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Abstract Homogenisation of consolidation and compressible fluid flow in dual-porosity

media has highlighted the existence of three characteristic macroscopic behaviours. These

three behaviours are, namely, a dual-porosity description which includes memory effects, a

single-porosity description with which the micro-porosity is simply ignored, and an inter-

mediate behaviour which we refer as behaviour with reservoir effect. With this latter, the

whole dual-porosity medium is represented by an equivalent single-porosity medium. In

contrast with a single-porosity behaviour, the porosity of the entire dual-porosity medium

is accounted for. During solute transport in dual-porosity media, while memory effects are

most often experimentally observed, the homogenised model obtained for the most general

values of the involved parameters leads to a model with reservoir effect. Therefore, the ob-

served memory effects are not reproduced by this model and a clear interpretation of the

origins of these effects remains an unresolved issue. The work is presented in two com-

plementary articles. The objective of the present paper is, firstly, to determine a physical

interpretation of the existence of the three characteristic behaviours of dual-porosity media.

This is performed by exploring the homogenised models and their domains of validity for

the analogy of heat conduction in a dual-conductivity composite. This leads to the original

result that consists to relate each type of behaviour to a specific relationship between two

characteristic times. This is then used for interpreting the results obtained for compress-

ible flow in dual-porosity media. Finally, it allows to elucidate the conditions under which

memory effects may occur during solute transport in dual-porosity media.
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1 Introduction

The focus of the present study is on the fundamentals of fluid flow, consolidation and solute

transport in dual-porosity media, i.e. in media that consist of two interacting porous systems

of distinctly different fluid transfer properties. When considering a transient phenomenon in

such structures, memory effects may occur. Predicting and modelling these effects constitute

the key issues in studying any phenomenon in dual-porosity media and have been the subject

of a wide bulk of research since the introduction of dual-porosity concept and first models

(Barenblatt et al. 1960; Barenblatt 1963; Warren and Root 1963). Intended for modelling

fluid flow in fractured porous media, these models are two-equation models: one equation

describes fluid flow in the network of fractures while the other one governs the flow within

the porous matrix. The exchange of fluid between both porous structures is described by

means of a coupling term which is proportional to the pressure difference. The use of two-

equation models has then been introduced for describing solute transport (Coats and Smith

1964; Bibby 1981; Huyakorn et al. 1983) and consolidation (Wilson and Aifantis 1982;

Khaled et al. 1984; Beskos and Aifantis 1986; Elsworth and Bai 1992; Bai et al. 1993;

Berryman and Wang 1995) in dual-porosity media.

The first results by using the homogenisation method of multiple scale asymptotic ex-

pansions were obtained with a two-scale approach by Auriault (1983) for the analogy of heat

conduction in dual-conductivity media and in (Arbogast 1989) and (Arbogast et al. 1990)

for compressible fluid flow in dual-porosity media. “Dual-porosity” models, i.e. models with

memory effects are thus obtained which are non-local in time and which do not reduce to

two-equation models of Barenblatt’s type (Auriault and Royer 1993; Hornung and Showal-

ter 1990). The computational issues for solving these homogenised models are described in

(Arbogast 1997).

Dual-porosity media are characterised by the existence of three characteristic lengths

of observation. In the sequel, we consider a dual-porosity medium made of meso-pores

surrounded by blocks of a micro-porous matrix. The three scales are, namely: the micro-

pore scale, the mesoscopic (matrix/mesopore) scale and the macroscopic scale. Application

of a three-scale homogenisation procedure has led to the identification of three character-

istic behaviours for quasi-static consolidation and highly compressible fluid flow in dual-

porosity media (Auriault and Boutin 1992), (Auriault and Boutin 1993), (Royer and Auriault

1994),(Royer et al. 1996), (Boutin et al. 1998). These three behaviours include a dual and a

single porosity description, and an intermediate behaviour which we refer as behaviour with

reservoir effect. With this latter, the whole dual-porosity medium is represented by an equiv-

alent single-porosity medium. In contrast with a single-porosity behaviour, the porosity of

the entire dual-porosity medium is accounted for. It was shown that the three models are ob-

tained for three distinct relationships between the scale ratios α = lm/lp and ε = lp/L, where

lm, lp and L denote the micro-pore size, the mesopore size and the macroscopic size, respec-

tively. For passive solute transport in dual-porosity media, while many experimental works

report that memory effects occur when the transport mechanism is purely diffusive within

the micro-porosity and dispersive in the mesoporosity, the corresponding model obtained

by homogeneisation is a model with reservoir effect (Royer et al. 2002). This means that

the derived model doesn’t reproduce the experimentally observed dual-porosity effects and

might suggest that, in most cases, memory effects during solute transport in dual-porosity

media may not be represented by a continuum macroscopic description. Anyhow, a question

which arises naturally from this result inquires about the origins of memory effects during

solute transport in dual-porosity media.
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The present work is aimed towards providing a global interpretation of the results ob-

tained in former works related to various phenomena in dual-porosity media (Auriault and

Boutin 1992), (Auriault and Boutin 1993), (Royer and Auriault 1994),(Royer et al. 1996),

(Boutin et al. 1998), (Royer et al. 2002). The objective is two-fold:

1. to explain and interpret the existence of three characteristic behaviours of dual-porosity

media;

2. to determine the conditions under which memory effects occur during solute transport

in dual-porosity media.

The work is presented in two separated papers. In the present paper, we firstly briefly in-

troduce the homogenisation method that has been used for deriving the models and their

domains of validity which will be presented and commented in the sequel. Next, we con-

sider the analogy of heat conduction in a dual-conductivity composite medium. We present

the associated homogenised models together with their domains of validity and we show

how these domains of validity can be translated into orders of magnitude of a characteris-

tic time ratio. Then, we focus on the use of this fundamental result for interpretating the

results obtained in former works for compressible fluid flow and solute transport in dual-

porosity media. This allows to provide a clear interpretation of the existence of the three

characteristic behaviours for compressible fluid flow in dual-porosity media. Translating

this fundamental rule for solute transport in dual-porosity shows that, due to the existence

of two characteristic times in the phenomenon of transport, the origin of memory effects is

distinct than that observed for compressible flow. In particular, it is shown that under spe-

cific conditions, memory effects may occur which can’t be described in the framework of an

equivalent continuum macroscopic description. Two homogenised models are furthermore

presented together with their domains of validity: a model with reservoir effect and a model

with memory effects.

In the second paper (Royer and Boutin 2012), we examine the behaviours obtained

for consolidation in dual-porosity media and apply the aforementioned result in terms of

characteristic times for interpretating their domains of validity. In both papers, besides the

interpretation of the macroscopic behaviours, several aspects presented in the initial works

are corrected or clarified.

2 Homogenisation method

The homogenisation method for periodic structures, also called method of multiple scale

asymptotic expansions was introduced by Sanchez-Palencia (1980) and Bensoussan et al.

(1978). This method is a powerful tool for determining the macroscopic behaviour of a het-

erogeneous medium subjected to the action of a given phenomenon, by starting from the

governing equations at the heterogeneity scale. As any continuum modelling approach, the

method is based upon the fundamental assumption of separation of scales. The second as-

sumption made is the periodiciy of the medium which is the simplest and the most efficient

mathematical way to formulate the notion of elementary representative volume. The advan-

tage of the method is that, thanks to the periodicity, no preliminary assumption is required

on the form of the macroscopic models. It should also be underlined that the periodicity has

no impact on the form of the macroscopic models.

Consider a periodic heterogeneous medium of large dimensions, submitted to a phe-

nomenon fluctuating according to the characteristic macroscopic size L. Let further denote
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the periodic cell by Ω and its characteristic length by l. The fundamental condition of sep-

aration of scales is expressed by: ε = l/L ≪ 1. To describe the variations at the distinctly

different lengths L and l, two space variables are introduced, x for the macroscopic varia-

tions, y for the microscopic variations, x and y being related by the scale ratio y = ε−1x.

Hence, the spatial derivative is expressed as: ε−1∂y + ∂x. The use of the small parameter ε
suggests to look for physical unknowns q in the form of asymptotic expansions in powers

of ε . The assumption of material periodicity and the condition of separation of scales entail

that the physical quantities be Ω-periodic with respect to variable y:

q(x,y) =
∞

∑
0

ε iqi(x,y) with qi(x,y) Ω−periodic in y. (1)

A key point of this asymptotic approach is that the small parameter ε is also used for char-

acterising the physics of the phenomenon being considered. This clearly appears in the

methodology introduced by Auriault (1991). This latter consists in placing the local gov-

erning equations into a dimensionless form, which gives rise to dimensionless parameters

in the writing of the dimensionless equations. The orders of magnitude of these dimension-

less parameters are estimated in power of scale ratio ε , accordingly to the situation under

consideration. Introducing these estimates into the two-scale differential set - where the spa-

tial gradient reads ε−1∇∇∇y + ∂x∇∇∇x and y and x are from now on treated as two independent

space variables - provides the rescaled equations on which the homogenisation process is

performed. Identifying the terms of the same power in ε , and solving the boundary value

problems obtained in series yield the first non trivial balance equation. This defines the ho-

mogenised model - restricted to the leading order and depending on the considered rescaling

- as a ”limit model” obtained for ε → 0.

The remaining question is to identify the relevancy of these idealised models when ap-

plied to real materials of finite sizes (microscopic and macroscopic). The present work is

aimed at investigating this point for heat transfer in dual conductivity composites and mass

or solute transfer in dual-porosity media. The argument (Boutin and Auriault 1990) is based

on the duality between the mathematical ε used in the asymptotic process (ε → 0), and the

actual physical scale ratio εr which remains of finite value. In particular, the fact that εr has a

finite value is used to determine the relevant rescaling of the equations governing the physics

of the phenomenon under consideration. Hence, the homogenised description associated to

this rescaling is consistent with the actual physics occurring in the real media. This assertion

relies on the convergence of the homogenisation process, enabling to state that the idealised

description reached at the limit (ε → 0) is close to the description in the vicinity of the limit

(εr ≪ 1) that would correspond to the real case.

When distinct orders of magnitude of dimensionless parameters lead to distinct macro-

scopic models - as in the present work - it turns out that the domain of validity of a given

macroscopic model is expressed by the corresponding orders of magnitude of the dimension-

less parameters. In this paper, we show how the physical scale ratio εr enables to translate

these dimensionless domains of validity into simple physical arguments.

3 Macroscopic models for thermal conduction in dual-conductivity media

3.1 Introduction

Heat conduction in a dual-conductivity medium, i.e. in a binary composite medium with a

conductivity contrast constitutes a convenient analogy for the mathematical modelling of
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transport phenomena in dual-porosity media. In this section, we firstly present the four dis-

tinct transient macroscopic models obtained by homogenisation together with their domains

of validity. Two of these models have been obtained in (Auriault 1983) and the two other

models can easily be deduced from the results of this work. Next, we focus on the interpre-

tation of the domains of validity of the models. Finally, we estimate the order of magnitude

of the local flux ratio, as it is an important parameter for homogenising transient fluid flow

in dual-porosity media.

3.2 Derivation of the macroscopic models

3.2.1 Medium description

We consider a periodic composite medium of period Ω (Fig. 1) and we assume that the

dimension of the period, l, is small compared to the characteristic macroscopic length L: ε =
l/L ≪ 1. The period is composed of two constituents, which we distinguish by subscripts

1 and 2, and which occupy domains Ω1 and Ω2, respectively. The boundary between both

constituents is denoted by Γ. We introduce the following averages:

< ·>Ω=< ·>Ω1
Ω +< ·>Ω2

Ω , where < ·>Ωγ

Ω =
1

| Ω |

∫

Ωγ

· dΩ .

We assume that constituent 1 is connected and more conductive than constituent 2, and
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Fig. 1 Periodic composite medium.

that both thermal capacities are of same order of magnitude, which in the framework of

homogenisation is expressed by: λ2/λ1 ≤ O(ε0) and ρ2c2/ρ1c1 = O(ε0). In the sequel,

quantities indexed by c denote characteristic values, e.g. λ1 = O(λ1c), while stared parame-

ters stand for the dimensionless ratio of real to characteristic values e.g.: λ ∗
1 = λ1/λ1c .

3.2.2 Dimensionless local governing equations

Within the periodic cell, heat conduction is described by the following set of equations,

where Tγ and qqqγ stand for the temperature field and the heat flux in constituent γ (γ = 1,2),
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respectively:



































∇∇∇·(qqqγ)+ργ cγ
∂Tγ

∂ t
= 0 in Ωγ , (γ = 1,2),

qqqγ =−λ̃γ ∇∇∇(Tγ) in Ωγ , (γ = 1,2),

T1 = T2 on Γ,

(λ̃1∇∇∇T1) ·n = (λ̃2∇∇∇T2) ·n on Γ.

Choosing the macroscopic length L and a characteristic time tc as the reference length and

time, respectively, the above set of equations is re-expressed with respect to dimensionless

space and time variables, as follows:























∇∇∇x/L · (λ̃ ∗
γ ∇∇∇x/L(Tγ)) = DγL

ρ∗
γ c∗γ

∂Tγ

∂ (t/tc)
in Ωγ , (γ = 1,2),

T1 = T2 on Γ,

λ̃ ∗
1 ∇∇∇x/L(T1) ·n = Rλ λ̃ ∗

2 ∇∇∇x/L(T2) ·n on Γ,

(2)

where DγL
and Rλ are dimensionless numbers, defined by:

DγL
=

L2ργc cγc

λγctc
(γ = 1,2), and Rλ =

λ2c

λ1c

.

Since constituent 1 is connected and is further the most conductive constituent, it governs

the heat transfer phenomenon. Consequently, the transient regime at the macroscopic scale

L is reached when the characteristic time of observation, tc, is chosen of the order of tc = t1L
,

where t1L
denotes the macroscopic characteristic time in constituent 1:

t1L
=

L2ρ1c c1c

λ1c

. (3)

This leads to: D1L
= O(ε0) and D2L

= O(R−1
λ
). With these estimates, the dimensionless

local description (2) of macroscopic transient regime only depends upon the order of mag-

nitude of Rλ , and indeed, the objective of the study is to identify its influence on the macro-

scopic behaviour. Thus, the analysis consists in sweeping all the orders of magnitude for Rλ

and to determine the corresponding macroscopic models by homogenisation.

3.2.3 Macroscopic models

Four distinct macroscopic models describing transient heat transfer at the macroscopic scale

(i.e. when D1L
= O(ε0)) are obtained by homogenisation, according to the order of mag-

nitude of Rλ . Expressed with respect to the physical variables (i.e the usual dimensional
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variables and parameters) they read:

• Capacity model with global conductivity (I.a): Rλ = O(ε0)

∇∇∇x · (λ eff

(λ1,λ2)
∇∇∇xT ) = (< ρ1c1 >

Ω1
Ω +< ρ2c2 >

Ω2
Ω )

∂T

∂ t

• Capacity model with partial conductivity (I.b): Rλ = O(ε)

∇∇∇x · (λ eff

(λ1,0)
∇∇∇xT ) = (< ρ1c1 >

Ω1
Ω +< ρ2c2 >

Ω2
Ω )

∂T

∂ t

• Dual-conductivity model (II): Rλ = O(ε2)

∇∇∇x · (λ eff

(λ1,0)
∇∇∇xT1) =< ρ1c1 >

Ω1
Ω

∂T1

∂ t
+< ρ2c2

∂T2

∂ t
>Ω2

Ω T2 = θ ∗T1

• Single-conductivity model (III): Rλ ≤ O(ε3)

∇∇∇x · (λ eff

(λ1,0)
∇∇∇xT1) =< ρ1c1 >

Ω1
Ω

∂T1

∂ t

(4)

Derivations of models I.a and II are detailed in (Auriault 1983).

Capacity models (I.a and I.b) are one-temperature-field models with T = T1 = T2. As a con-

sequence, the storage term is the mean value of both thermal capacities < ρc >Ω. Both

capacity models are distinguished by their effective conductivity (the reader is referred to

(Auriault 1983) for the definitions and the properties of effective conductivities). The global

effective conductivity λ eff

(λ1,λ2)
depends on both local conductivities over the whole periodic

cell. For model I.b, since Rλ = O(λ2/λ1) = O(ε), the effective conductivity degenerates

into the partial effective conductivity, λ eff

(λ1,0)
, that only depends upon the local conductivity

of constituent 1. Thus, both constituents contribute to the macroscopic thermal conduction

in model I.a, while the less conductive constituent doesn’t contribute to the macroscopic

heat transfer in model I.b.

Model II is a two-temperature-field model, T1 6= T2, where only T1 strictly varies at the macro-

scopic scale. Both temperature fields are linked by a convolution relationship : T2(x,y, t) =
θ ∗T1(x, t). The kernel θ(y, t) is the solution to the following transient thermal transfer in

constituent 2, submitted on its boundary with constituent 1 to a Dirichlet condition, namely

an uniform Dirac temperature:











∇∇∇y · (λ2∇∇∇yθ) = ρ2c2

∂θ

∂ t
in Ω2,

θ(y, t) = δ (t) on Γ,

θ : Ω-periodic.

(5)

The above model characterises a behaviour with memory effects (Auriault 1983), which is

specific to the dual-conductivity behaviour. They arise macroscopically in the convoluted

form involved in the effective accumulation term related to constituent 2: < ρ2c2θ >Ω2
Ω

∗∂T1

∂ t
. Moreover, since Rλ = O(λ2/λ1) = O(ε2), the effective conductivity is naturally

λ eff

(λ1,0)
.

Model III appears as a one-temperature-field model, T1, the temperature field of the most
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conductive constituent. In fact this is a two field situation, with T = T1 and T2 = 0. Hence

T2 is disregarded. The effective capacity < ρ1c1 >Ω1
Ω and the effective conductivity λ eff

(λ1,0)

only account for constituent 1. Because of the extremely weak conductivity of constituent

2, Rλ = O(λ2/λ1)≤ O(ε3), model III is the model that would be obtained if constituent 2

was a purely insulating constituent, ”blind” to heat transfer occurring in constituent 1.

There exist continuous passages between these four models: model II expresses the tran-

sition between model I.b reached when T1 =T2, and model III is reached when T2 = 0, while

Model I.a converges to model I.b as λ2 = 0.

3.3 Interpretation of the domains of validity by means of characteristic times

Since model II can degenerate into models I.b and III, let firstly examine its domain of

validity. This model of transient transfer at the macroscopic scale, i.e. for D1L
= O(ε0), is

obtained when Rλ = O(ε2). These both orders of magnitude fully characterise the domain

of validity of model II. This domain of validity can thus equivalently be defined by: D2L
=

O (D1L
)×O(R−1

λ
) = O(ε−2). From the definition of D2L

, this gives:

L2ρ2c c2c/λ2ct1L
= O(ε−2) = O

(

L2/l2
)

, hence, l2ρ2c c2c/λ2ct1L
= O(ε0).

We note that this can be expressed as follows:

t2l

t1L

= O(ε0), where t2l
=

l2ρ2c c2c

λ2c

and t1L
=

L2ρ1c c1c

λ1c

, (6)

in which t2l
denotes the characteristic time for transient heat conduction in constituent 2

at the local scale, characterised by l, while t1L
is the characteristic time for transient heat

conduction at the macroscopic scale, as defined by (3). Thus, the domain of validity of model

II, initially defined by means of the conductivity contrast, can be equivalently characterised

by (6). The fact that t2l
=O(t1L

) means that two transient phenomena simultaneously occur,

one at the macro-scale, and the second one at the micro-scale within the less conducting

constituent.

Now, let examine the orders of magnitude of the time ratio t2l
/t1L

=O(ε2
R
−1
λ
) obtained

for the distinct transient macroscopic models. We get:

t2l

t1L















= O(ε2) for model I.a,
= O(ε) for model I.b,
= O(ε0) for model II,
≥ O(ε−1) for model III.

We thus deduce the following fundamental result that defines the domains of validity of the

models by means of characteristic times:














Capacity models (I) (I.a: Rλ = O(ε0) ; I.b: Rλ = O(ε)) : t2l
≪ t1L

;

Dual-conductivity model (II): Rλ = O(ε2) t2l
≈ t1L

;

Single conductivity model (III): Rλ ≤ O(ε3) t2l
≫ t1L

.

(7)

Noticing that t2l
/t1L

= O(ε2
R
−1
λ
), these domains of validity can be represented on a

logε(t2l
/t1L

) vs. logε(Rλ ) graph, as shown in Fig.2. It shows how the domains of valid-

ity of the homogenised models initially given by the order of magnitude of Rλ is translated
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into orders of magnitude of the ratio of characteristic times, t2l
/t1L

. It also highlight the cor-

respondence between the orders of the local conductivities with the effective conductivities.

Global
effective
conductivity

Partial
effective
conductivity

I.b

II

III

III

λ2c ≪ λ1c

logε (
t2l
t1L

)

logε (Rλ )
21 30

I.a2

−1

1

λ2c ≈ λ1c

t2l
≫ t1L

t2l
≈ t1L

t2l
≪ t1L

Dual
conductivity

Single
conductivity

Capacity

Fig. 2 Domains of validity of macroscopic models with respect to logε (t2l
/t1L

) and logε (Rλ ).

We note that, in any case the following relationship is verified: t1l
= ε2t1L

. This means

that for the most conductive constituent (constituent 1), the characteristic time of observation

tc = O(t1L
) = O(ε−2)t1l

is much larger than the characteristic time for transient heat con-

duction at the microscopic scale. Consequently, the most conductive constituent is always

submitted to a quasi-steady-state regime at the local scale.

These results reveal that the macroscopic behaviour is conditioned by the local regime

in the less conductive constituent 2. Since we are considering tc = t1L
, the case t2l

≪ t1L

means that under a macroscopic transient regime, a local quasi-steady-state regime occurs

in both constituents. This leads to capacity models: there is a single temperature field i.e. a

full coupling between both heat transfer processes and the influence of constituent 2 appears

in the macroscopic accumulation term. When t2l
≈ t1L

, both transient processes occur simul-

taneously which leads to two coupled temperature fields. When t2l
≫ t1L

, we have tc ≪ t2l
,

which means that for characteristic times of macroscopic transient regime, the local transient

thermal conduction mechanism in constituent 2 has not started yet. In fact, it is confined into

a very thin boundary layer. Constituent 2 is therefore seen as an insulating constituent.

3.4 Order of magnitude of the flux ratio

The purpose of this paragraph is to determine the order of magnitude of heat flux ratio

Rq = q2c/q1c , where qγc denotes the characteristic values of the flux defined by: qqqγ =

λ̃γ ∇∇∇(Tγ) (γ = 1,2). As it will be seen in §4.3, the result is of crucial importance for the



10

determination of the order of magnitude of the velocity ratio for transient fluid flow in dual-

porosity media. Several empirical approaches have been made for determining this order of

magnitude, but with no clear understanding on the rules which condition the result (Royer

and Auriault 1994), (Chastanet et al. 2007). Thanks to the above time analysis which sug-

gests to examine the temporal regimes, we are in position to rigorously derive this funda-

mental result. The key points to be underlined for determining this order of magnitude are

the following:

1. the order of magnitude of the ratio is distinct for a macroscopic steady-state regime and

for a macroscopic transient regime;

2. under a macroscopic transient regime, the order of magnitude of the ratio is conditioned

by the local temporal regimes.

Let firstly note that a given local-scale formulation of the thermal problem is defined by

Rλ and leads to a single description at the macro-scale. Consequently, the orders of mag-

nitude of the heat flux ratio Rq and of the conductivity ratio Rλ are linked. The purpose is

therefore to determine the relationship between Rq and Rλ . For a macroscopic steady-state

regime, both temperature gradients are identical, and the order of magnitude of both fluxes

are such that: q1c = O(λ1c Tc/L), q2c = O(λ2c Tc/L), which yields Rq = O(Rλ ). Under a

transient macroscopic regime, both temperature gradients may become time dependent and

their orders of magnitude may no longer be identical. For determining the relationship be-

tween Rq and Rλ , the distinct local temporal regimes that have previously been identified

must be distinguished. We firstly consider the case of storage models which are charac-

terised by a local steady-state regime in both constituents (t2l
≪ t1L

, t1l
≪ t1L

) and by a

single temperature field T . Thus both temperature gradients are identical, and the order of

magnitude of the flux ratio is given by Rq =O(Rλ ) as in case of a macroscopic steady-state

regime. Let now consider the converse situations where t2l
≥ t1L

= O(tc). In these cases,

the temperature gradients in both constituents are no longer of same order, because of the

local transient regime in constituent 2. Consequently, the characteristic size of variation δ
of temperature field T2 is defined from the transient heat balance by:

ρ2c c2c T2

t1L

= O(
λ2c T2

δ 2
), thus, δ 2 = O(

λ2ct1L

ρ2c c2c

) = O(
λ2c

λ1c

ρ1c c1c

ρ2c c2c

)L2. (8)

Hence, the characteristic value of flux q2c over interface Γ between both constituents, and

of temperature T2Γ
reads:

q2c = O(λ2c

T2Γ

δ
), (9)

while the characteristic value of the flux in constituent 1 remains determined by:

q1c = O(λ1c

T1c

L
). (10)

On the interface, the temperature continuity imposes that T2Γ
= O(T1c). Then, we deduce

from (9) and (10), that when t2l
≥ t1L

, the order of magnitude of the flux ratio satisfies:

Rq =
q2c

q1c

=
λ2c

λ1c

L

δ
=

√

λ2c

λ1c

√

ρ2c c2c

ρ1c c1c

.

This relationship means that, in presence of local transient regime, the flux ratio is deter-

mined by the thermal impedance ratio instead of the conductivity ratio which is obtained for
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a local quasi-steady-state regime. Therefore, with the assumption ρ2c c2c/ρ1c c1c =O(1), the

order of magnitude of the flux ratio under a macroscopic transient regime is such that:

Rq =
q2c

q1c

=























O(Rλ ) = O(
λ2c

λ1c

) when t2l
≪ t1L

(model I.a, I.b),

O(
√
Rλ ) = O(

√

λ2c

λ1c

) when t2l
≥ t1L

(model II, III).

(11)

4 Macroscopic behaviours of dual-porosity media

4.1 Introduction

The above two-scale analysis of thermal conduction in composite media allows us to inter-

pret results obtained by using a three-scale homogenisation procedure for modelling various

transfer phenomena in fluid saturated dual-porosity media. Below, we present some results

that have been obtained by applying the three-scale homogenisation procedure introduced

in (Auriault and Boutin 1992). We firstly briefly introduce the three-scale procedure. Then,

we show that the analysis conducted for thermal conduction in composite media applies for

interpretating the results obtained for compressible fluid flow in dual-porosity media. Fi-

nally, we focus on solute transport in dual-porosity media. We show that the time analysis

performed for the thermal problem allows to elucidate the crucial issue of memory effects

occurrence.

4.2 Three-scale homogenisation in dual-porosity media

4.2.1 Medium description
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(b)(a) (c)

lp lm

Period ΩMp Period Ωsm

α =
lm

lp
≪ 1

ΩM

ε =
lp

L
≪ 1

Ωp

ΓMp Γsm
Ωm

Ωs

Fig. 3 Periodic dual-porosity medium: (a) Macroscopic scale; (b) Mesoscopic scale (micro-porous ma-

trix/mesopore scale) periodic cell; (c) Microscopic scale (micro-pore scale) periodic cell.

We consider the dual-porosity medium which is sketched in Fig.3, whose characteristic

macroscopic size is denoted by L. This three-scale medium consists of a micro-porous scale,
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composed of a network of meso-pores and of a micro-porous matrix, and of a microscopic

scale made of a network of micro-pores and of a solid skeleton. The medium is periodic,

of period ΩMp, and the characteristic length, lp, of this micro-porous scale is much smaller

than the macroscopic characteristic length L. We put : ε = lp/L ≪ 1. Periodic cell ΩMp

consists of the mesopore domain, Ωp, and of the micro-porous matrix domain, ΩM, and the

interface between both domains is denoted by ΓMp. The porosity related to the meso-pores

is φp = | Ωp |/| ΩMp |.
Now, the micro-porous matrix domain ΩM is itself periodic, of period Ωsm and the char-

acteristic length of this microscopic scale, lm, is much smaller than the micro-porous length

scale lp. We define:α = lm/lp ≪ 1. Periodic cell Ωsm consists of the micro-pore domain,

Ωm, and of the solid domain, Ωs. Their common interface is denoted by Γsm. The porosity

of the micro-porous matrix is φm = | Ωm |/| Ωsm | and the total porosity of the material is

φT = φp +φm(1−φp).
We introduce the following averages:

< ·>Ωsm
=< ·>Ωs

Ωsm
+< ·>Ωm

Ωsm
, ; < ·>ΩMp

=< ·>ΩM
ΩMp

+< ·>Ωp

ΩMp
,

where

< ·>Ωγ

Ωδ
=

1

| Ωδ |

∫

Ωγ

· dΩ .

4.2.2 Three-scale homogenisation procedure

The medium is therefore doubly periodic and is further characterised by two conditions of

separation of scales. The condition ε ≪ 1 is the fundamental condition of separation of

scales required for applying homogenisation or any other continuum approach, while the

condition α ≪ 1 ensures the dual-porosity property of the medium. For applying the three-

scale homogenisation procedure, the order of magnitude of α must be fixed. Several cases

are of interest and the relevant relations between α and ε may depend on the problem being

considered. Three orders of magnitude of α are considered: α = O(ε1/2), α = O(ε) and

α = O(ε2) (due to the condition of separation of scales (α ≪ 1), the case α < O(ε) is

restricted to : α = O(ε1/2)).
The three-scale homogenisation procedure is performed in two steps: i) the micro-pore-

scale description is firstly homogenised so as to determine the behaviour of the micro-porous

matrix; ii) homogenisation of the micro-porous scale description which includes the meso-

pore equations, the homogenised description of the matrix and the mesoporepore/micro-

porous matrix boundary-conditions is then performed and leads to the macroscopic be-

haviour.

4.3 Compressible fluid flow in rigid dual-porosity media

4.3.1 Introduction

Homogenisation of a highly compressible fluid through a dual-porosity medium has been

investigated in (Royer and Auriault 1994). In this initial work, three models are obtained

and their domains of validity are given by means of orders of magnitude of scale ratio α
with respect to scale ratio ε . Furthermore, the order of magnitude of the velocity ratio was

identified throughout the homogenisation process, but with no clear interpretation.
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The purpose of this section is to enhance the physical insight by clarifying the inter-

pretation of the domains of validity and justifying the order of magnitude of the velocity

ratio. These points are addressed by using the analogy with the results obtained for thermal

conduction, which suggest the use of characteristic times. For the sake of simplicity, the

analysis is presented for the linear problem of a compressible fluid in isothermal regime,

which be extended to the case investigated in (Royer and Auriault 1994). For fluid-solid

heat exchange effect one may refer to (Boutin et al. 1998).

4.3.2 Local dimensionless governing equations

Within both fluid domains, Ωm and Ωp, fluid flow is described by Stokes equation and the

mass-balance equation, where µ , vγ , pγ and β are the fluid viscosity, velocity, pressure and

compressibility, respectively:











β
∂ pγ

∂ t
+∇∇∇ · (vγ) = 0 in Ωγ (γ = m,p),

µ∆vγ −∇∇∇pγ = 0 in Ωγ (γ = m,p).

At the microscopic scale, we express the no-slip condition over the solid/fluid interface:

vm = 0 on Γsm.

At the micro-porous scale, the conditions over the mesopore/micro-porous matrix interface

are the continuity of velocities and pressures:

{

vp =< vm >Ωm
Ωsm

on ΓMp,

pp = pm on ΓMp.

Choosing the macroscopic length L and a characteristic time tc as the reference length and

time respectively, this set is re-expressed with dimensionless space and time variables:



































∇∇∇x/L · (v∗γ )+SL β ∗ ∂ p∗γ
∂ (t/tc)

= 0 in Ωγ , (γ = m,p),

FLµ∗∆x/Lv∗γ −∇∇∇x/L(p∗γ ) = 0 in Ωγ , (γ = m,p),

v∗p = Rv < v∗m >Ωm
Ωsm

; p∗m = p∗p on Γ,

v∗m = 0 on Γsm,

(12)

in which FL, SL, and Rv denote dimensionless numbers, which are defined by:

FL =
µcvc

Lpc
; SL =

Lβ pc

tcvc
; Rv = vmc/vc

Note that the whole consistency of the asymptotic expansions imposes an unique reference

value for the variables of the same nature in both meso-pores and micro-pores. Conveniently,

the reference values are the characteristic pressure and velocity in the meso-pores (pc = ppc ,

vc = vpc ).
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4.3.3 Orders of magnitude of the dimensionless numbers

We consider the case where a Darcy flow regime is reached at the macro-scale. This requires

that the gradient of viscous forces at the pore scale be balanced by the macroscopic pressure

gradient (Auriault and Sanchez-Palencia 1977), (Auriault 1991). This leads to the following

equalities in the meso-pores and in the micro-pores, respectively:

µcvpc

l2
p

= O(
ppc

L
), (13)

µcvmc

l2
m

= O(∇∇∇p)m. (14)

Equality (13) provides: FL = O(l2
p/L2) = O(ε2).

We further consider the situation of a transient macroscopic regime. This situation is

reached when the time variation of the pressure is balanced by its space variation at the

macro-scale. Let determine the reference time for this regime by dimensional analysis. Since

the meso-pores are connected and much larger than the micro-pores, the physics is driven

by the phenomenon within the meso-pores. After inserting the reference velocity identified

from (13), the equality in order of magnitude of both terms from the mass balance equation

in the mesopore domain provides:

O(β
ppc

tc
) = O(

vpc

L
) = O(

ppc

L2

l2
p

µc
).

Thus, time and space variations of the pressure are balanced for a characteristic time of

observation such that tc = O(tpL
), where :

tpL
= O(

L2β

l2
p/µc

)

is the characteristic time for the transient regime at the macro-scale. Then, noticing that

FL.SL = µβ/tc = O(l2
p/L2), we deduce that SL = O(ε0).

We successively consider three orders of magnitude for α: α = O(ε1/2), α = O(ε) and

α = O(ε2). In steady-state regime, since µcvmc/l2
m = O (pc/L) and µcvpc/l2

p = O (pc/L),

the order of magnitude of the velocity ratio is: Rv = vmc/vpc = l2
m/l2

p = O(α2). This esti-

mate is no longer valid in transient regime. The order of magnitude of Rv can be obtained

on a trial-and-error basis, thanks to the fact that if a wrong order of magnitude of Rv is con-

sidered, the homogenisation calculations can’t be achieved. We find that it depends on the

order of magnitude of α:1







Rv = O(ε) when α = O(ε1/2),
Rv = O(ε) when α = O(ε),
Rv = O(ε2) when α = O(ε2).

(15)

1 In (Royer and Auriault 1994), the flux ratio was defined on the basis of mean values of the velocities in

the domains instead of values on the boundary Γ. For this reason, when α = O(ε2), the velocity ratio was

found to be O(ε3).
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4.3.4 Macroscopic models

Applying the homogenisation procedure for each of the three orders of α leads to the three

following first-order macroscopic models:

• Model with reservoir effect (I): α = O(ε1/2)

∇∇∇x · (
K̃p

µ
∇∇∇p) = (φp +φm(1−φp)) β

∂ p

∂ t

• Dual-porosity model (II): α = O(ε)

∇∇∇x · (
K̃p

µ
∇∇∇pp) = φp β

∂ pp

∂ t
+φm β

∂ < pm >ΩM
ΩMp

∂ t
pm = π ∗ pm

• Single-porosity model (III): α = O(ε2)

∇∇∇x · (
K̃p

µ
∇∇∇pp) = φp β

∂ pp

∂ t

(16)

where K̃p represents the permeability of the mesopore network.

Model (I) is a one-pressure-field model, i.e. p = pm = pp. This is an apparent single-

porosity model, in which the effective permeability is the mesopore permeability, while the

effective porosity is that of the whole dual-porosity medium. We designate this property by

”reservoir effect” to signify that the micro-porous matrix plays the role of a fluid reservoir.

Model (II) is a two-pressure-field model (pm 6= pp),which is a characteristic of a dual-

porosity behaviour. The notable property is that the pressure field in the micro-porous matrix

is not uniform. It is related to the pressure in the meso-pores by the convolution relationship:

pm(x,y, t) = π ∗ pp(x, t), which introduces memory effects. The kernel π(y, t) is the solution

to the transient pressure diffusion problem in the micro-porous domain submitted on its

boundary with the micro-pore domain to a Dirichlet condition, in the form of a uniform

Dirac pressure:























∇∇∇y · (
K̃m

µ
∇∇∇yπ) = φm β

∂π

∂ t
in ΩM,

π = δ (t) on ΓMp,

π : ΩMp-periodic,

(17)

where K̃m is the permeability of the micro-porous matrix.

Model III describes the flow in the mesopore network with an apparent impervious and

non-porous matrix. It is therefore a single-porosity model, precisely the model that would

results from the mesopore network only.

4.4 Analogy with thermal conduction in dual-conductivity media

Despite the significant differences in the physics of mass transfer (governed by Stokes law)

and of heat transfer (governed by Fourier’s law), we observe a close similarity between

the different macroscopic models derived for both phenomena (see models I.b, II and III
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obtained in §3.2.3). The reason lies in the fact that upscaling Stokes law leads to Darcy’s

law, which is of identical diffusion type to Fourier’s law. This remark enables to establish a

strict analogy between temperature, heat flux, conductivity, thermal capacity, and pressure,

velocity, permeability, compressibility, respectively. At the macro-scale, everything happens

just as if the micro-porous matrix was a medium of permeability Km and if the mesopore

network was a medium of permeability Kp. A direct consequence of this analogy is that

the above models also apply for dual-permeability media, each domain being specified by

its permeability without explicit description of the corresponding pore networks. This case

requires a simpler treatment since only two scales are involved.

Note however that, in accordance with (13) and (14), the permeabilities are related to

the meso-pores and micro-pores sizes by Kγ = l2
γ /µ (γ = m,p). Hence, the condition of

separation between the mesopore and the micro-pore scales requires a permeability contrast.

For this reason, model I.a determined for heat transfer is not obtained for mass transfer in

dual-porosity media. Let finally underline that the permeability ratio is such that: Km/Kp =
(lm/lp)

2 = α2. Consequently, the classification of mass transfer model I, II and III is the

exact transposition of the classification of heat transfer models I.b, II and III.

4.5 Interpretation in terms of characteristic times

4.5.1 Domains of validity

The domains of validity of the models are such that:






α = O(ε1/2) i.e. Km/Kp = O(ε) : Model with reservoir effect,

α = O(ε) i.e. Km/Kp = O(ε2) : Dual-porosity model,

α = O(ε2) i.e. Km/Kp = O(ε4) : Single-porosity model.

(18)

By similarity with the ratio t2l
/t

1L
in thermal conduction, we examine the order of magnitude

of the ratio tMlp
/tpL

, where tMlp
and tpL

are the characteristic times for local transient diffusion

regime in the micro-porous matrix and at the macroscopic scale, respectively. This latter

time has been already assessed in the previous section. Meanwhile, tMlp
and tpL

can also be

estimated considering separately the micro-porous matrix on the one hand, and the network

of meso-pores in an impermeable matrix on the second hand. Let consider the mass-balance

equation which describes compressible fluid flow in a single porosity medium:

φβ
∂ p

∂ t
−∇ · ( K̃

µ
∇∇∇p) = 0. (19)

By dimensional analysis, we deduce the characteristic time for a transient diffusion regime

in a domain of size lc: tlc = φβ µl2
c/Kc. Thus, considering the meso-size lp for the micro-

porous domain and the macro-size L for the porous domain, we deduce that:

tMlp
= φmβ µ l2

p/Kmc ; tpL
= φpβ µL2/Kpc ; hence

tMlp

tpL

= O(
φm

φp

Kpc

Kmc

l2
p

L2
).

Assuming that both porosities are of same order with respect to ε , φM/φp =O(ε0), and since

the order of the permeability ratio satisfies KMc/Kpc = O(l2
m/l2

p) = O(α2), we deduce:

tMlp

tpL

= O(α−2ε2)







< O(ε0) when α > O(ε),
= O(ε0) when α = O(ε),
> O(ε0) when α < O(ε),

(20)
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which confirms that the three orders of α (α = O(ε1/2), α = O(ε) and α = O(ε2)) are

relevant to distinguish the three types of behaviour. Note also that this result indicates that

the single porosity model III is already reached when α = (ε3/2). Hence, the definition of

domains of validity (18) can be improved by:











tMlp
≪ tpL

Model with reservoir effect,

tMlp
≈ tpL

Dual-porosity model,

tMlp
≫ tpL

Single-porosity model.

(21)

4.5.2 Velocity ratio

Finally, the order of magnitude of the velocity ratio can be deduced by the same reasoning

than that developed for the thermal problem. Let recall that the macroscopic transient regime

is characterised by tpL
and that the velocities are of the order of vγc = O(Kγc/φγ ∇∇∇(pγ))

(γ = m,p). When both constituents undergo a local steady-state regime (tMlp
≪ tpL

, tplp
≪

tpL
), a single pressure field p arises and both pressure gradients are identical. Hence, the

flux ratio Rv is equal to the permeability ratio divided by the porosity ratio, i.e.: vmc/vpc =
O(K̃mc φp/K̃pc φm) = O(l2

mφp/l2
pφm), which is in agreement with (13) and (14). Now, if the

micro-porous domain undergoes a transient regime (tMlp
≥ tpL

), the pressure gradients in the

meso-pores and in the micro-pores are of different orders. The characteristic size of variation

δ of pm is defined from the transient mass balance (19):

φmβ

tpL

= O(
K̃m

µδ 2
), thus, δ 2 = O(

K̃mc

µ

tpL

φmβ
) = O(

K̃mc

K̃pc

φp

φm

)L2. (22)

Consequently, the order of magnitude of the flux ratio is in agreement with (13) and (14)

and reads:

Rv =
vmc

vpc

= O(
K̃m

K̃p

L

δ
) =

√

K̃m

K̃p

√

φm

φp

. (23)

This leads to the direct translation of (11) for the pressure diffusion:

Rv =



















= O(
Kmc

Kpc

φm

φp

) when tmlp
≪ tpL

,

= O(

√

Kmc

Kpc

√

φm

φp
) if tmlp

≥ tpL
,

(24)

or equivalently,

Rv =

{

= O(α2) if α > O(ε),
= O(α) if α ≤ O(ε).

(25)

This provides a justification of the orders of magnitude (15).
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4.6 Solute transport by diffusion - dispersion in dual-porosity media

4.6.1 Introduction

Fickean diffusion in composite media presents a strict analogy with thermal diffusion (Au-

riault and Lewandowska 1995): temperature, heat flux, conductivity and thermal capacity

are replaced by solute concentration, solute flux, diffusivity and porosity, respectively. In

dual-porosity media, when solute transfer results only from a purely diffusive process, the

dual-conductivity model established for thermal transfer also applies, but the diffusion of

constituent 2 is the effective diffusion in the micro-porous matrix. Therefore, the high con-

trast of diffusion required for dual-diffusion (model II) can only occur in the particular case

of a highly tortuous micro-porosity. This may happen but doesn’t fit with the situations that

are reported in the literature, related to memory effects for solute transport in dual-porosity

media. This remark suggests that an other mechanism is involved. These memory effects

during solute transport are usually attributed to diffusion mechanism in the micro-pores

while dispersion occurs in the meso-pores. We therefore focus the analysis on this combi-

nation of regimes. The main objective of this section is at least to partially clarify the key

issue of memory effects occurrence during solute transport by diffusion in the micro-pores

and dispersion in the meso-pores.

4.6.2 Local governing equations

Let consider the dual-porosity medium depicted in Fig.3. At the microscopic scale, we con-

sider a purely diffusive solute transport regime. The equations read:







∂cm

∂ t
−∇∇∇ · (D∇∇∇cm) = 0 in Ωm,

(D∇∇∇cm) ·nsm = 0 on Γsm,

where cm denotes the solute concentration and D represents the coefficient of molecular

diffusion. At the micro-porous scale, we consider the convection-diffusion equation in the

fluid phase and the boundary-conditions over the mesopore/micro-porous matrix interface

are the no-slip condition and the continuity of velocities and concentrations:































∂cp

∂ t
−∇∇∇ · (D∇∇∇cp − cpvp) = 0 in Ωp,

vp = 0 on ΓMp,

(D∇∇∇cp) ·nMp =< D∇∇∇cm >Ωm
Ωsm

·nMp on ΓMp,

cp = cm on ΓMp,

where cp and vp denote the solute concentration and the fluid velocity.

Choosing the macroscopic length L and a characteristic time tc as the characteristic length

and time of reference, respectively, the above equations can be cast in dimensionless form
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as follows:


































































DL

∂c∗m
∂ t/tc

−∇∇∇x/L · (D∗∇∇∇x/Lc∗m) = 0 in Ωm,

(D∗∇∇∇x/Lc∗m) ·nsm = 0 on Γsm,

DL

∂c∗p
∂ t/tc

−∇∇∇x/L · (D∗∇∇∇x/Lc∗p −PepL
c∗pv∗p) = 0 in Ωp,

v∗p = 0 on ΓMp,

(D∗∇∇∇x/lc
∗
p) ·nMp = RD < D∗∇∇∇x/Lc∗m >Ωm

Ωsm
·nMp on ΓMp,

c∗p = c∗m on ΓMp.

The dimensionless parameters DL, RD and the Péclet number PepL
are defined by: DL =

L2/Dctc, RD = DD
Mc
/Dc and PepL

= vpc L/Dc.

4.6.3 Orders-of-magnitude of dimensionless numbers

The macroscopic transport regime is conditioned by the transport regime which is reached

within the network of meso-pores, and accordingly to (Auriault and Adler 1995), it is:














purely diffusive when PepL
≤ O(ε),

advective-diffusive when PepL
= O(ε0),

dispersive when PepL
= O(ε−1),

strongly dispersive with no homogenised model when PepL
≥ O(ε−2).

We therefore focus the analysis on the cases where PepL
≥ O(ε−1). Péclet’s number in the

meso-pores can be expressed as the ratio of the two following characteristic times: PepL
=

tD
L /tC

L , where tD
L = L2/Dc is the macroscopic characteristic time of diffusion, and tC

L = L/vpc

is the macroscopic characteristic time of convection. In dispersive regime (PepL
≥O(ε−1)),

we have tC
L < tD

L , which highlights the fact that the convective transport is the preponderant

transport mechanism. To obtain a macroscopic transient regime, we thus take tc = O(tC
L )

which leads to DL = O(ε−1). The characteristic value of the tensor of effective diffusion in

the micro-porous matrix is such that: DD
Mc

= O(φmTmc Dc), where Tmc is the characteristic

value of the tensor of tortuosity. We thus have RD = DD
Mc
/Dc = O(φmTmc). Note that in the

most general cases, we have: φmTmc =O(ε0), which leads to: RD =O(ε0). Lower orders of

magnitude of RD correspond to highly tortuous porous media. Note that the results reported

in the literature mention the occurrence of memory effects in media for which RD = O(ε0).

4.6.4 Analysis of the characteristic times and identification of three case studies

Since the transport is purely diffusive in the micro-pores and dispersive in the meso-pores,

characteristic times tMlp
and tpL

are defined by

tMlp
=

φMc l2
pc

DD
Mc

, tpL
=

φpc L

Vpc

.

The ratio is expressed as:

tMlp

tpL

= O(
φMc

φpc

)×O(
DH

pc

DD
Mc

)×O(ε2)×O(PepL
) = O(RD)×O(ε2)×O(PepL

). (26)
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Let firstly consider RD = O(ε0). The characteristic time ratio is such that:

tMlp

tpL

=

{

O(ε) when PepL
= O(ε−1),

O(ε0) when PepL
= O(ε−2).

Now, let assume that the order of magnitude RD = O(ε) can be reached. This may happen

in the case of a very tortuous medium for which: φmTmc = O(ε). In that case, we note that:

tMlp

tpL

= O(ε0) when PepL
= O(ε−1).

Let focus the analysis on these three above defined cases:







• i) RD = O(ε0) PepL
= O(ε−1),

• ii) RD = O(ε0) PepL
= O(ε−2),

• iii) RD = O(ε) PepL
= O(ε−1).

From the results established in terms of characteristic times for thermal conduction, we can

predict that the macroscopic behaviour is with reservoir effect in case i) and with memory

effects in cases ii) and iii).

4.6.5 Case studies

i) RD = O(ε0) and PepL
= O(ε−1)

Homogenisation of this case has been performed in (Royer et al. 2002), (Tejchman 2004)

and leads to the following second-order model:

φT

∂c

∂ t
−∇∇∇x · (D̃H∇∇∇xc− cVp) = 0. (27)

This transport model is a single-continuum model: the whole dual-porosity medium is seen

as an equivalent single-porosity medium. Tensor D̃H denotes the tensor of hydrodynamic

dispersion and is defined over the dual-porosity medium, while Vp represents the macro-

scopic fluid velocity in the macro-pore network. It is a model with reservoir effect which

corresponds to model I.a obtained in thermal conduction. Therefore, it doesn’t reproduce

the experimentally observed coupling effects.

ii) RD = O(ε0) and PepL
= O(ε−2)

At this high magnitude of the Péclet number, the local transport mechanism in the macro-

pores is convection-dominated and it has been shown in (Auriault and Adler 1995) that

there exists no homogenised description in that case. This means that when R= O(ε0) and

PepL
=O(ε−2), memory effects occur but which cannot be modelled in the framework of an

equivalent continuous macroscopic description. It seems that most of the memory effects re-

ported in the literature and which are modelled by means of the so-called mobile-immobile

(MIM) two-equation model of Barenblatt’s type might correspond to these orders of mag-

nitude. Note that in this case, the equality of the characteristic times allows to conclude that

the apparent behaviour presents memory effects, while there exists no continuum model for

reproducing this behaviour.
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iii) RD = O(ε) and PepL
= O(ε−1).

It can be shown that the corresponding first-order macroscopic model reads:

φp

∂cp

∂ t
+

∂ < cm >ΩM
ΩMp

∂ t
+∇∇∇ · (cpVp) = 0, cm = θ ∗ cp,

where














φm
∂θ

∂ t
−∇∇∇ · (D̃m∇∇∇θ) in ΩM,

θ(yyy, t) = δ (t) on ΓMp,

θ : ΩMp-periodic.

(28)

This homogenised model describes memory effects during solute transport in dual-porosity

media with a very tortuous micro-porous matrix.

4.6.6 Concluding remarks

The above results show that in contrast with transient fluid flow in dual-porosity media

for which memory effects are due to the contrast in permeabilities, these effects may occur

during solute transport while there is no such contrast between the transport parameters. This

is due to the fact that solute transport by diffusion-convection is a phenomenon with two

characteristic times. Consequently, equality of the relevant characteristic times can happen

while there is no contrast in diffusivities, but when the local characteristic time of diffusion

in the micro-pores reaches the order of the macroscopic characteristic time of convection in

the meso-pores. Therefore, memory effects happen for a high Péclet number for which no

equivalent continuous macroscopic model can be derived (case ii). A homogenised model

with memory effects can be derived in the particular case of a very tortuous microposity

which leads to a low contrast in transport properties (case iii), but this situation doesn’t

seem to fit with those reported in the literature. This analysis explains why, while (as in

case i) some authors pretend that in some cases solute transport in dual-porosity media is

represented by an equivalent single-porosity model, i.e. by a model with reservoir effect

(Berkowitz et al. 1988; Royer et al. 2002), while many in situ and laboratory experimental

works report that abnormal concentration profiles are obtained which characterise memory

effects and suggest that these effects may systematically occur in a dual-porosity medium

(Grisak and Pickens 1980; Rao et al. 1980; Lafolie et al. 1997; Drazer et al. 1998).

5 Conclusions

The main result of this work is that a transient phenomenon in a dual-porosity is charac-

terised by:











































• a behaviour with reservoir effect when tMlp
≪ tpL

The medium behaves like an equivalent single-porosity medium

• a dual-porosity behaviour when tMlp
≈ tpL

There are coupling and memory effects at the macroscopic scale

• a single-porosity behaviour when tMlp
≫ tpL

The phenomenon occurs only in the macropores

(29)
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where tMlp
is the local characteristic time in the micro-porous matrix and where tpL

repre-

sents the macroscopic characteristic time of the phenomenon. A behaviour with reservoir

effect means that a local steady-state regime has been reached in the porous matrix at the

time of observation tpL
. Consequently, there is no memory effects, but the total porosity

of the medium is accounted for. Furthermore, two behaviours with reservoir effect are dis-

tinguished depending on whether the macroscopic transport effective properties are defined

over the whole dual-porosity (global properties) or only over the macro-pore domain (partial

properties). A dual-porosity macroscopic behaviour is observed at tpL
if the phenomenon si-

multaneously locally occurs in the porous matrix. A single-porosity behaviour corresponds

to the case where, at tpL
, the local phenomenon in the porous matrix has not started yet.

The matrix is therefore seen as a non-porous matrix. An important feature of this correla-

tion between the magnitude of the characteristic time ratio and the macroscopic behaviour

is that it conditions the apparent behaviour, whatever there exists an homogenised model

or not. Furthermore, since the macroscopic behaviour is directly linked to the mechanisms

which are involved at the macro-pore scale and more specifically over the micro-porous

matrix/meso-pores interface, the above result remains valid in the case of a triple porosity

(or of any multiple porosity) medium: the existence of one (or more) additional microscopic

scale(s) may have an impact on the value of tMlp
, but the correlation between the order of

magnitude of tMlp
/tpL

and the macroscopic behaviour remains the same.

The three types of the above mentioned behaviours may be obtained in the case of com-

pressible fluid flow in dual-porosity media. Another important result of the work is the de-

termination of the rules which govern the order of magnitude of the local velocity ratio

(24) for transient fluid flow in dual-porosity media, and which is of crucial importance for

homogenising more complex flows (Chastanet et al. 2007).

While dual-porosity effects are directly linked to the permeability contrast for transient

fluid flow, memory effects may occur during dispersive solute transport when there is no

contrast between transport properties. For a purely diffusive transport in the micro-porosity

and a dispersive transport in the mesoporosity, this happens when the local characteristic

time of diffusion in the matrix reaches the magnitude of the macroscopic characteristic time

of convection. This gives rise to a high Péclet number for which no equivalent continuous

macroscopic model can be derived. Memory effects also occur in the particular case of

a very tortuous microposity which leads to a contrast in transport properties and for which

homogenised models can be derived, but this situation doesn’t seem to fit with those reported

in the literature. The analysis also explains why, some authors find that in some cases solute

transport in dual-porosity media is represented by an equivalent single-porosity model, i.e.

by a model with reservoir effect, while many in situ and laboratory experimental works

report that abnormal concentration profiles are obtained which characterise memory effects.

Finally, it should be noted that the time analysis being presented in this article should

make easier the investigation and interpretation of any novel and more complex phenomenon

in dual-porosity media. Besides the results, this paper provides the guidelines on how inter-

pretating the domains of validity of homogenised models. This procedure, which is based

on the analysis of the continuous passages between the distinct models, applies to any other

problem for which a given microscopic description leads to several macroscopic models.
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