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The possibility of control and tuning of the band structures of phononic crystals offered by the

introduction of an active magnetoelastic material and the application of an external magnetic field is

studied. Two means to obtain large elastic properties variations in magnetoelastic material are

considered: Giant magnetostriction and spin reorientation transition effects. A plane wave expansion

method is used to calculate the band structures. The magnetoelastic coupling is taken into account

through the consideration of an equivalent piezomagnetic material model with elastic,

piezomagnetic, and magnetic permeability tensors varying as a function of the amplitude and

orientation of the applied magnetic field. Results of contactless tunability of the absolute bandgap

are presented for a two-dimensional phononic crystal constituted of Terfenol-D square rod embedded

in an epoxy matrix. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687928]

I. INTRODUCTION

The concept of phononic crystals emerged in the early

1990s as an extension of work done on photonic crystal, i.e.,
artificial structures whose dielectric permittivity and mag-

netic permeability are both periodic functions of the posi-

tion. Phononic crystals are the elastic counterparts to

photonic crystals and consist of periodic arrangements of

inclusions in a physically dissimilar matrix.1,2 Due to their

periodic structure and under certain conditions of geometry

and composition, phononic crystals may exhibit absolute

band gaps where the propagation of elastic wave is forbid-

den independently of the direction of propagation. The exis-

tence of forbidden bands confers to phononic crystals

numerous potential applications. For instance, in the fre-

quency range of the forbidden band, a phononic crystal

behaves as a perfect mirror and an incident wave is perfectly

reflected outside of the artificial structure. Phononic crystals

may be used as efficient sonic insulators. Some authors

have also shown that the removal of inclusions along some

pathway in the phononic crystal, produces acoustic

waveguides.3–6 Acoustic waves that would not propagate

otherwise in a phononic crystal can be guided with minimal

loss along such waveguides. Low loss transmission can be

achieved in linear wave guides as well as guides with sharp

bends. That opens possibilities for the design of devices

allowing the filtering or the demultiplexing of acoustic

waves at the scale of the wavelength.7,8 More specifically it

has been shown numerically and experimentally that such

structures manufactured at the micrometer scale behave as

high Q micromechanical resonators with high resonance

frequencies and can be integrated in devices for wireless

communications and sensing applications.9–12 Moreover

some dispersion curves in the band structure of a phononic

crystal may present a negative curvature, i.e., the Poynting

vector and the wave vector, associated to energy flux and

phase velocity are opposite in sign. This property may lead

to the negative refraction of acoustic waves for frequencies

falling in the frequency domain of the band with negative

curvature.13,14 Negative refraction allows for the focusing of

acoustic waves with a resolution lower than the diffraction

limit15,16 as well as for the autocollimation of an acoustic

beam.17,18

Phononic crystal may have applications to numerous

technological fields. Nevertheless, for enhanced functionality

it appears necessary to introduce a certain degree of fre-

quency tunability of phononic crystals properties. Different

answers to this problem have been proposed by several

authors. Tunability could be achieved by changing the geom-

etry of the inclusions19 or by varying the elastic characteris-

tics of the constitutive materials through application of

external stimuli.20 For instance, some authors have proposed

the use of electrorheological materials in conjunction with

application of external electric field.21 Other authors have

considered the effect of temperature on the elastic mod-

uli.22,23 In all cases, significant effect on the band structure

of the phononic crystal can only be achieved by applying

stimuli with very large magnitude. Other authors24 exploit

the change of the structure of the phononic crystal due to an

external stress to alter the band structure. However this

approach requires physical contact with the phononic crystal.

A last proposed solution requires using active materials as

constituents of the composite material. Following this way,

some authors25 have studied how the piezoelectric effect can

influence the elastic properties of the system and therefore

can change the dispersion curves and in particular the gaps.a)Electronic mail: olivier.boumatar@iemn.univ-lille1.fr.
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For an arrangement of piezoelectric cylinders embedded in a

polymer matrix, they show that the effect is significant for

large filling fractions but negligibly small for small ones.26

Several studies have reported noticeable changes in the band

structures of magnetoelectroelastic phononic crystals when

the coupling between magnetic, electric, and elastic phenom-

ena are taken into account.27,28 These studies however do

not consider the effect of an external magnetic field on the

properties of the phononic crystal. In a recent paper, we dem-

onstrated that the band structure of a two-dimensional pho-

nonic crystal constituted of a square array of Terfenol-D

square rods embedded in an epoxy resin matrix29 can be con-

trolled by application of an external magnetic field. Indeed,

the elastic properties of magnetoelastic material are very sen-

sitive to its magnetic state and on the applied magnetic field.

For instance, in giant magnetostrictive material, such as

Terfenol-D, this dependence can lead to more than 50% vari-

ation of some of the elastic constants, even at ultrasonic fre-

quencies.30 So, if one of the components of a phononic

crystal is a magneto-elastic medium, then one can expect

that the elastic contrast, and subsequently the crystal proper-

ties, e.g., the bang gaps frequencies and widths, the negative

refraction behaviors, could be controlled without any contact

by a magnetic field.

In the present paper, we give a complete derivation of

the model presented succinctly in our previous letter,29 and

use it to study in details the tuning of the properties of a

bulk magnetoelastic phononic crystal, with both square and

triangular lattices, when an external magnetic field is

applied. Moreover, we introduce here a new way to obtain

huge tuning of the band structures of a magneto-elastic pho-

nonic crystal. Indeed, contrary to previous works,29,31 we

consider two-dimensional magneto-elastic phononic crys-

tals in which the tuning can be induced not only by giant

magnetostriction, but also by spin-reorientation phase

transitions.32,33

To be able to consider arbitrary direction and amplitude

of the applied magnetic field, we will first derive an equiva-

lent piezomagnetic material of a polarized ferromagnet, with

field dependent elastic Cijkl, piezomagnetic qlij and magnetic

permeability lij constants. This is an extension of the effec-

tive elastic moduli method classically used to describe elastic

dynamics of a homogeneous magneto-elastic medium.32,34

But this latter method leads to a dependence of the obtained

effective elastic moduli on the propagation direction when

the magnetic dipole interaction is taken into account.35,36

This dependence makes these effective elastic moduli unsuit-

able for standard numerical tools developed for the calcula-

tion of phononic crystal characteristics (band structures,

equifrequency curves, transmission, and reflection coeffi-

cients …), such as plane wave expansion (PWE) or finite ele-

ment method (FEM), in the case of a magneto-elastic

phononic crystal. On the contrary, as will be shown in Sec.

II, the equivalent piezomagnetic material formulation, lead-

ing to equations similar to the ones classically used for pie-

zoelectric materials, enables the direct use of PWE and FEM

methods developed for the calculation of phononic crystal

characteristics in piezoelectric media.25,37,38 In Sec. III, cal-

culation of the effective piezomagnetic material properties

for a varying external magnetic field amplitude and direc-

tion, and its implication in the tuning of the band structure of

a phononic crystal constituted of a square array of Terfenol-

D square rods embedded in an epoxy matrix will be pre-

sented and discussed.

II. PIEZOMAGNETIC EQUIVALENT MATERIAL
FORMULATION

A. Formulation of the problem: Basic equations

We consider here a magneto-elastic wave in a ferromag-

net magnetized to saturation. In this case, the amplitude of

the magnetization per unit mass l is a constant ls. The

coupled equations for the mechanical and magnetic systems,

i.e., the equation of motion and the Landau-Lifshitz equa-

tion, have in the Lagrangian coordinates ai the form36,40,41

q0

@2ui

@t2
¼ @Pij

@aj
þ q0ln

@Hn

@aj

@aj

@xi
; (1)

@l

@t
¼ �cl0l�Heff ; (2)

where c is the gyromagnetic ratio, q0 is the mass density

before deformation, l0 is the permeability of vacuum, ui is

the ith component of the particle displacement, and xi

denotes the Eulerian coordinates. The magnetization per unit

volume is given by M¼ ql, where q is the mass density after

deformation. The magnetic-body force term, i.e., the second

term in the right hand side of Eq. (1), is due to the interaction

of the magnetization with non uniform magnetic fields. The

effective internal magnetic field Heff and the Piola-Kirchoff

stress tensor Pij are given by

Heff i ¼ Hi �
1

l0q0

@U

@li

þ 1

l0q0

@

@as

@U

@ @li=@asð Þ (3)

and

Pij ¼
@U

@gpj

@xi

@ap
; (4)

where H is the Maxwellian magnetic field, and gkl is the

strain tensor

gij ¼
1

2

@ui

@aj
þ @uj

@ai
þ @uk

@ai

@uk

@aj

� �
: (5)

Here, U is the local internal energy per unit volume that can

be written in the following form:

U ¼ Uan þ Ume þ Ue; (6)

where the magnetocrystalline anisotropy, magneto-elastic

coupling, and elastic energies, are respectively, given by

Uan ¼ Kijaiaj þ Kijklaiajakal; (7)

Ume ¼ bijklaiajgkl; (8)

Ue ¼
1

2
Cijklgijgkl: (9)
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ai¼li/ls are the direction cosines of l (or M) with respect

to the symmetry axes, Kij and Kijkl are the magnetic anisot-

ropy constants, bijkl are the magneto-elastic constants, and

Cijkl are the second-order elastic constants. Here, in the con-

sidered acoustic frequency range (up to a few GHz), the elas-

tic wavelengths are much greater than the atomic spacing so

that exchange effects may be neglected. In the case of a

cubic ferromagnet, such as the Terfenol-D considered in the

numerical example, the local internal energy density can be,

in the crystallographic axis, written as

U¼K1 a2
1a

2
2þ a2

1a
2
3þ a2

2a
2
3

� �
þB1 g11a

2
1þ g22a

2
2þ g33a

2
3

� �
þB2 g12a1a2þ g13a1a3þ g23a2a3ð Þ

þC11

2
g2

11þ g2
22þ g2

33

� �
þC12 g11g22þ g11g33þ g22g33ð Þ

þ 2C44 g2
12þ g2

13þ g2
23

� �
; (10)

where K1¼K1111 is the magnetic anisotropy constant, and

B1¼ b1111 and B2¼ 4b1212 are the magneto-elastic constants.

As we are interested in acoustic wave propagation, we

consider only small dynamic perturbations around an equi-

librium state

H ¼ H0 þ h; M ¼ M0 þm; and u ¼ u0 þ ~u; (11)

H0 is the internal field, i.e., the sum of the external applied

field and a demagnetizing field, u0 is a spontaneous displace-

ment caused by magnetostriction, and h, m, and ~u are the

magnetostatic field, magnetization, and displacement gener-

ated by the magneto-elastic waves, respectively. Here, as the

wavelengths of the magneto-elastic waves are much smaller

than the free-space electromagnetic wavelengths, h verifies

the magnetostatic equations

r� h ¼ 0 and r � b ¼ r � l0 hþ q
q0

m

� �
¼ 0; (12)

where b is the dynamic magnetic induction and q� q0 (1� gii),

where i¼ 1, 2, or 3. Moreover, while this quasi-static

approximation is not strictly true for conducting materials,

one can expect it to hold when their dimensions are

much smaller than the skin depth. In the considered fre-

quency range, up to a few MHz, this will always be true

for all the studied phononic crystal structures.

As we are only interested by field dependent variations

of the elastic and piezomagnetic properties of the ferromag-

net, arising from the first order magnetoelastic coupling, i.e.,
the “Simon effect”,42 we neglect all the field independent

morphic contributions coming from the magnetoelastic sec-

ond order coupling and anharmonic terms arising from the

second and third order elastic energies.41,43 Here, the contri-

butions introduced by the rotationally invariant theory of

magnetoelastic media33,44 are also neglected. Indeed, they

are negligible in the considered materials, as it will be shown

in Sec. IV. In the present paper, as it is always the case in the

literature, explicit expressions for the Simon effect are

derived assuming that a magnetic field sufficient for elimi-

nating the domain walls has been applied.

B. Equilibrium state

First, the equilibrium values M0 and u0 are found by

minimizing the total energy of the magneto-elastic system

UT¼U� l0M.H. We assume that the acoustic wave propa-

gation only induces small dynamic perturbations

m� M0; h� H0 and ~u� u0: (13)

Introducing Eq. (11) into Eq. (2), and allowing for conditions

(13), the successive approximations method can be used. In

the zero approximation, retaining only static terms, we obtain

M0 �Heff 0 ¼ 0: (14)

This expression indicates that the equilibrium direction of

magnetization M0 is given by the static effective internal

magnetic field Heff0.

To consider an external static magnetic field Hext in any

directions, we use the method of spherical coordinates

proposed by Smit and Beljers45 and Suhl46 for the study of

ferromagnetic resonance in anisotropic media. As the consid-

ered ferromagnet is magnetized to saturation, two variables,

h and u as shown on Fig. 1 are sufficient in place of the three

Mi components. In the spherical coordinates the components

of the total energy of the magneto-elastic system

UT¼UþUZþUD, where U is given by Eq. (6), are

UZ ¼ �l0M:Hext

¼ �l0MsðHx sin h cos uþ Hy sin h sin uþ Hz cos hÞ;
(15)

UD ¼ �
l0

2
M:HD ¼

l0

2
M:ðN:MÞ; (16)

Uan ¼
K1

4
ðsin4 h sin2 2uþ sin2 2hÞ; (17)

Ume ¼ B1ðg11 sin2 h cos2 uþ g22 sin2 h sin2 uþ g33 cos2 hÞ
þ B2ðg12 sin2 h cos usinuþg13 sin h cos h cos u

þ g23 sin h cos hsinuÞ: (18)

Here, Ms¼ q0ls, UZ and UD are the Zeeman and demag-

netizing energies, respectively, and HD¼�N.M, where N is

FIG. 1. (Color online) Schematic illustration showing the spherical coordi-

nates used in the calculation. oriented along the Z axis, the demagnetizing

tensor is given by Ref. 40.
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the demagnetizing tensor. In the case of a rod of infinite length,

oriented along the Z axis, the demagnetizing tensor is given by

N ¼
1=2 0 0

0 1=2 0

0 0 0

2
4

3
5; (19)

leading to UD¼ l0 M2
s sin2h/4.

The first step, to find the equilibrium state, is to minimize

the energy UT with respect to the strains: @UT=@gij

¼ @ðUme þ UeÞ=@gij. The solutions of these six equations, in

the case of a crystal with cubic symmetry are given in Appen-

dix A. It can be seen that the existence of a magnetoelastic

coupling induces in the sample a uniform static strain. Intro-

ducing, now, these expressions of the equilibrium strains in

the elastic and magneto-elastic parts of the internal energy,

one can write the energy U in the same form as a magneto-

crystalline anisotropy energy47

U ¼ K�1
4
ðsin4 h sin2 2uþ sin2 2hÞ; (20)

where

K�1 ¼ K1 þ
B2

1

C11 � C12

� B2
2

8C44

; (21)

K1* is an effective magnetic anisotropy constant taking into

account static elastic and magnetoelastic effects. Hence, as

the total energy of the magneto-elastic system depends only

on the orientation of the magnetization, minimizing the

energy with respect to this orientation gives the equilibrium

direction (h0, u0) of M, for a given applied field. Knowing

this equilibrium position, one can now study the dynamic

response of the system to an acoustic perturbation.

C. Piezomagnetic equivalent material

Here, we choose to derive the equivalent piezomagnetic

material of the polarized ferromagnet around the equilibrium

position. This will allow us to directly use the theoretical and

numerical tools, e.g., PWE and FEM methods, developed for

the study of piezoelectric or piezomagnetic phononic crystals.

A similar approach has been adopted by Ganguly et al.48,49

for the study of the influence of an external magnetic field on

the propagation of Rayleigh and Lamb waves in a thin magne-

toelastic film deposed on a substrate. But, in this work an

equivalent piezomagnetic material has been obtained only in

specific configurations.

First, the Landau-Lifshitz equations are rewritten in the

used spherical coordinates

@h
@t
¼ � c

Mssinh
@U

@u
þ cl0Hu ¼ cl0Hu

eff

@u
@t
¼ c

Mssinh
@U

@h
� c

sinh
l0Hh ¼ � c

sinh
l0Hh

eff ;

(22)

where Hu¼�HxsinuþHycosu, and Hh¼HxcoshcosuþHy

coshsinu�Hz sinh. The acoustic perturbation rotates the

magnetization to a new h and u orientation, where

h¼ h0þ dh and u¼u0þ du, with dh, du� 1. Then, the

energy is expended around the equilibrium position:

U ¼ U0 þ Uhdhþ Uuduþ Uhh=2dh2 þ Uuu=2du2

þ Uhudhduþ Uheij
dh@ui=@aj þ Uueij

du@ui=@aj; (23)

where Ux and Uxy denote the first and second order x or x-y
derivative of U, respectively.

In the frequency range of elastic wave, x�xS where

xS is the natural frequency of spin mode, the magnetic sub-

system has time to adjust itself to the elastic subsystem, lead-

ing to the following conditions @UT=@ðdhÞ ¼ 0 and

@UT=@ðduÞ ¼ 0. These conditions enable us to write dh and

du, as functions of ~u and h:

dh ¼ l0

D
MsU

0
uuhh � l0

D
Mssinh0huU0hu

þ 1

D
U0huUueij � U0uuUheij

� � @~ui

@aj
;

du ¼ �l0

D
MsU

0
huhh þ l0

D
Mssinh0huU0hh

þ 1

D
U0huUheij � U0hhUueij

� � @~ui

@aj
;

(24)

where D ¼ U0hhU0uu � Uhu
02 and

U0hu¼Uhu�l0Mscosh0Hu
0 ;

U0uu¼Uuuþl0Mssinh0 Hxcosu0þHysinu0

� �
;

U0hh¼Uhhþl0Ms Hxsinh0cosu0þHysinh0sinu0þHzcosh0

� �
:

(25)

Introducing these last expressions in the dynamic magnetiza-

tion, we obtain

mi ¼
q0ikl

l0

@uk

@al
þ vilhl; (26)

with the dynamic susceptibility tensor given by

v11 ¼
l0M2

s

D
sin2h0sin2u0U0hh þ cos2h0cos2u0U0uu

�

þ 1

2
sin2h0sin2u0U0hu

�
;

v12 ¼
l0M2

s

2D
�sin2h0sin2u0U0hh þ cos2h0sin2u0U0uu

�

þsin2h0 sin2u0 � cos2u0

� �
U0hu

�
;

v13 ¼ �
l0M2

s

D

1

2
sin2h0cosu0U0uu þ sin2h0sinu0U0hu

� �
;

v22 ¼
l0M2

s

D
sin2h0cos2/0U0hh þ cos2h0sin2/0U0//

�

� 1

2
sin2h0sin2/0U0h/

�
;

v23 ¼
l0M2

s

D
� 1

2
sin2h0sinu0U0uu þ sin2h0cosu0U0hu

� �
;

v33 ¼
l0M2

s

D
sin2h0U0uu; (27)
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and

q0mij ¼ �
bijkl

M2
s

M0kvlm þM0lvkmð Þ: (28)

At this point, a second constitutive equation of the effective

piezomagnetic material needs to be found. Starting from the

definition of the Piola-Kirchoff stress tensor, i.e., Eq. (4),

and of the magnetic-body force, i.e., the second term of the

right hand side of Eq. (1), and, as before, using the method

of the successive approximations, retaining only the first

order dynamic terms, a dynamic stress component can be

defined as

rij ¼ Cijkl
@uk

@al
þ bijkl

M2
s

M0kml þM0lmkð Þ þ l0M0ldijhl: (29)

Introducing in Eq. (29) the expressions (26) of the dynamic

magnetization, the dynamic stress tensor becomes

rij ¼ Cijkl þ
bijmn

l0M2
s

M0nq0mkl þM0mq0nkl

� �� �
@uk

@al

þ bijmn

M2
s

M0nvml þM0mvnlð Þ þ l0M0ldij

� �
hl: (30)

Noting that the factor in front of hl is nothing else than the

opposite of the piezomagnetic coefficients �qlij given by

qlij ¼ q0lij � l0M0ldij; (31)

we arrive at the piezomagnetic equations

q0

@2ui

@t2
¼ @rij

@aj
;

@bi

@ai
¼ 0; (32)

with

rij ¼ Cijkl þ DCijkl

� � @uk

@al
� qlijhl; (33)

bi ¼ qikl
@uk

@al
þ lilhl: (34)

Here, the effective magnetic permeability and elastic con-

stants are given by

lil ¼ l0 dil þ vilð Þ; (35)

CH
ijkl ¼ Cijkl þ DCijkl ¼ Cijkl þ

bijmn

l0M2
s

M0nq0mkl þM0mq0nkl

� �
:

(36)

For completeness, all the constants of the effective piezo-

magnetic material, in the considered case of a crystal with

cubic symmetry, are explicitly written as a function of h0

and u0 in Appendix B.

III. PIEZOMAGNETIC PHONONIC CRYSTAL

In the quasi-static approximation, a magnetic potential

um, from which the magnetic field derives, can be introduced

hl ¼ �@um=@al: (37)

Inserting this magnetic potential in Eqs. (33)–(34), the equiv-

alent piezomagnetic constitutive equations become

rij ¼ Cijkl þ DCijkl

� � @uk

@al
þ qlij

@um

@al
; (38)

bi ¼ qikl
@uk

@al
� lil

@um

@al
: (39)

This formulation, similar to the one classically used for pie-

zoelectric materials, enables the direct used of the PWE

(Refs. 37 and 38) or FEM (Ref. 39) methods developed for

the calculation of phononic crystal characteristics in piezo-

electric media.

Let us first recall the basic principles of the PWE

method in this case. According to the Bloch-Floquet theo-

rem, the displacement vector and the magnetic potential can

be expanded in infinite Fourier series

ui r; tð Þ ¼
X

G

ui
kþGej xt�k:r�G:rð Þ;

um r; tð Þ ¼
X

G

ukþGej xt�k:r�G:rð Þ;
(40)

where r¼ (x, y, z) is the vector position, x is the circular fre-

quency, G are the reciprocal lattice vectors, and k is the

wave vector. Moreover, due to the periodicity the material

constants q(r), Cijkl(r), qlij(r), and lij(r) are also expanded as

Fourier series

a rð Þ ¼
X

G

aGe�jG:r: (41)

Inserting these expansions, Eqs. (40)–(41), in Eqs. (32) and

(38)–(39), using orthogonality property of Fourier series

components and collecting terms, yields the following gener-

alized eigenvalue equation37

x2 ~R ~U ¼ Ci
~AilCl

~U; (42)

where ~U is a vector gathering the Fourier amplitudes of the

generalized displacement u¼ (u1, u2, u3, um), ~R, ~Ail are

4N� 4N matrix involving only material constants, and Ci are

diagonal matrices involving the wave vector and the Bloch

wave vector. The detailed expressions of all these matrices

are given in Appendix C. By solving Eq. (42) for x as a

function of the wave vector k in the first Brillouin zone of

the considered lattice, the band structures can be calculated.

This system of Eq. (42) can also be rewritten as a function of

x and the wave vector direction, leading to a generalized

eigenvalue problem for the wave vector k. In this case, this

formulation can be used to build the complex band structure

of the phononic crystal.50,51

IV. RESULTS AND DISCUSSION

A. Piezomagnetic equivalent material

In order to compare our results to the ones previously

obtained in the literature, we consider piezoelectrically
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stiffened elastic constants, as frequently used in piezoelectric

materials:52

�Cijkl ¼ CH
ijkl þ

qpijnpnqqqkl

lmnnmnn
; (43)

where ni are the components of the unit vector in the direc-

tion of wave propagation. These stiffened elastic constants,

as expressed, depend on the propagation direction, and so

cannot be directly used in numerical scheme.

First of all, to validate the obtained results, we consider

the case of the influence of an external magnetic field on the

propagation of a longitudinal wave along the length of a cubic

magnetoelastic rod studied by Eastman.41 The rod is oriented

along the Z axis, and K1¼ 0 and BiE0i � 0 (see Appendix A).

The corresponding stiffened elastic constant �C33, calculated

from Eq. (43) with n1¼ n2¼ 0 and n3¼ 1, is given by

�C33 ¼ CH
33 þ

q2
33

l33

¼ C33 þ DC33 þ
q2

33

l33

; (44)

where from Eqs. (31), (35), and (36) the piezomagnetic, per-

meability, and elastic constants are

q33 ¼ �
2B1

H0

cosh0sin2h0 � l0Mscosh0; (45)

l33 ¼
l0

H0

H0 þMssin2h0

� �
; (46)

DC33 ¼ �
4B2

1

l0MsH0

cos2h0sin2h0: (47)

H0¼HextþHD is the internal magnetic field. Introducing

Eqs. (45)–(47) in Eq. (44) we obtain

�C33 ¼ C33 �
2B1 � l0M2

s

� �2
cos2h0sin2h0

l0 MsH0 þM2
s sin2h0

� � : (48)

It corresponds to the classical observation that the sound ve-

locity is always reduced when magnetoelastic effects are pres-

ent, leading to an apparent softening of the relevant elastic

coefficient. The velocity of the corresponding longitudinal

wave is then calculated by cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C33=q0

p
. This expression

corresponds to the magnetic field dependent part given in

Table II of Ref. 41. As already pointed out by Eastman,41 the

magnetic body force affects only longitudinal modes and

results in Bi appearing in the form Bi � l0M2
s

� �2
for longitu-

dinal wave velocities in place of B2
i for shear wave velocities.

Now, we consider the case of a cubic magnetoelastic rod,

as the one that will be used in the phononic crystal (Fig. 1),

with an applied external magnetic field along one of the crys-

tallographic axis. When the magnetic field is applied along Z,

parallel to the rod length, the only non zero permeabilities,

piezomagnetic constants, and elastic constant variations are

l11 ¼ l22 ¼ l0 1þ Ms

H0 þ Han þ Hme

� �
; l33 ¼ l0; (49)

q24 ¼ q15 ¼ �
B2=2

H0 þ Han þ Hme
; (50)

DC44 ¼ DC55 ¼ �
B2

2=4

l0Ms H0 þ Han þ Hmeð Þ ; (51)

where Han ¼ 2K�
1

l0Ms
is the anisotropic field, and Hme ¼ B2

2

4C44l0Ms

is the magnetoelastic field. If the magnetic field is applied

along X or Y, the non zero constants of the effective piezo-

magnetic material are given by Eqs. (49)–(51), simply apply-

ing an index permutation. Moreover, when the external

magnetic field is applied along the rod axis, i.e., the Z axis,

the static demagnetizing field is equal to zero. In the two

other directions, the static demagnetizing field is in the same

direction as the applied field with an amplitude given by

HD¼�Ms/2.

The evolutions of the effective elastic coefficients, piezo-

magnetic constants, and magnetic permeabilities for a

Terfenol-D rod as a function of the amplitude of an external

magnetic field applied along the rod axis are displayed on

Fig. 2. The Terfenol-D parameters used in all the calculations

presented in this paper, correspond to the ones of commer-

cially available data: q0¼ 9210 kg/m3, Ms¼ 800 kA/m,

K1¼ 4 105 J/m3, B1¼ b1111¼�2 107 J/m3 and B2¼ 4 b1212

¼�3.456 108 J/m3, and C11¼ 82 GPa, C12¼ 40 GPa, and

C44¼ 48 GPa. As the external magnetic field is applied in the

Z direction, only two elastic coefficients C44 and C55, and two

piezomagnetic constants q24 and q15 display strong variations

as a function of the magnetic field. The order of magnitude of

the predicted transverse elastic coefficient variations are in

good agreement with the ones measured in Terfenol-D.30

These variations can be quantified as follows. The influence of

magnetoelastic interaction on spectrum of quasiphonon (i.e.,

FIG. 2. Evolution of the effective elastic moduli, piezomagnetic constants,

and magnetic permeabilities of a Terfenol-D rod as a function of the static

external magnetic field applied along the rod axis (Z). The effective elastic

and piezomagnetic constants are expressed in Voigt notation.
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hybrid magneto-elastic waves), generally small, is character-

ized by the following dimensionless coupling parameter:32

f ¼ xme

x0

; (52)

where x0 ¼ c H0 þ Han þ Hmeð Þ is the magnon frequency and

xme ¼ cHme is the magnetoelastic coupling contribution to

the magnon frequency. In a giant magnetostrictive material,

for example, in the Terfenol-D rod sample considered here,

Hme¼ 7.5 kOe, Han¼ 2.5 kOe, and for H0¼ 10 kOe, we

obtain f¼ 0.375 indicating a high magnetoelastic coupling.

The variations of the diagonal terms of the effective

magnetic permeability tensor are also displayed in Fig. 2.

In the considered case of an external magnetic field

applied along the Z axis, the only field dependent stiffened

elastic constants are

�C44 ¼ CH
44 þ

q2
24n2

2

l11n2
1 þ l22n2

2 þ l0n2
3

; (53)

�C55 ¼ CH
55 þ

q2
24n2

1

l11n2
1 þ l22n2

2 þ l0n2
3

; (54)

�C45 ¼
q2

24n1n2

l11n2
1 þ l22n2

2 þ l0n2
3

; (55)

where n¼ (n1, n2, n3) is a unit vector in the propagation

direction. To calculate the velocities of the three propagating

waves, in a given direction, the following characteristic

equation needs to be solved:52

det Cil � q0V2
� �

¼ 0; (56)

where Cil ¼ �Cijklnjnk is the Christoffel tensor. Considering

elastic waves propagating in the XY plane, i.e., n1¼ cos U,

n2¼ sin U and n3¼ 0 where U is the angle between the prop-

agation direction and the X axis, the characteristics equation

becomes

C33 � q0V2
� �

C11 � q0V2
� �

C22 � q0V2
� �

� C2
12

� �
¼ 0;

(57)

where

C11 ¼ C11cos2Uþ C44sin2U;

C22 ¼ C44cos2Uþ C11sin2U;

C33 ¼ �C55cos2Uþ �C44sin2Uþ 2 �C45cosUsinU

¼ C44 �
B2

2=4

l0Ms Ms þ H0 þ Han þ Hmeð Þ :

(58)

Here only the component C33 of the Christoffel tensor is field

dependent. So, only the decoupled out of plane transverse

mode, with velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33=q0

p
, depends on the external

magnetic field. The slowness polar diagrams calculated for

elastic waves propagating in the XY plane, using the effective

piezomagnetic material properties are shown in Fig. 3 for

three increasing values of the amplitude of the external mag-

netic field: 1 kOe (dashed line), 10 kOe (dotted line), and

20 kOe (solid line). In this configuration, only the out of

plane transverse wave, propagating with the velocity and

with displacement directed along the applied static magnetic

field, is coupled to this magnetic field.

Considering now a magnetic field applied in a direction

perpendicular to the Terfenol-D rod, the evolution of the

parameters of the effective piezomagnetic material as a

function of the amplitude of the external magnetic field are

presented in Fig. 4. In this configuration, elastic waves

FIG. 3. Slowness polar diagram for propagation in a Terfenol-D rod with a

static external magnetic field, applied along the rod axis (Z), of 1 kOe

(dashed line), 10 kOe (dotted line), and 20 kOe (solid line).

FIG. 4. Evolution of the effective elastic moduli, piezomagnetic constants,

and magnetic permeabilities of a Terfenol-D rod as a function of the static

external magnetic field applied along the X axis. The effective elastic and

piezomagnetic constants are expressed in Voigt notation.
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propagating in the XY plane are described by the same char-

acteristics equation, i.e., Eq. (57), with now

C11 ¼ C11cos2Uþ �C66sin2U;

C22 ¼ �C66cos2Uþ C11sin2U;

C33 ¼ �C55cos2Uþ C44sin2U;

C12 ¼ C12 þ �C66ð Þ cosUsinU;

(59)

and

�C55 ¼ C55 �
B2

2=4

l0Ms H0 þ Han þ Hmeð Þ ; (60)

�C66 ¼ C55 �
B2

2=4

l0Ms H0 þ Han þ Hme þMssin2U
� � : (61)

Contrary to the previous case, all the Christoffel tensor

components are now field dependent. As shown on Fig. 5,

displaying the slowness polar diagrams for an external field

of 4 kOe (dashed line), 10 kOe (dotted line), and 20 kOe

(solid line), this leads to the fact that all the modes are now

affected by the magnetic field, even if the influence on the

quasi-longitudinal mode is still low.

Moreover, the induced velocities variations of the trans-

verse waves, both in plane and out of plane, become very

large for propagation in the X direction, due to the presence

of a magnetic spin reorientation transition (SRT). It is well

known that the magnetoelastic coupling can become signifi-

cant near a SRT if the magnetic mode of frequency x0 that

interacts with the sound is a soft mode, i.e., a mode with

x0¼xme at the SRT, leading to f¼ 1 at the transition. Start-

ing from a high amplitude, around 20 k0e, external magnetic

field oriented along the X axis, and then decreasing its ampli-

tude, the ground state M0//Hext//X is stable under the

condition:32

2K�1
l0Ms

þ H0 ¼ Han þ H0 	 0; (62)

where K�1 is given by Eq. (21). At the SRT, i.e., when

Han þ H0 ¼ 0 or Hext ¼ �Han � HD, the equilibrium state

suddenly changes, as shown on Fig. 6. Note that u0¼ 0 for

all values of the external applied field. For the considered

Terfenol-D sample, the SRT corresponds to Hext¼ 2.56 kOe.

Close to the SRT, e.g.. for Hext¼ 4 kOe, for a propagation

along the external magnetic field direction (U ¼ 0), the

phase velocity of the transverse waves, ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C55=q0

p
, tends

to zero. In the other hand, when the propagation is perpen-

dicular to the external field direction, only the in plane trans-

verse wave velocity shows a slight variation as a function of

the magnetic field amplitude. The difference between these

two cases arises from the existence of a dynamic dipole field

h ¼ Mssin2U created by the magnetoelastic waves propaga-

tion. As shown in Eq. (61), when k // M0 // X the dynamic

dipole field h becomes zero. But with increasing angle

between k and M0, the dipole field increases up to Ms when

k becomes perpendicular to M0. This field is added to the

static demagnetizing field leading to

f ¼ Hme

H0 þMs þ Han þ Hmeð Þ ; (63)

and the magnetoelastic coupling parameter decreases even at

SRT where fSRT � 0.43 for Terfenol-D. So the long-range

dipole interaction can considerably weaken the magnetoelas-

tic coupling at the SRT for waves propagating in an arbitrary

direction.

To conclude this part, we consider the results obtained

in the rotationally invariant theory,32 when the external mag-

netic field is applied along the Z axis. The term B2 in the field

dependent variations of the stiffened elastic constant �C44 is

replaced by B2 6 K1me where

K1me ¼ K1 �
B1B2

4 C11 � C12ð Þ:

FIG. 5. Slowness polar diagram for propagation in a Terfenol-D rod with a

static external magnetic field, applied along the X axis, of 4 kOe (dashed

line), 10 kOe (dotted line), and 20 kOe (solid line).

FIG. 6. (Color online) Evolution of the equilibrium state (h0, u0) for an

external static magnetic field of decreasing amplitude applied along the X

axis: h0 solid line and u0 dashed line. A spin reorientation transition (SRT)

appears at Hext¼ 2.56 kOe.
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The 6 sign depends on the wave propagation direction

k:þ if k ?M0 and - if k // M0. In the considered case of

Terfenol-D rod, K1me � 3.59� 105 J/m3 is negligible in com-

parison with B2 � 3.456� 108 J/m3. This last point justifies

our choice to neglect the effects introduced by the considera-

tion of the complete rotationally invariant theory.

B. Piezomagnetic phononic crystal

We study now the influence of the introduction of a mag-

netoelastic medium on the properties of phononic crystals.

The calculations have been made for square and triangular lat-

tices of Terfenol-D square rods of section d¼ 1 mm embed-

ded in an epoxy matrix. The matrix is constituted of epoxy

resin, considered as isotropic and with the following parame-

ters: q0¼ 1142 kg/m3, C11¼ 7.54 GPa, and C44¼ 1.48 GPa.

441 plane waves have been used in the PWE calculation of

the band structure. Comparison with FEM results has con-

firmed the convergence of the Fourier series.

The demagnetizing field depends only on the magnetiza-

tion and the geometrical shape of the sample. Up to now, the

demagnetizing contribution, as described by Eqs. (16) and

(19), has been calculated for an isolated rod of infinite

length. At this point, it becomes important to estimate the

influence of the magnetostatic fields of the surrounding mag-

netoelastic rods on the demagnetizing field, when the pho-

nonic crystal is constructed. In fact, it has been demonstrated

by Ignatchenko et al.53 that the average magnetostatic field

inside a rod in a periodic arrangement of infinitely long

square rods is

hHDi ¼
�Ms

2
1� fð Þ; (64)

where f is the filling factor. This equation is also valid for a

periodic array of magnetoelastic rods embedded in a non

magnetic matrix. So the demagnetizing field is decreased by

a factor (1� f) in the phononic crystal configuration in com-

parison to an isolated rod. This shifts the value of the exter-

nal magnetic field corresponding to the SRT by a factor of

�f Ms/2. Moreover, it can be shown that even in the real case

where the rods have a finite length h, Eq. (64) remains a very

good approximation as soon as h/a � 1.5, where a is the lat-

tice period.54 When M0 // Z, where Z is along the rod length,

the neighboring square rods have no influence, and the

demagnetizing field remains equal to zero.

1. Square lattice phononic crystals

We study the evolution of the band structure of square

lattice phononic crystals, as a function of the amplitude and

the orientation of the external magnetic field, induced by the

variations of the effective parameters of the Terfenol-D rods

shown in Figs. 2–5. The band structures displayed in Fig. 7

give a typical example of the magnetic field influence when

applied along the rod axis. With a filling factor f¼ (d/a)2

¼ 0.35 and an applied field Hext¼ 3 kOe, the phononic crystal

possesses an absolute bandgap in the 0–1 MHz frequency

FIG. 7. (Color online) Band structure of a square lattice of Terfenol-D

square rods with a filling factor f¼ (d/a)2¼ 0.35, embedded in an epoxy ma-

trix for two applied static magnetic fields along the rod axis Z: (a) Hext¼ 3

kOe and (b) Hext¼ 10 kOe.

FIG. 8. Evolution of the absolute elastic band gaps of a square lattice of

Terfenol D square rods embedded in an epoxy matrix as a function of the

amplitude of the applied static external magnetic field along the rod axis Z,

for a filling factor (a) f¼ 0.35 and (b) f¼ 0.5.

054901-9 Bou Matar et al. J. Appl. Phys. 111, 054901 (2012)



range, as shown in Fig. 7(a). When the external field is

increased to 10 kOe, a second absolute bandgap, ranging from

approximately 0.76 to 0.8 MHz, appears (Fig. 7(b)). More-

over, the frequency range of the first absolute band gap is

slightly increased. More precisely, the application of a mag-

netic field with an amplitude higher than 6 kOe increases the

bandwidth of the bandgap, and opens a second one in the 0-1

MHz frequency range, as shown in Fig. 8(a). So, elastic waves

are evanescent waves in this phononic crystal at 0.8 MHz

when the field becomes higher than 6 kOe. When the filling

factor is increased to 0.5, as shown in Fig. 8(b), the process is

inverted: The second absolute band gap disappears when the

amplitude of the external magnetic field is increased. In both

cases, the phononic crystal behaves as a switch controlled

without any contact by an external applied magnetic field.

Nevertheless, in this case, where the magnetic field is applied

along the rod axis, the band gap width variation remains lower

than 25%. Moreover, a careful look at the band structures of

Fig. 7 has shown that only modes polarized along Z are

coupled to the external field.29

FIG. 10. (Color online) Band structure of a square lattice of Terfenol-D square rods with a filling factor f¼ (d/a)2¼ 0.35, embedded in an epoxy matrix for an

applied static magnetic field Hext¼ 10 kOe (a) along the rod axis Z and (b) along the X axis, perpendicular to the rod axis. The inset shows the irreducible Bril-

louin zone of the square array. The dashed ellipses highlight the strong anisotropy induced by the external static magnetic field.

FIG. 9. Evolution of the absolute elastic band gaps of a square lattice of

Terfenol-D square rods with a filling factor f¼ 0.5, embedded in an epoxy

matrix, as a function of the amplitude of the applied static external magnetic

field along the X axis perpendicular to the rod axis.

FIG. 11. Band structure of a triangular lattice of Terfenol-D square rods

with a filling factor f¼ (d/a)2¼ 0.35, embedded in an epoxy matrix for two

applied static magnetic fields along the rod axis Z: (a) Hext¼ 3 kOe and (b)

Hext¼ 10 kOe.
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When the magnetic field is applied perpendicularly to

the Terfenol-D rod axis, the absolute band gap evolution dis-

played in Fig. 9 shows more important variations than in the

previous considered case where the magnetic field was along

the rod axis. This can be directly linked to the SRT described

in the preceding section. The calculations have been made

for decreasing external magnetic field amplitude down to

4 kOe, not too close to the SRT. Indeed, below and close to

the SRT, the used assumption of uniformerly oriented mag-

netization becomes doubtful.

In the previous examples, the band structure modifica-

tions were obtained by varying the amplitude of the applied

magnetic field. Another way to induce such modifications is

by changing the field direction, keeping the amplitude con-

stant. As shown in Fig. 10, the band structure of a square

lattice of Terfenol-D square rods embedded in an epoxy

matrix with a filling factor f¼ 0.35 can become strongly

anisotropic only by switching the direction of the applied

field from the Z axis to the X axis, as highlighted by the

dashed ellipses. Indeed, it has been demonstrated in Sec. IV

A that close to the SRT the elastic behavior of the magne-

toelastic medium becomes highly anisotropic, due to the

dynamic dipole field.

2. Triangular lattice phononic crystals

We study now the evolution of the band structure of tri-

angular lattice phononic crystals, along the contours of the

first irreducible Brillouin zone, as a function of the amplitude

of an external magnetic field applied along the rod axis. As

for square lattice case, the band structure of a triangular lat-

tice of Terfenol-D square rods, with a filling factor of 0.35,

embedded in an epoxy matrix is considerably modified when

the amplitude Hext is changed from 3 kOe to 10 kOe, as

shown in Fig. 11. Here, in the 0 to 1 MHz frequency range,

only one absolute bandgap appears, and its width increases

with the external magnetic field amplitude. Comparatively to

the square lattice case, this band gap width increase is larger,

here, for a triangular lattice.

Figure 12 displays the evolution of the absolute band

gaps, for the same triangular lattice magnetoelastic phononic

crystal, as a function of the amplitude of the applied external

field along the rod axis for two filling factor 0.35 (a) and 0.5

(b). Here, for both filling factors the second absolute band

gap disappears when the amplitude of the external magnetic

field is increased, even if the closing amplitude is consider-

ably higher, 16 kOe in place of 3 kOe, when f¼ 0.5. More-

over, the increase of the width of the first absolute band gap

with the external magnetic field amplitude is largely higher

for triangular lattices than for square ones. For example,

when f¼ 0.5 the width of the first gap, ranging from approxi-

mately 0.52 to 0.59 MHz when Hext¼ 1 kOe, is multiplied

by a factor of 5 when the magnetic field is increased up to 20

kOe (where the gap ranges from 0.52 to 0.89 MHz). These

variations are in the same order of magnitude as the ones

obtained in the case of the square lattice magnetoelastic pho-

nonic crystal, considered in the previous paragraph, when we

are close to a SRT.

V. CONCLUSION

We have demonstrated the feasibility of tuning the band

structure of a magnetoelastic phononic crystal constituted of

rods of magnetoelastic material embedded in an epoxy matrix

by applying an external magnetic field. Indeed, the elastic

properties of magneto-elastic material are very sensitive to its

magnetic state and on the applied magnetic field. For instance,

in giant magnetostrictive material, such as Terfenol-D, we

have shown that this dependence can lead to more than 50%

variation of some of the elastic constants. Moreover, the use

of giant magnetostriction is not the only means to obtain large

elastic properties variations in magnetic materials, and we

have also considered spin-reorientation phase transitions

effects. In both cases, band structures have been calculated

with a plane wave expansion method that accounts for cou-

pling between the elastic behavior and the magnetic field

through the development of an equivalent piezomagnetic ma-

terial of a polarized ferromagnet, with elastic, piezomagnetic,

and magnetic permeability effective tensors. The introduction

of a magnetoelastic constituent opens the possibility of easy

controllability of the properties of a phononic crystal without

any contact. More specifically one can achieve additional

functionalities such as the switching of transmission in a

defined frequency range.

FIG. 12. Evolution of the absolute elastic band gaps of a triangular lattice of

Terfenol D square rods embedded in an epoxy matrix as a function of the

amplitude of the applied static external magnetic field along the rod axis Z,

for a filling factor (a) f¼ 0.35 and (b) f¼ 0.5.
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APPENDIX A: EQUILIBRIUM STRAINS

The equilibrium strains E0
ij, obtained by minimization of

the energy UT, can be shown to be47

E0
11 ¼ �h1a

02
1 þ C ¼ �h1sin2h0cos2u0 þ C; (A1)

E0
22 ¼ �h1a

02
2 þ C ¼ �h1sin2h0sin2u0 þ C; (A2)

E0
33 ¼ �h1a

02
3 þ C ¼ �h1cos2h0 þ C; (A3)

E0
23 ¼ �h2a

0
2a

0
3 ¼ �

h2

2
sin2h0sinu0; (A4)

E0
13 ¼ �h2a

0
1a

0
3 ¼ �

h2

2
sin2h0cosu0; (A5)

E0
12 ¼ �h2a

0
1a

0
2 ¼ �

h2

2
sin2h0sin2u0; (A6)

where

h1 ¼
B1

C11 � C12

; (A7)

h2 ¼
B2

4C44

; (A8)

and

C ¼ B1C12

C11 � C12ð Þ C11 þ 2C12ð Þ : (A9)

APPENDIX B: EFFECTIVE CONSTANTS

The effective magnetic permeability lij, piezomagnetic

coupling coefficient qiJ, and elastic constant correction DCI J

for a cubic system are given in Voigt notation (where i,
j¼ 1, 2, 3 and I, J¼ 1, 2, … 6) by:

l11 ¼ l0ð1þ v11Þ

l12 ¼ l0v12

l13 ¼ l0v13

l22 ¼ l0ð1þ v22Þ

l23 ¼ l0v23

l33 ¼ l0ð1þ v33Þ

q11 ¼ �
2B1

Ms
sinh0cosu0v11 � l0Mssinh0cosu0

q12 ¼ �
2B1

Ms
sinh0sinu0v12 � l0Mssinh0cosu0

q13 ¼ �
2B1

Ms
cosh0v13 � l0Mssinh0cosu0

q14 ¼ �
B2

2Ms
ðsinh0sinu0v13 þ cosh0v12Þ

q15 ¼ �
B2

2Ms
ðsinh0cosu0v13 þ cosh0v11Þ

q16 ¼ �
B2

2Ms
ðsinh0cosu0v12 þ sinh0sinu0v11Þ;

q21 ¼ �
2B1

Ms
sinh0cosu0v12 � l0Mssinh0sinu0;

q22 ¼ �
2B1

Ms
sinh0sinu0v22 � l0Mssinh0sinu0;

q23 ¼ �
2B1

Ms
cosh0v23 � l0Mssinh0sinu0;

q24 ¼ �
B2

2Ms
ðsinh0sinu0v23 þ cosh0v22Þ;

q25 ¼ �
B2

2Ms
ðsinh0cosu0v23 þ cosh0v12Þ;

q26 ¼ �
B2

2Ms
ðsinh0cosu0v22 þ sinh0sinu0v12Þ;

q31 ¼ �
2B1

Ms
sinh0cosu0v13 � l0Mscosh0;

q32 ¼ �
2B1

Ms
sinh0sinu0v23 � l0Mscosh0;

q33 ¼ �
2B1

Ms
cosh0v33 � l0Mscosh0;

q34 ¼ �
B2

2Ms
ðsinh0sinu0v33 þ cosh0v23Þ;

q35 ¼ �
B2

2Ms
ðsinh0cosu0v33 þ cosh0v13Þ;

q36 ¼ �
B2

2Ms
ðsinh0cosu0v23 þ sinh0sinu0v13Þ;

DC11 ¼ �
4B2

1

M2
s

sin2h0cos2u0v11;

DC12 ¼ �
4B2

1

M2
s

sin2h0cosu0sinu0v12;

DC13 ¼ �
4B2

1

M2
s

cosh0sinh0cosu0v13;

DC14 ¼ �
B1B2

M2
s

sinh0cosu0ðsinh0sinu0v13 þ cosh0v12Þ;

DC15 ¼ �
B1B2

M2
s

sinh0cosu0ðsinh0cosu0v13 þ cosh0v11Þ;

DC16 ¼ �
B1B2

M2
s

sinh0cosu0ðsinh0cosu0v12 þ sinh0sinu0v11Þ;
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DC22 ¼ �
4B2

1

M2
s

sin2h0sin2u0v22;

DC23 ¼ �
4B2

1

M2
s

sinh0cosh0sinu0v23;

DC24 ¼ �
B1B2

M2
s

sinh0sinu0ðsinh0sinu0v23 þ cosh0v22Þ;

DC25 ¼ �
B1B2

M2
s

sinh0sinu0ðsinh0cosu0v23 þ cosh0v12Þ;

DC26 ¼ �
B1B2

M2
s

sinh0sinu0ðsinh0cosu0v22 þ sinh0sinu0v12Þ;

DC33 ¼ �
4B2

1

M2
s

cosh2
0v33;

DC34 ¼ �
B1B2

M2
s

cosh0ðsinh0sinu0v33 þ cosh0v23Þ;

DC35 ¼ �
B1B2

M2
s

cosh0ðsinh0cosu0v33 þ cosh0v13Þ;

DC36 ¼ �
B1B2

M2
s

cosh0ðsinh0cosu0v23 þ sinh0sinu0v13Þ;

DC44 ¼ �
B2

2

4M2
s

ðsin2h0sin2u0v33 þ cos2h0v22

þ 2cosh0sinh0sinu0v23Þ;

DC45 ¼ �
B2

2

4M2
s

ðsin2h0cosu0sinu0v33 þ cos2h0v12

þ cosh0sinh0cosu0v23 þ cosh0sinh0sinu0v13Þ;

DC46 ¼ �
B2

2

4M2
s

ðsin2h0cosu0sinu0v23 þ sin2h0sin2u0v13

þ cosh0sinh0cosu0v22 þ cosh0sinh0sinu0v12Þ;

DC55 ¼ �
B2

2

4M2
s

ðsin2h0cos2u0v33 þ cos2h0v11

þ 2cosh0sinh0cosu0v13Þ;

DC56 ¼ �
B2

2

4M2
s

ðsin2h0cosu0sinu0v13 þ sin2h0cos2u0v23

þ cosh0sinh0cosu0v12 þ cosh0sinh0sinu0v11Þ;

DC66 ¼ �
B2

2

4M2
s

ðsin2h0cos2u0v22 þ sin2h0cos2u0v11

þ 2sin2h0sinu0cosu0v12Þ;

where the components of the susceptibility tensor vij are

given by Eqs. (27) with

U0hh¼l0Ms Hxsinh0cosu0þHysinh0sinu0þHzcosh0

� �
þK1 2cos4h0þ3sin22u0cos2h0sin2h0�sin22u0sin4h0

� �
þ2B1 E0

11cos2h0cos2u0þE0
22cos2h0sin2u0

�
�E0

33cos2h0

�
þB2 E0

12cos2h0sin2u0�2E0
23sin2h0sinu0

�
�2E0

13sin2h0cosu0

�
; (B1)

U0uu ¼l0Ms Hxsinh0cosu0 þ Hysinh0sinu0

� �
þ 2K1 sin4h0cos4u0

� �
þ 2B1 �E0

11sin2h0cos2u0 þ E0
22sin2h0cos2u0

� �
� B2 2E0

12sin2h0sin2u0 þ E0
23sinh0cosh0sinu0

�
þE0

13sinh0cosh0cosu0

�
; (B2)

U0hu ¼l0Ms Hxcosh0sinu0 � Hycosh0cosu0

� �
þ 2K1 sin3h0cosh0sin4u0

� �
þ B1 �E0

11sin2h0sin2/0 þ E0
22sin2h0sin2/0

� �
þ B2 E0

12sin2h0cos2u0 þ E0
23cos2h0cosu0

�
�E0

13cos2h0sinu0

�
: (B3)

APPENDIX C: MATRICES ELEMENTS

The elements of matrices used in the generalized eigen-

value equation, Eq. (42), are

~Ail ¼

A0
il AG1�G2

il � � � AG1�GN

il

AG2�G1

il A0
il � � � AG2�GN

il

..

. ..
. . .

. ..
.

AGN�G1

il AGN�G2

il � � � A0
il

2
6666664

3
7777775
; (C1)

~R ¼

q0Ip qG1�G2 Ip � � � qG1�GN Ip

qG2�G1 Ip q0Ip � � � qG2�GN Ip

..

. ..
. . .

. ..
.

qGN�G1 Ip qGN�G2 Ip � � � q0Ip

2
666664

3
777775
; (C2)

Ci ¼

ki þ G1
i

� �
I4 0 � � � 0

0 ki þ G2
i

� �
I4 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � ki þ GN
i

� �
I4

2
6666664

3
7777775
;

(C3)

where AG
il j; kð Þ ¼ CG

ijkl, AG
il j; 4ð Þ ¼ qG

lij, AG
il 4; kð Þ ¼ qG

ikl,

AG
il 4; 4ð Þ ¼ �lG

il with (j, k) [ [1,3].2
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