the permittivity
tensor, and Q̂1 and R̂1 = −Q̂T

1 are the piezoelectric tensors
of the matrix. In order to obtain a more compact notation, we
define the following generalized tensor variables:


̂ = [T̂ | �D] and Ẑ =
[

ε̂

− �E
]
, (15)

where 
̂ is represented by a matrix 3 × 4 and Ẑ is represented
by a matrix 4 × 3. The piezoelectric matrix behavior can be
therefore summarized through the relation


iJ = (�1)iJMnZMn or 
̂ = �̂1Ẑ (16)

where i,n = 1,2,3 and J,M = 1,2,3,4. The tensor �̂1 con-
tains all the elastic, dielectric and piezoelectric responses of
the matrix. It fulfils the standard symmetry rule (�1)iJMn =
(�1)nMJi , which can be derived through energetic considera-
tions. For sake of completeness, such details are discussed in
Appendix A.

We observe now that the particle is embedded into the
matrix when it has a specific magnetization state identified
by an initial direction �γ0 and, consequently, by an initial

magnetostriction state identified by ε̂μ( �γ0). We want to
measure the local strain with respect to such a configuration
and, therefore, we define the local strain as ε̂ = ε̂0 − ε̂μ( �γ0).
Here, ε̂0 is the local strain tensor defined in Eq. (4) and it
is measured with respect to the demagnetized particle. From
the technological point of view, the physical and geometric
anisotropy of the particle assures that �γ0 is aligned with the x

axis and therefore �γ0 = ±�e1 (where �ei is the unit vector along
the ith axis). Since the magnetostriction ε̂μ( �γ ) is a quadratic
form in �γ , we have ε̂μ( �γ0) = ε̂μ(�e1) = ε̂μ(−�e1) in our specific
case. So, the constitutive equations of the particle in the new
reference frame read

T̂ = L̂2{ε̂ − [ε̂μ( �γ ) − ε̂μ( �γ0)]}, (17)

�D = ε̂2 �E, (18)

where L̂2 and ε̂2 are the elastic stiffness and the permittivity
tensor of the particle, respectively. As before, such a consti-
tutive equation can be also written through the generalized
variables defined in Eq. (15), by obtaining


iJ = (�2)iJMn(ZMn − ZμMn) or 
̂ = �̂2(Ẑ − Ẑμ), (19)

where the tensor �̂2 represents the elastic and dielectric
properties (without piezoelectric effects). Here, Ẑμ is a
generalized strain defined as follows:

Ẑμ =
[
ε̂μ( �γ ) − ε̂μ( �γ0)

�0

]
. (20)

At this point, we know the constitutive equations of the
matrix [see Eq. (16)] and of the inhomogeneity [see Eq. (19)].
The analysis of this configuration can be conducted by
applying the piezoelectric Eshelby theory.46–48 We assume that
the whole structure is subjected to an external uniform electric
field �E∞ and an external strain ε̂∞. They are both collected
into the generalized remote field Ẑ∞,

Ẑ∞ =
[

ε̂∞

− �E∞

]
. (21)

We are searching for the perturbation to these uniform
fields induced by the presence of the inhomogeneity. The
equivalence principle, which we are going to illustrate, has
been summarized in Fig. 2. The actual presence of an
inhomogeneity can be described by the superimposition of
the effects generated by two different situations A and B. The
first situation is very simple because it considers the effects
of the remote fields in an homogeneous matrix without the
inhomogeneity. In such a case, we simply observe that the
fields remain uniform in the entire space. The situation B
corresponds to an inclusion scheme (eigenfield distributed
uniformly in the particle) where the eigenfield Ẑ∗ is still
unknown and it can be determined by imposing the equivalence
between the original problem and the superimposition A+B.
The total fields inside the particle can be obtained summing
up the two contributions A and B as follows:

Ẑ = Ẑ∞ + ŜẐ∗, 
̂ = �̂1Ẑ
∞ + �̂1(Ŝ − Î )Ẑ∗, (22)

where Ŝ is the piezoelectric Eshelby tensor defined in
Appendix B. It is obtained for describing the response of an
inclusion problem: if the inclusion is quantified by a uniform
eigenfield Ẑ∗, then the induced internal field is uniform and
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FIG. 2. Scheme describing the Eshelby equivalence principle.
The problem A corresponds to a uniform medium �̂1 with the
remotely applied field Ẑ∞. The problem B represents an inclusion
problem with eigenfield Ẑ∗ and without external actions. The
superimposition of subproblems A and B allows us to analyze the
original scheme of the particle embedded in the matrix.

it is given by ŜẐ∗ (Ŝ is the so-called internal-points Eshelby
tensor), while the external field is given by Ŝ∞(�r)Ẑ∗ [Ŝ∞(�r)
is the so-called external-points Eshelby tensor]. Therefore the
Eshelby tensor Ŝ represents the linear relationship between the
eigenfield and the effective field induced inside the particle.
Now, the eigenfield Ẑ∗ can be found imposing the correct
behavior of the particle given in Eq. (19). Substituting Eq. (22)
in Eq. (19), we obtain the tensor equation for Ẑ∗:

�̂1Ẑ
∞ + �̂1(Ŝ − Î )Ẑ∗ = �̂2(Ẑ∞ + ŜẐ∗ − Ẑμ). (23)

Solving Eq. (23), we obtain the equivalent eigenfield

Ẑ∗ = [(
Î − �̂−1

1 �̂2
)−1 − Ŝ

]−1

× [
Ẑ∞ − (

Î − �̂−1
2 �̂1

)−1
Ẑμ

]
. (24)

The combination of Eqs. (22) and (24) yields all the electric
and elastic fields inside the particle. Of course, this procedure
assumes that the technological assembling processes are able
to generate a quite perfect particle-matrix interface. In fact, it
is well known that the behavior of nanostructured materials is
deeply affected by interface features occurring at the boundary
between different phases.49–51 As final result, the local stress
depends on the external electric and elastic fields and on the
magnetization direction: T̂ = T̂ (ε̂∞, �E∞, �γ ). In fact, by means
of Eqs. (22) and (24), we can extract the elastic stress and we
can write an explicit relation given by

T̂ = Ĉε̂∞ + D̂ �E∞ + F̂ [ε̂μ( �γ ) − ε̂μ( �γ0)]. (25)

It represents the main result of the present section. Here, the
tensors Ĉ, D̂, and F̂ can be easily identified through Eqs. (22)
and (24) and the definitions given in Eq. (15). A different but
equivalent technique for obtaining such tensors is described
in Appendix C. This alternative procedure is based on the
uncoupled electric Ŝe and elastic Ŝε Eshelby tensors. It is
useful for avoiding the calculation of the piezoelectric Eshelby
tensor Ŝ introduced in Appendix B; this point is important
both for the conceptual point of view and for the numerical
implementation.

V. STATIC BEHAVIOR OF THE SYSTEM

Summing up, the set of equations describing the memory
system is constituted of the energy minimization [see Eq. (1)],
the coupling with the external magnetic field �H = �H ( �H∞, �γ )
[see Eq. (9)] and the coupling with the external electric
and elastic fields T̂ = T̂ (ε̂∞, �E∞, �γ ) [see Eq. (25)]. The first
minimization problem is constrained by the condition �γ · �γ =
1 ( �γ is a unit vector). So, we can apply the Lagrange method,
which converts the constrained problem into an unconstrained
minimization of the function L( �γ ,λ) = w( �γ ) − λ( �γ · �γ − 1),
where λ is the so-called Lagrange multiplier. Therefore
we consider the equations ∂L/∂γi = 0 (for i = 1,2,3) and
∂L/∂λ = 0. We straightforwardly obtain the complete system:

⎧⎪⎪⎨
⎪⎪⎩

2λγi = −μ0MsHi + ∂ϕa ( �γ )
∂γi

− T̂ : ∂ε̂μ( �γ )
∂γi�γ · �γ = 1

�H = Â �H∞ + N̂ �γ
T̂ = Ĉε̂∞ + D̂ �E∞ + F̂ [ε̂μ( �γ ) − ε̂μ( �γ0)]

. (26)

We can now substitute the last two relations in the first one,
eventually obtaining

2λγi = −μ0Ms(Â �H∞ + N̂ �γ )i + ∂ϕa( �γ )

∂γi

−{Ĉε̂∞ + D̂ �E∞ + F̂ [ε̂μ( �γ ) − ε̂μ( �γ0)]} :
∂ε̂μ( �γ )

∂γi

.

(27)

By exploiting the symmetries of tensors N̂ and F̂ (introduced
in Sec. III and Appendix C, respectively) we can simply rewrite
Eq. (27) as follows:

2λγi = −μ0Ms

∂

∂γi

( �γ · Â �H∞) − 1

2
μ0Ms

∂

∂γi

( �γ · N̂ �γ )

+ ∂ϕa( �γ )

∂γi

− ∂

∂γi

[Ĉε̂∞ : ε̂μ( �γ )] − ∂

∂γi

[D̂ �E∞ : ε̂μ( �γ )]

− 1

2

∂

∂γi

[F̂ ε̂μ( �γ ) : ε̂μ( �γ )] + ∂

∂γi

[F̂ ε̂μ( �γ0) : ε̂μ( �γ )].

(28)

The previous expression combined with the condition �γ · �γ =
1 corresponds to a constrained minimization of a new energy
function defined as

w̃ = −μ0Ms �γ · Â �H∞ − 1
2μ0Ms �γ · N̂ �γ + ϕa( �γ )

− Ĉε̂∞ : ε̂μ( �γ ) − D̂ �E∞ : ε̂μ( �γ )

− 1
2 F̂ ε̂μ( �γ ) : ε̂μ( �γ ) + F̂ ε̂μ( �γ0) : ε̂μ( �γ ). (29)
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FIG. 3. (Color online) Curves w̃(ϕ) [J/m3] for different values
of the applied voltage. The blue line (with triangles) corresponds
to −0.5 V or +3.85 × 106 V/m (traction), while the red line (with
circles) corresponds to +0.5 V or −3.85×106 V/m (compression).
The angle ϕ in the range (0,π ) is measured in radians. The solid
black line corresponds to 0 V and shows the couple of stable
points A and B.

This relation is very convenient since it leads directly to
the final magnetization orientation in terms of the external
fields applied to the structure (in other terms, w̃ represents
the thermodynamic potential at given �H∞, ε̂∞, and �E∞,
whereas w represents the potential at given �H and T̂ ). A
complete software procedure has been implemented in order
to evaluate Eq. (29), where the involved tensors are calculated
through the schemes outlined in Appendixes B and C.

The general procedure here proposed is valid for any
external fields �H∞, ε̂∞, and �E∞, applied to the structure. In the
following, we suppose that there is no direct mechanical action
on the system and, therefore, we set ε̂∞ = 0 everywhere. We
also adopt an external magnetic field �H∞ along the y axis
(see Fig. 1): the competition of the latter with the uniaxial
anisotropy of the magnetoelastic particle (along the x axis)
generates two stable positions for �M corresponding to the
possible states of the memory element: “0” and “1” (blue
and red arrows in Fig. 1). These two positions appear around
ϕ = π/4 and ϕ = 3π/4 if H∞ = 50 × 104A/m as can be
simply proved by minimizing Eq. (29) with �E∞ = 0. In Fig. 3,
one can find the plot of the energy function w̃ [see Eq. (29)]
with �γ = (cos ϕ, sin ϕ,0) (on the plane z = 0) in terms of the
angle ϕ. The solid black line corresponds to the case with
�E∞ = 0 and the bistable behavior is identified by the couple

of minima A and B.
The external electric field �E∞ (here applied along the

direction at ϕ = 3π/4) and the piezoelectric matrix represent
the system used for switching the state of the memory. We
assume that the matrix is constituted of lead zirconate titanate
(PZT-5H) and it is polarized along the direction identified
by ϕ = 3π/4. The tensor �̂1 takes properly into account the
anisotropic character of the matrix and it has been obtained by
rotating the properties, which can be found in the documen-
tation of the PZT-5H piezoelectric matrix. The geometry of
the system implies that the structure is mechanically stressed

along the direction at ϕ = 3π/4 when a voltage is applied
on the electrodes. This configuration allows compressive or
tensile stress, depending on the sign of the voltage. In Fig. 3,
one can also find the plot of the energy function w̃ for
different values of the applied voltage: it ranges from 0.5 V
(red line with circles) to −0.5 V (blue line with triangles)
corresponding to an electric field E∞ ranging in (−3.85,
+3.85)×106 V/m (for a distance between the electrodes
d = 130 nm). In Fig. 4, we have also reported the polar
plot of the energy profile, obtained through the parametric
representation ([w̃(ϕ) + δ] cos ϕ,[w̃(ϕ) + δ] sin ϕ). The value
of the parameter δ has been fixed for obtaining a positive radius
w̃(ϕ) + δ > 0 for any angle ϕ.

It is evident by the profile of the energy function (see Figs. 3
and 4) that the applied electric field is able to switch the state of
the memory without the knowledge of the stored bit (nontoggle
property): if we start from the point B, the application of the
voltage V = 0.5 V (compression) drives the system to the
point C; after the removal of the voltage the system remains
in the state A. The inverse path starts from point A and after
the application of the voltage V = −0.5 V (traction) arrives
at point D; as before, the removal of the potential leaves the
system in the point B.

It is also important to investigate the fine variations of
the angle ϕ of the magnetization direction in correspondence
of the stable points with different applied fields. In Fig. 5,
the angular positions of the points C and D are reported
versus E∞ and H∞. We remark that when E∞ = 0 we have
ϕ(C) = ϕ(A) and ϕ(D) = ϕ(B). We observe that ϕ(C) and
ϕ(D) vary moderately with E∞ also with a fixed magnetic
field H∞. In this work, as mentioned above, we use the
fixed value H∞ = 50 × 104A/m, which implies two quite
orthogonal stable positions around π/4 and 3π/4.

−6 −4 −2 0 2 4 6

x 10
5

−10

−8

−6
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−2

0

2
x 10

5

[w̃(ϕ) +δ ]cos(ϕ)

[w̃(ϕ) +δ ]sin(ϕ)

δ =2.7 · 105 J/m 3

AB

D C

FIG. 4. (Color online) Polar plot of the energy profile w̃(ϕ)
(J/m3). It corresponds to the parametric representation ([w̃(ϕ) +
δ] cos ϕ,[w̃(ϕ) + δ] sin ϕ) where δ = 2.7 × 105J/m3 has been added
for obtaining w̃(ϕ) + δ > 0 everywhere. The red, blue, and black
lines have the same meaning of Fig. 3.
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FIG. 5. (Color online) Fine variations of the angular positions
ϕ(C) and ϕ(D) (in degrees) where C and D are the two stable points
defined in Figs. 3 and 4. They are represented vs the externally applied
fields E∞ and H∞. We observe that when E∞ = 0, we have ϕ(C) =
ϕ(A) and ϕ(D) = ϕ(B).

This analysis describes the static behavior of the system
and the commutation strategy mediated by the piezoelectric
matrix. We must now validate these results in the dynamic
regime.

VI. DYNAMIC BEHAVIOR OF THE SYSTEM

Given the size of the magnetic particle and the value of the
exchange stiffness constant (A = 10−11 J/m for terfenol),52,53

the magnetic system is assumed to be monodomain and
all the spins behave collectively. Therefore the dynamics
of the magnetization direction �γ is described by the LLG
equation11,12

d �γ
dt

= − G
Ms(1 + α2)

[
�γ ∧ ∂w̃

∂ �γ − α �γ ∧
(

�γ ∧ ∂w̃

∂ �γ
)]

, (30)

where G is the gyromagnetic ratio, α is the Gilbert damping
parameter and ∂w̃

∂ �γ represents the effective field applied to the
magnetic dipole. We assumed α = 0.3, which is a reasonable
value for ferrimagnetic rare earth-transition metal (RE-TM)
alloys,54 and G = gμB/h̄ = 1.76 × 1011 rad s−1T−1 (g = 2

is the Landé factor and μB is the Bohr magneton). While
the procedure developed in previous sections for obtaining
w̃ is exact at stationary regime, the use of w̃ in the LLG
Eq. (30) is an approximation, which must be justified as
follows. The system comprised between the two electrodes can
be considered as a capacitor, which capacitance is C = ε1S/d,
where ε1 = 3000ε0 is the dielectric constant of PZT and S

the total area. With a load resistance R = 10 �, the resulting
time constant is τ = RC ≈ 3f s. Therefore we have τ �
1/(μ0GHmax), where Hmax is the highest value of the effective
magnetic field: it means that we can consider instantaneous
electric field and mechanical stress applied to the structure
during the transitional phases. To further justify the use of
w̃ in Eq. (30), we also remark that tm � t0 = 1/f0 where
tm  0.4 × 10−9 s is the magnetic switching time (see below
for details) and f0  1012 s−1 is the elastic eigenfrequency of
the particle.

In Fig. 6, the results of the integration of Eq. (30) are
shown for two different values of the applied voltage: ±0.3 V
(which means E∞ = ±2.3 × 106 V/m) and ±0.5 V (which
means E∞ = ±3.85 × 106 V/m). A complete cycle with
the two switching phases is represented and reveals two
important properties: (i) the transition times are always in the
subnanosecond scale (<0.4 ns) and (ii) such times decrease
with larger applied voltages (in a given range, see below).
While in the static analysis of the system we have described the
commutation strategy on the plane, in the actual dynamic case,
the complex behavior is the result of the interplay between
the in-plane and the out-of-plane motion of �γ (t). This point
becomes evident by the observation of the component γz in
the second panel of Fig. 6 (see also Fig. 8 below).

In Fig. 6, we can also find the behavior of the local stress
during the complete cycle. We have defined the quantities
T�n = �n · T̂ �n and T �m = �m · T̂ �m where �n = (

√
2/2,

√
2/2,0)

and �m = (−√
2/2,

√
2/2,0). They represent the specific force

(N/m2) along the directions at ϕ = π/4 and ϕ = 3π/4,
respectively. We remark that when these quantities are positive
we have a traction and when they are negative a compression.
In the phase D (writing of the bit “1”), we find a traction
along �m (T �m  90 MPa with −0.5 V and T �m  55 MPa with
−0.3 V) induced by the positive electric field applied to the
piezoelectric matrix. Conversely, in the phase C (writing of
the bit “0”) a compression along �m (T �m  −60 MPa with
+0.5 V and T �m  −20 MPa with +0.3 V) is generated by the
negative electric field. It is important to observe that the stable
points A and B are characterized by a nonzero state of stress
since the tractions or compressions are absent only when the
magnetization is oriented along the x axis (in both directions).
Therefore the state of stress in A and B is maintained at
the levels indicated in Fig. 6 by the magnetic field �H∞.
Interestingly enough, we observe that the values of T�n and T �m
are inverted passing from the point A to the point B because of
the symmetry of the system. Nevertheless, such a geometrical
symmetry does not lead to the same dynamical features of
the switching phases B-C and A-D. In fact, the phase B-C is
characterized by a compression inducing a planar anisotropy
from the magnetic point of view (on the plane perpendicular
to �m). On the other hand, the phase A-D is characterized by
a traction inducing an axial anisotropy for the magnetization
(along the direction �m).
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FIG. 6. (Color online) Time behavior of the imposed electric
field E∞ (V/m) (first panel) and the corresponding evolution of the
magnetization direction �γ (γx red, γy blue and γz green in the second
panel) for a voltage equals to ±0.5 V (solid lines) and ±0.3 V (dashed
lines). In the third panel we have represented the dynamic behavior of
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are shown.

In particular, the differences between the physical phe-
nomena involved in phases B-C and A-D are reflected in
the switching times as reported in Fig. 7. We consider the
magnetization direction �γ = (γx,γy,γz) and the scalar quantity
G = |γx | + |γy | + |γz| as functions of the time during the
commutation phases. We define the the switching time as the
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FIG. 7. (Color online) Switching times of the commutation
phases B-C (top panel) and A-D (bottom panel) as function of the
applied electric field E∞ in the range 1.7 × 106–11.5 × 106 V/m
(corresponding to the electric potential between 0.22 and 1.5 V). The
different curves (from the top to the bottom) correspond to the values
� =1/1000, 1/300, 1/100, 1/30, and 1/10 of the precision parameter.

first instant of time tm (of the commutation phase) satisfying
the condition |G(t) − G(∞)| < � for any t > tm. Here, the
parameter � represents the precision requested, which, of
course, modifies the resulting switching time. In Fig. 7, we
have used the values � = 1/1000,1/300,1/100,1/30, and
1/10 and they correspond to the curves from the top to the
bottom for both panels. While the switching time of the
phase A-D is a monotonically decreasing function of the
applied electric field, the switching time of the phase B-C
reveals a more complex scenario. In particular, we observe
that in correspondence to the electric field E∞ = 9.5 × 106

V/m there is a transition where the B-C switching time in-
creases considerably. Therefore the region where E∞ > 9.5 ×
106 V/m is not convenient for the memory element. We
conclude that the optimal working region (from the switching
time point of view) is defined by an electric potential ranging
from 0.25 to 1 V. In fact, in this interval, we have tm < 0.4 ns
with the better precision defined by � = 1/1000.
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FIG. 8. (Color online) Time behavior of the magnetization direction �γ for a voltage equals to ±0.25 (first column), ±0.5 (second column),
and ±1 V (third column).

In order to better understand the differences between the
switching phases B-C and A-D we have also shown in Fig. 8 the
trajectories of the magnetization direction �γ for three different
values of the electric field (±0.25, ±0.5, and ±1 V). Both
the three-dimensional view and the orthogonal projections
reported in Fig. 8 demonstrate that the trajectories B-C and
A-D are not reversible: it means that each commutation
phase follows its own independent path. Moreover, we can
better explain the switching time transition observed for
E∞ = 9.5 × 106 V/m: we focus our attention to the projection
on the plane (γz,γx) in Fig. 8. The upper curve represents the
A-D commutation phase (going to the left), while the lower
one corresponds to the B-C transition (going to the right). It is
evident that the A-D trajectory is always regular for any value
of the applied electric field while the B-C trajectory exhibits a

singular reversal point after the start from the point B, which
is more and more pronounced with an increasing electric field.
Further, for electric fields E∞ > 9.5 × 106V/m the topology
of the trajectory is strongly modified by the reversal point and
the switching time increases significantly.

To conclude, we discuss the results of the energetic
analysis of the system. The dissipated energy during switch-
ing processes derives from the charge/discharge of the ef-
fective capacitor and from the damped precession of the
magnetization:32 the total energy amount for a switching phase
corresponds to 3 × 10−17J with the applied voltage of ±0.3 V
and to 8 × 10−17J with ±0.5 V. These values are strongly
competitive when compared with most nonvolatile memory
technologies.55 In fact, some values of the switching energy
are as follows: 0.02pJ for the spin transfer torque RAM
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(STTRAM), 2pJ for the ferroelectric RAM (FRAM), 2pJ for
the copper bridge RAM (CBRAM), 2pJ for the dynamic RAM
(DRAM), and 10pJ for the carbon nanotube RAM (NRAM).
A complete table for drawing other comparisons can be found
elsewhere.55 Moreover, the thermal stability can be assured by
the energy barrier between the states A and B corresponding to
1.7 × 10−18J  400kBT . This value of the energy barrier is
sufficiently high to inhibit spontaneous magnetization flipping
due to thermal effects. We admit, however, that for quantifying
the possible perturbation induced by the temperature we
should use the stochastic LLG equation or the corresponding
Fokker-Planck equation.56,57 This analysis is beyond the scope
of the present paper. We finally remark that the energy barrier
can be potentially varied by changing the external magnetic
field and the strength of the anisotropy (by maintaining the
orthogonality of the states). This point can be exploited in
magnetologic applications where a low and variable energy
barrier is requested.58

VII. CONCLUSIONS

In this work, we have developed a complete procedure
for modeling the behavior of a particle/matrix multiferroic
heterostructure and we have presented its application to a new
paradigmatic memory element composed of a ferromagnetic
nanoparticle embedded in a piezoelectric matrix. For the sake
of definiteness, we have assumed a terfenol (TbFe2) particle in
a PZT-5H matrix. Nevertheless, this analysis can be exploited
for studying several different heterogeneous systems with
similar geometrical structures.

The whole analysis has been conducted in two different
steps: at first, the determination of the actual fields within
the particle has been approached through the multiphysics
Eshelby theory. The ellipsoidal shape and the nanosize of the
ferromagnetic element assure the uniformity of the internal
fields and induce the monodomain behavior, which is essential
for obtaining well defined and recognizable magnetization
states. The Eshelby theory allows us to determine the exact
relation between the externally applied fields and those
induced in the embedded particle. In particular, we have proved
the possibility to obtain two orthogonal states generated by the
competition between the magnetic anisotropy with the Zeeman
energy term. Then, we have developed a commutation scheme
with the help of the coupling with the piezoelectric matrix.

As second step, the analysis is completed by considering the
LLG equation, describing the dynamics of the magnetization
during the switching cycle. Its application reveals a complex
scenario generated by the interplay between the in-plane and
the out-of-plane motion of magnetization vector. In particular,
we have proved that the switching time is not a monotonic
function of electric field applied during the commutation
phases. This can be explained by observing that high values
of the electric field may cause ripples and unexpected reversal
points, which may prolong or stop the switching processes.
Moreover, we have not observed the reversibility and the
symmetry of the two trajectories (in the opposite directions)
between the states. Anyway, we have numerically proved that
there exists a range of values for the electric field, which
assures the correct operation of the device. We have then
performed the energetic analysis of the system.

To conclude, the thorough combination of the nanome-
chanical techniques (i.e., the Eshelby formalism) with the spin
dynamics methods (grounded on the Landau-Lifshitz-Gilbert
equation) represents a multidisciplinary exemplary approach
properly suited to fully characterize the coupled response
of several heterostructures and it can be used to design the
corresponding devices with specific desired properties.
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APPENDIX A: ENERGIES, COUPLINGS,
AND SYMMETRIES

By considering Maxwell equation for the matter, it is
possible to prove that the time variation of the energy density
u associated with the electric field is given by43,59

du

dt
= Ei

dDi

dt
. (A1)

Now, if we suppose that the energy density directly depends
on the displacement vector u = u( �D), we simply obtain du

dt
=

∂u
∂Di

dDi

dt
= Ei

dDi

dt
and therefore any constitutive equation for

the electric behavior of a material can be derived by the energy
function by means of the relation

Ei = ∂u( �D)

∂Di

. (A2)

In this context, we have considered the complete uncoupling
between the electric and the elastic properties.

On the other hand, it is possible to verify the following
relation giving the rate of change of the elastic energy density
u during a time-dependent deformation,60

du

dt
= Tij

dεij

dt
. (A3)

If we suppose that the strain energy function u depends only
on the state of strain of the system u = u(εij ), then we can
write du

dt
= ∂u

∂εij

dεij

dt
= Tij

dεij

dt
, and therefore any constitutive

equation of an elastic material can be derived by the strain
energy function by means of the relation

Tij = ∂u(ε̂)

∂εij

. (A4)

This result holds on for the uncoupled elastic case.
In order to take into account all the possible couplings

among the electric and the elastic quantities, we generalize
Eqs. (A1) and (A3) with the following relation giving the time
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variation of the total energy,

du

dt
= Tij

dεij

dt
+ Ei

dDi

dt
, (A5)

where we have supposed an arbitrarily nonlinear energy
function (density) u = u(ε̂, �D). Following the same approach
used within the uncoupled cases, we obtain the constitutive
equations in terms of the energy function:

Tij = ∂u(ε̂, �D)

∂εij

, Ei = ∂u(ε̂, �D)

∂Di

. (A6)

We may introduce the following generalized quantities:


̂0 = [T̂ | �E] and Ẑ0 =
[

ε̂

�D
]

(A7)

that allow for a compact notation of the previous energy
balances Eqs. (A5) and (A6):

du

dt
= 
0,iJ

dZ0,J i

dt
and 
0,iJ = ∂u

∂Z0,J i

. (A8)

We observe that 
̂0 is represented (once fixed a reference
frame) by a matrix 3 × 4, while Ẑ0 by a matrix 4 × 3.
Therefore we use capital letters for indexes ranging in 1, 2,
3 and small letters for indexes ranging in 1, 2, 3, 4. In the
case of a linear system, we can introduce a linear relationship
between 
̂0 and Ẑ0:


0,iJ = �0,iJKhZ0,Kh or 
̂0 = �̂0Ẑ0. (A9)

Since �0,iJKh = ∂
0,iJ /∂Z0,Kh and, at the same time,

0,iJ = ∂u/∂Z0,J i , we obtain the expression �0,iJKh =
∂2u/∂Z0,J i∂Z0,Kh, which means that the following symmetry
rule holds on: �0,iJKh = �0,hKJ i . By using this symmetry,
we can easily obtain the complete expression for the en-
ergy function of a piezoelectric system in the form u =
(1/2)�0,iJKhZ0,J iZ0,Kh.

In addition to 
̂0 and Ẑ0, it is also possible to use the
alternative generalized variables defined in Eq. (15), which are
useful to obtain a more convenient formalism for the following
developments. We can prove that if 
̂0 = �̂0Ẑ0 then 
̂ = �̂Ẑ

with a tensor �̂ having the same symmetries of the tensor �̂0.
To prove this point, we rewrite Eq. (A9) defining the tensor
�̂0 in explicit form:

T̂ = l̂ε̂ + q̂ �D, (A10)

�E = q̂T ε̂ + ê �D, (A11)

with l̂ = l̂T and ê = êT . By algebraic manipulations we obtain

T̂ = (l̂ − q̂ê−1q̂T )ε̂ − q̂ê−1(− �E), (A12)

�D = −ê−1q̂T ε̂ − ê−1(− �E), (A13)

which are the equations defining the tensor �̂; therefore
the tensor �̂ has the same symmetries of �̂0 since (l̂ −
q̂ê−1q̂T )T = l̂ − q̂ê−1q̂T and (−q̂ê−1)T = −ê−1q̂T . Compar-
ing this result with Eqs. (13) and (14), we can also obtain
the equalities L̂1 = l̂ − q̂ê−1q̂T , ε̂1 = ê−1, Q̂1 = q̂ê−1, and
R̂1 = −ê−1q̂T (and therefore R̂1 = −Q̂T

1 as expected).

APPENDIX B: THE PIEZOELECTRIC ESHELBY TENSOR

We take into consideration a stationary regime. From the
electric point of view, using the Faraday’s law �∇ × �E =
−∂ �B/∂t and the condition ∂ �B/∂t = 0, we derive the existence
of the electric potential φ such that �E = −�∇φ. Moreover, we
assume that ρ = 0 (absence of charge density) everywhere in
the space and therefore the Gauss’s law becomes �∇ · �D = 0.
From the elastic point of view, we assume that the body
forces are absent and, therefore, the stationary condition yields
∂Tji/∂xi = 0. Thus the main equation under these hypotheses
is

∂
iJ

∂xi

= 0. (B1)

Now, we define as inclusion a region of the space where
there is an eigenfield Z∗

Mn(�x) defined through the following
constitutive equation:61


iJ = �iJMn(ZMn − Z∗
Mn). (B2)

We assume that Z∗
Mn(�x) is given and it is different from zero

only in a defined limited region of the space. We also define
a generalized potential as UM = um for M = m � 3 (elastic
displacement) and UM = φ for M = 4 (electric potential).
Substituting Eq. (B2) in Eq. (B1) and using the definition
of the generalized potential, we have

�iJMn

∂2UM (�x)

∂xi∂xn

+ b∗
J (�x) = 0, (B3)

where the quantity b∗
J (�x) = −�iJMn

∂Z∗
Mn(�x)
∂xi

assumes the role
of an effective density of sources equivalent to the eigenfield.
We can associate Eq. (B3) with the definition of the Green
function in the ordinary way, i.e., by imposing a Dirac
source b∗

J (�x) = δAJ δ(�x) and a fundamental solution UM (�x) =
GMA(�x). The differential equation defining the Green function
is therefore given by

�iJMn

∂2GMA(�x)

∂xi∂xn

+ δAJ δ(�x) = 0. (B4)

By means of the application of the Fourier theory and through
the definition of the tensor K̂( �ω) with components KJM ( �ω) =
ωi�iJMnωn, we can find the following expression for the Green
function:61

GMA(�x) = 1

8π2

∫ 2π

0

∫ π

0
[K̂−1(�n)]MAδ(�n · �x) sin ϑdϑdϕ,

(B5)

where �n = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ). Using Eq. (B5), we
can find the effects induced by an arbitrary eigenfield through
the standard convolution integral:

UM (�x) =
∫

�3
GMA(�x − �x ′)b∗

A(�x ′)d �x ′

= −
∫

�3
GMA(�x − �x ′)�iAHn

∂Z∗
Hn(�x ′)
∂x ′

i

d �x ′

=
∫

�3

∂GMA(�x − �x ′)
∂x ′

i

�iAHnZ
∗
Hn(�x ′)d �x ′

= −
∫

�3

∂GMA(�x − �x ′)
∂xi

�iAHnZ
∗
Hn(�x ′)d �x ′. (B6)
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Furthermore, if the eigenstrain is uniform in a given region V

(the so-called inclusion), we have

UM (�x) = −�iAHnZ
∗
Hn

∫
V

∂GMA(�x − �x ′)
∂xi

d �x ′. (B7)

The Eshelby theory (originally developed for the uncoupled
elastic case)62 concerns the determination of the electroelastic
fields within an ellipsoidal inclusion with a given eigenfield.
Therefore we have to apply Eq. (B7) to the specific case with
V = {�x ∈ �3 :

∑3
i=1 x2

i /a
2
i � 1}. Substituting Eq. (B5) in

Eq. (B7), we need the following integral:61

I (�x) =
∫

V

δ[�n · (�x − �x ′)]�x ′ = πa1a2a3

a3
[a2 − (�n · �x)2] (B8)

holding on if �x ∈ V ; in Eq. (B8), we have defined the quan-
tity a =

√
(a1n1)2 + (a2n2)2 + (a3n3)2. After straightforward

calculations, we have

UM (�x) = �iAHnZ
∗
Hn

a1a2a3

4π

×
∫ 2π

0

∫ π

0
[K̂−1(�n)]MA

ninj

a3
sin ϑdϑdϕxj (B9)

for any �x ∈ V . We observe that the generalized poten-
tial is a linear function of the coordinates xj . Therefore
by performing the spatial derivatives, we may determine
a constant quantity Ẑ within the inclusion. We observe
that ZMn = (1/2)(∂um/∂xn + ∂un/∂xm) if M = m � 3 and
ZMn = ∂φ/∂xn if M = 4. Therefore we simply obtain a linear
relation between Ẑ and Ẑ∗:

ZMn = SMnAbZ
∗
Ab or Ẑ = ŜẐ∗. (B10)

The complete expressions for the Eshelby tensor Ŝ can be
eventually found as46–48

SMjHn =
{ 1

2 (DMjHn + DjMHn) if M � 3

DMjHn if M = 4
, (B11)

where

DMjHn = a1a2a3

4π
�iAHn

×
∫ 2π

0

∫ π

0

1

a3
[K̂−1(�n)]MAninj sin ϑdϑdϕ.

(B12)

APPENDIX C: AN ALTERNATIVE METHOD
FOR OBTAINING THE TENSORS Ĉ, D̂, AND F̂

We consider a piezoelectric matrix defined in Eqs. (13) and
(14) and we suppose to have an eigenfield (ε̂∗, �E∗) defining an
inclusion (ellipsoidal and uniform):

T̂ = L̂1(ε̂ − ε̂∗) + Q̂1( �E − �E∗), (C1)

�D = R̂1(ε̂ − ε̂∗) + ε̂1( �E − �E∗), (C2)

where R̂1 = −Q̂T
1 . We can now rewrite these expressions as

follows:

T̂ = L̂1
{
ε̂ − [

ε̂∗ − L̂−1
1 Q̂1( �E − �E∗)

]}
, (C3)

�D = ε̂1
{ �E − [ �E∗ − ε̂−1

1 R̂1(ε̂ − ε̂∗)
]}

. (C4)

Through the definition of the uncoupled elastic40 (Ŝε) and
electric41 (Ŝe) Eshelby tensors, we have the following relations
(for the points inside the inclusion):

ε̂ = Ŝε

[
ε̂∗ − L̂−1

1 Q̂1( �E − �E∗)
] = Ŝεε̂

∗ − α̂( �E − �E∗). (C5)

�E = Ŝe

[ �E∗ − ε̂−1
1 R̂1(ε̂ − ε̂∗)

] = Ŝe
�E∗ − β̂(ε̂ − ε̂∗), (C6)

where

α̂ = ŜεL̂
−1
1 Q̂1, (C7)

β̂ = Ŝeε̂
−1
1 R̂1. (C8)

We can solve the system given in Eqs. (C5) and (C6),
eventually obtaining ε̂ and �E in the form

ε̂ = (Î − α̂β̂)−1[(Ŝε − α̂β̂)ε̂∗ + α̂(Î − Ŝe) �E∗], (C9)

�E = (Î − β̂α̂)−1[β̂(Î − Ŝε)ε̂∗ + (Ŝe − β̂α̂) �E∗]. (C10)

We remark that (α̂β̂)ijmn = αijkβkmn and (β̂α̂)in = αijkβjkn.
We have therefore obtained the piezoelectric Eshelby tensor
in terms of the uncoupled tensors:[

ε̂

− �E
]

= Ŝ

[
ε̂∗

− �E∗

]
=

[
Ŝεε −Ŝεe

−Ŝeε Ŝee

] [
ε̂∗

− �E∗

]
, (C11)

where

Ŝ =
[

(Î − α̂β̂)−1(Ŝε − α̂β̂) −(Î − α̂β̂)−1α̂(Î − Ŝe)
−(Î − β̂α̂)−1β̂(Î − Ŝε) (Î − β̂α̂)−1(Ŝe − β̂α̂)

]
.

(C12)

It is possible to prove the perfect agreement of Eq. (C12)
with Eq. (B11). In general, any multiphysics Eshelby tensor
can be always written through the corresponding uncoupled
versions.63–65 This alternative result is useful to get the explicit
form of tensors Ĉ, D̂, and F̂ . We use the Eshelby equivalence
principle stated in Sec. IV and represented in Fig. 2. The
subproblem A (uniform space) is solved by the fields

ε̂A = ε̂∞, (C13)

�EA = �E∞, (C14)

T̂A = L̂1ε̂
∞ + Q̂1 �E∞, (C15)

�DA = R̂1ε̂
∞ + ε̂1 �E∞. (C16)

On the other hands, the subproblem B (inclusion) is solved by
the fields [see Eqs. (C1), (C2), and (C11)]:

ε̂B = Ŝεεε̂
∗ + Ŝεe

�E∗, (C17)

�EB = Ŝeεε̂
∗ + Ŝee

�E∗, (C18)

T̂B = L̂1(Ŝεεε̂
∗ + Ŝεe

�E∗ − ε̂∗)

+Q̂1(Ŝeεε̂
∗ + Ŝee

�E∗ − �E∗), (C19)

�DB = R̂1(Ŝεεε̂
∗ + Ŝεe

�E∗ − ε̂∗)

+ ε̂1(Ŝeεε̂
∗ + Ŝee

�E∗ − �E∗). (C20)

Summing up, the total fields within the embedded particle can
be obtained as T̂ = T̂A + T̂B , ε̂ = ε̂A + ε̂B , �D = �DA + �DB ,
and �E = �EA + �EB . They must satisfy the constitutive relations
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of the particle T̂ = L̂2{ε̂ − [ε̂μ( �γ ) − ε̂μ( �γ0)]} and �D = ε̂2 �E
as stated in Eqs. (17) and (18). Therefore we obtain a set of
equations for determining the eigenfields (ε̂∗, �E∗) as follows:

â11ε̂
∗ + â12 �E∗ = b̂1, (C21)

â21ε̂
∗ + â22 �E∗ = b̂2, (C22)

where

â11 = L̂1(Ŝεε − Î ) − L̂2Ŝεε + Q̂1Ŝeε,

â12 = (L̂1 − L̂2)Ŝεe + Q̂1(Ŝee − Î ), (C23)

b̂1 = (L̂2 − L̂1)ε̂∞ − Q̂1 �E∞ − L̂2[ε̂μ( �γ ) − ε̂μ( �γ0)],

â21 = (ε̂1 − ε̂2)Ŝeε + R̂1(Ŝεε − Î ),

â22 = ε̂1(Ŝee − Î ) − ε̂2Ŝee + R̂1Ŝεe, (C24)

b̂2 = (ε̂2 − ε̂1) �E∞ − R̂1ε̂
∞.

To conclude, the following expression furnishes the elastic
stress inside the magnetoelastic particle

T̂ = L̂1ε̂
∞ + Q̂1 �E∞ + L̂1(Ŝεεε̂

∗ + Ŝεe
�E∗ − ε̂∗)

+ Q̂1(Ŝeεε̂
∗ + Ŝee

�E∗ − �E∗). (C25)

The procedure utilized for determining the tensors Ĉ, D̂,
and F̂ is the following: by substituting the solutions of
Eqs. (C21) and (C22) in Eq. (C25) and by considering
the expressions of the Eshelby tensor given in Eq. (C12),
we obtain the internal stress T̂ = T̂ (ε̂∞, �E∞, �γ ) in the form
of Eq. (25) and the identifications of tensors Ĉ, D̂, and
F̂ is straightforward. We observe that, using the properties
discussed in Appendix A, we can prove that the tensor F̂ is
always symmetric, i.e., Fijkh = Fkhij , similarly to any elastic
tensor.
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