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ABSTRACT

In this paper a numerical model to predict train induced vibration is presented. The dynamic computation considers
mutual interactions in vehicle/track coupled systems by means of a finite and discrete elements method. The considered
vehicle model consists of 7 two-dimensional discrete elements connected by spring/damper couples. The rail is modeled
as finites beam elements connected to sleepers by pads areas. Supporting substructure consisting of pads, sleepers,
ballast and foundation, is modelled as discrete elements. Components are connected each to others by spring/damper
couples. Vertical profile of rail is considered as sum of trigonometric functions with phase and amplitude generated by a
pseudo random process. The dynamic interaction between the wheel-sets and the rail is accomplished by using the non-
linear Hertzian theory.

The strong point of this study consists in the model used to simulate the behaviour of pads. The rail-sleeper contact
is assumed extended to an area defined such a contact-zone, rather than a single point assumption which fits better real
case studies. Experimental validations show how prediction fits well experimental data.

Keywords: train, railway, vibrations, sleeper, wheel-rail, contact force.

INTRODUCTION

Modelling and predicting vibrations is not an immediate process due to the several parameters, the heterogeneity of
track properties and corrugation, the behaviours of materials. For this fact, to have a good prediction of vibrations, it is
necessary to focus the precision of model on the phenomenons with more impact. The main causes of vibrations
induced by train are: rail irregularity, wheel defects and variation of stiffness due to discrete supporting of rail. The first
two phenomenons have been abundantly discussed by numerous works. They are diversified by the models employed
for the vehicle and the track. Some works [4, 8, 15] have studied the waves propagation through the track-ground
system in three dimensions, modelling contact forces as constant or harmonic vertical forces moving along the rails.
Others [11, 12, 14] have studied the coupled train/track system in two dimensions, modelling rail as a Timoshenko
beam connected to pads by singular point. Still others [9, 10] have studied the coupled system modelling rail with finite
elements connected to pads by singular points; they have discretized the rail with a singular finite element for each pair
of sleepers. However the rail is connected to sleepers by a contact zone not negligible if compared to the length of the
rail suspended between two consecutive sleepers. Indeed, sleeper base measures between 60 and 70 cm and the pad
length along the rail direction measures between 17 and 26 cm. In addition the midspan point of rail assumes the
maximum displacement during vibration and this cannot be modelled with a singular element between two sleepers.
Moreover shear effects for rail finite elements are neglected in [9, 10], but the height of rail section (148 mm for a 50
UNI rail and 172 mm for a 60 UIC rail [13]), compared to length of a beam element, is not small enough to allow
classical hypothesis for slender beams.

In this work we have treated all of three phenomenons: rail irregularity, wheel defects and variation of stiffness due
to discrete supporting of rail. The main difference from present work and the others consists in the model of
connection between rail and sleepers. A contact-zone has been considered. A series of spring/damper elements have
been placed along all the longitudinal length of the sleepers. The number of elements can be chosen in the algorithm.

1. DESCRIPTION OF THE MODEL

The vehicle is modelled as 7 two-dimensional rigid elements representing: the body, the two boogies and the four
wheels. The total number of degrees of freedom considered for the vehicle is 10: the vertical displacement for all of
seven rigid elements, the pitch of body and wheels.

Railway is discretized as finite Timoshenko beam elements. For each beam element, 4 degrees of freedom are
considered: vertical displacement and rotation of every node. Axial deformation is insignificant.
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Figure 1: Draft of the model.

The substructure is made-up of: rail-pads, sleepers, ballast, and background. Comparing mass and stiffness between
rail-pads and concrete sleepers it results that rail-pads mass (1~2 kg) is negligible with respect to concrete sleepers
mass (250~350 kg). Similarly, sleeper vertical stiffness (30~40-10"> N m™) is six orders of magnitude bigger than pad
vertical stiffness (15~25-10° N m™). For this fact, rail-pads have been modelled as spring/damper couples without mass
and sleepers have been modelled as rigid elements. Moreover many spring/damper couples are disposed along the
length of sleepers to better fit the contact area. The vertical stiffness and the mass of the ballast are both significant, so
the ballast has been modelled as blocks made-up of rigid elements, connected to sleeper by spring/damper couples. To
allow the transmission of vibrations in longitudinal direction too, spring/damper couples connect ballast elements
horizontally. Ballast stiffness is calculated according to Zhai et al. [17], so the stiffness for a ballast block is:

2(l,—b,)tano

’ ln[lx(2h,,tanq) +b,) " (1)
b (2h,tan ¢+ )
where:
Q: internal friction angle of ballast;
[.,b,: dimensions of the effective contact area between ballast and sleepers;
h, : height of ballast;
E, : modulus of elasticity of ballast.

In accordance with Y.Q. Sun and Dhanasekar [14] coefficients for longitudinal springs and dampers are calculated
as 30% of respective vertical coefficient.
To represent the behaviour of background a spring/damper couple is added over ballast blocks (see Figure 1).
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2. ASSEMBLING MOTION EQUATIONS

The motion equations associated to the vehicle degrees of freedom have been written in accordance with X. Lei and
Noda [9] in the matrix form:

M,z +C, 2, 4K, 2,=10,,(2,.2,) = Py )
where:
M, C K, : mass, stiffness and damping matrices;
2y Zyr Byt accelerations, speeds, displacements vectors;
DV weight forces and wheel-rail contact forces vectors.

The contact force for the j”-wheel has been computed by the non-linear Hertz model as:

R =k +c,d if 850

rlw,j X > (3)
0 if §<0
where:
k: Hertzian contact coefficient computed by Y.Q. Sun et Al. [14];
Cp: represents the combination of two physical phenomenons: the friction and the viscosity of material;
O: total deformation of wheel and rail.
The total deformation of wheel and rail is computed as:
0=z,,~z,~ M, 4)
where:
Zyy the vertical displacement of the j”-wheel;
Z,,M,:  displacement and vertical defect of rail at Jj™-contact-point respectively.
Vertical defect has been computed in accordance with Lei and N.A. Noda [9].
Similar to Equation (2), the dynamic equation associated to rail nodes can be written in the matrix form:
Mr %r +Cr .zr+Kr ="y (zv’ zr)_ rs/r(zrl zs>_pr ’ (5)
where:
D, : equivalent nodal loads vector containing the weight forces;
ro: equivalent nodal loads vector containing the wheel-rail contact forces;
ry,: nodal loads vector containing the sleeper-rail contact forces.

Damping matrix has been calculated by Raylegh's theory as linear function of mass and stiffness matrices.
Similar to Equations (2) and (4), the dynamic equation associated to substructure can be written in the matrix form:

MS%S+CSzS+KSzS:_rr/S(zr’ zs)_ps’ (6)
where:
Ds: weight forces;
rL: rails-sleeper contact forces.

Finally it's possible to assemble the systems of equations (2), (5) and (6), in one system:
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M:+C 74K z=-r(z,,2,,2,)— P - M

3. RESOLUTION OF MOTION EQUATIONS

In order to solve the non linear system of equation (7), displacements and speeds have been written as function of
accelerations by the linear acceleration method. Then we have:

F( z+1) Azz+1+fz+1( z+1) b,=0, ¥
where:
2
A= M%C#A—gK, ©)
2
b=—p— C(zﬁ%zl) K zi+At'zi4A—;2i)’ (10)
év,z+1
=l - ()
2s,1+1

_rr/w(zv’ zr)
f}ﬂ - rw/r(zv’ zr)_'—rs/r( zr’ zs) ’ (12)

rr/&( <0 zs‘)

“th

The variables at the i” time step are knowns. The number of equations is 7,,=10+2n+2m , where 10 is the number

of degrees of freedom of the vehicle, # is the number of rail nodes, and m is the number of sleepers included in the route
considered.

This system of equations has been solved with the Raphson iterative method. The Jacobian associated to system of
equation (8) is:

06 X6 06><(4+2n) 06><2m
ok , (14)
J( l+1) A 0 (442n)x R(zm )(4+2n)><(4+2n) 0(4+2n)x2m
02m><(> 02m><(4+2n) 02m><2m
where R ( Zin )( 4-2n)x (4420 is a matrix which contains the derivatives of the components of the vector f  with

respect to accelerations. The component at the line / and at the column c is:

of
R,,ng—; . (15)

Once the Jacobian is defined, the solution Z,,; can be calculated as limit of the sequence [Z%, ] ., where the

superscript k is relative to the & R. iteration, such that:

J(3 ) (35 =55 =—F (7). (16)
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4. COMPARISON WITH OTHER NUMERICAL MODELS

A comparison with other models has been done to validate the present work. Two cases are considered: a rail with
simple corrugation and one with an irregularity based on ISO3095 [1] limit curve.

First the case of a corrugated rail with regular defects is considered. In Figure 2 a comparison between our
numerical results and those of J. Zhang et al. [19] is shown. The parameters for the vehicle are taken from [19]. The
track consists of 100 sleepers, the rail between two consecutive sleepers is divided in 12 beam elements, vehicle speed
is 160 km/h. Track parameters are reported in Table 1. The wavelength and the depth of defects are 3,3 cm and 25 pm
respectively. The trend of wheel-rail contact force is shown in Figure 2(a). In Figure 2(b) the rail deformation for a
given time step is shown. The value of the subgrade equivalent stiffness is infinity (biggest number supported by
MATLAB), because this level of elasticity has not been considered by J. Zhang et al. [19].

Proposed model Proposed model
4 —— J. Zhang et al. " —— J. Zhang et al.

Wheel-rail contact force [N]
S
a u
Rail displacement [m]]

20.05 201 20.15 20.2 2025 20.3 20.35 204 10 15 20 ®» % 35 40 45 50
Distance [m] (b) Distance [m]

—~
&

Figure 2: Comparison between J. Zhang et al [19] and presented model in case of regular corrugation:
(a) wheel-rail contact force and (b) rail displacement.

It results that both of the curves fit well with other model. Focusing on Figure 2(a) it's possible to see how both of
curves appear like modulated carrier waves. The carrier frequency, 1347 Hz, corresponds to the wavelength of
corrugation: 3,3 cm. It causes the biggest variation of the dynamic contact force. The lower and upper sideband

frequencies are 1347 &= 81.5 Hz, where 81.5 Hz corresponds to the sleeper passing frequency. The Fourier spectrum of
contact force is shown in Figure 3.

AM of Contact Force

3 T T T T T T T
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r 1347 Hz i
20 ]
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Figure 3: Amplitude modulation of contact force in proposed model.

Looking on Figure 2(a) It's possible to see how the modulation index is bigger in the J. Zhang et al. [19] model than
the proposed one. This could be explained by the difference between the sleeper-rail contact-zone introduced in this
paper and the singular point contact model. In fact the stiffness of the track, encountered by the rolling wheel, varies
faster near a singular contact point, and the contact-force has to variate with the same trend. On the contrary in the
contact area model this variation has to be less conspicuous because the stiffness is not concentrated on a point.

SIIV Roma MMXII- 5" International Congress 6



A. Johansson and J.C.O. Nielsen [6] Model Presented Model
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Figure 4: Comparison between A. Johansson and J.C.O. Nielsen [7] model and the proposed one in case of ISO3095 [1]
based corrugation:
(a) Fourier spectrum of the normal contact force for Johansson & Nielsen [7]; (b) Fourier spectrum of the normal con-
tact-force calculated with present model.

In the second case a rail with corrugation based on ISO3095 [1] is considered. The modal frequency analysis of the
contact-force has been compared with the A. Johansson and J.C.O. Nielsen [7] model. The parameters of the model are
reported in Table 2.

The comparison between models is shown in Figure 4. The biggest amplitude of the normal contact-force Fourier
spectrum corresponds to the sleeper passing frequency: 85 Hz. Focusing on Figure 4(b), amplitudes increase in
magnitude around 570 Hz, 830 Hz, 1100 Hz and 1420 Hz. These frequencies correspond to the bending modes of a rail,
with pinned-pinned boundary conditions, considering the same length of the boogie wheelbase [6, 16]. Experimental
results confirm this behaviour [7].

Table 1: Model parameters adopted in the 1% case.

notation parameter value unit

Model parameters of substructure

E Y oung modulus of rail 2,07-10"  Nm’'
1 inertial modulus of rail 3217-10° m*
A section area of rail 762-104 m?
X Timoshenko shear coefficient 0,34
m, railway mass (per unit length) 60,64 kg m’!
M, sleepers mass 125 kg
k, pad stiffness 10-107 Nm'
c, pad damping 20-103 Nsm!
k, ballast stiffness 30-107 N m'
C, ballast damping 58,8-103 N s m!
I sleeper base 54,5 cm
Other simulation parameters
dt time step 1,8-10° S
K, Hertz contact coefficient 0,87-1011 N m?"?
L, simulation line length 65 m
n number of pad elements 6
d number of beams between sleepers 6
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Table 2: Model parameters adopted in the 2™ case.

notation parameter value unit

Model parameters of substructure®

E Young modulus of rail 2,07-10'"  Nm'
1 inertial modulus of rail 3096-10* m*
A section area of rail 77,00-10% m?
c Timoshenko shear coefficient 0,34
m, railway mass (per unit length) 60 kg m!
M, sleepers mass 125 kg
k, pad stiffness 120-10¢ Nm'
c, pad damping 16-103 Nsm!
k, ballast stiffness 140-10¢ N m!
c, ballast damping 165-10% Nsm!
1 sleeper base 65 cm
Model parameters of train x2000
2M, car body mass 28900 kg
M, bogie mass 1630 kg
2M,, wheelset mass 2000 kg
21, wheelset base 4.1 m
21, bogie base 17,7 m
k, primary suspension stiffness 328 kN m!
k, secondary suspension stiffness 131 kN m!
c; primary suspension damping 30 kN s m'!
c, secondary suspension damping 90 kN s m'!
Other simulation parameters
dt time step 5,9-105 s
K, Hertz contact coefficient 0,87-101 N m?3”?
C, contact damping coefficient 1,5-105 Nsm!
L, simulation line length 64,45 m
n number of pad elements 30
d number of beams between sleepers 12
N number of defects functions 500
@@, upper pulsation 2778 rad s’
2] lower pulsation 112 rad s™!
Vv train velocity 200 km h!

a: parameters taken from [6]
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5. VALIDATION WITH EXPERIMENTAL RESULTS

A real case has been studied to validate the efficiency of the model. The railway section, 64.35 m long, is relative to
the Italian line Alcamo-Marsala (116 km). It's an old line with wooden sleepers. G. Di Mino et al. [3] have carried out
measurements in this railway line with a series of accelerometers. They considered a running of an ALn668 train with
single configuration, having velocity of 90 km h™'. A comparison between experimental and numerical results of the rail
vertical accelerations is presented in Figure 5. Similarly, the sleeper vertical accelerations are reported in Figure 6. All
of parameters adopted in the model are reported in Table 3.

150

150

iy
Q
(=

in
o

Rail acceleration [m/s?]
Rail acceleration [m/s?]

-1001

P P 0.6 oa 1 1o 15 0z 04 05 0.8 i 12 14
Time [s] Time [s]
(@) ()
Figure 5: Comparison between: (a) experimental data [3] and (b) numerical results of the rail vertical acceleration in the
first case.
Bof

Sleeper acceleration [m/s?]
Sleeper acceleration [m/s?]

0.2 0.4 0.6 0.8 1 1.2 0 02 04 0.6 0.8 1 1.2 1.4
Time [s] Time [s]

(@ ®)

Figure 6: Comparison between: (a) experimental data [3] and (b) numerical results of the sleeper vertical acceleration in
the first case.

Experimental data in Figure 5(a) shows that peaks of the rail vertical acceleration are included between 50 ms™ and
100 ms?, and they occur in correspondence of the four wheels-sets passage. The same behaviour is predicted by

numerical simulation in Figure 5(b). In Figure 6(a) the peaks are not distinguishable for each wheel-set. Figure 6(b)
shows that our model well predict also this kind of behaviour.
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Table 3: Model parameters adopted for the simulation

notation parameter value unit

Model parameters of substructure®

E Y oung modulus of rail 2,07-10""  Nm'
1 inertial modulus of rail 1884-10% m*
A section area of rail 63,62:10% m?
c Timoshenko shear coefficient 0,34
m, railway mass (per unit length) 49,9 kg m!
M sleepers mass 33 kg
M, ballast mass 700 kg
k, pad stiffness 26,5107 N m'!
c, pad damping 40-103 N s m!
k, ballast stiffness 24-107 N m!
Cp ballast damping 58,8-108 N sm!
k, horizontal stiffness 7.84-107 N m!
C, horizontal damping 80-10° Nsm!
k, subgrade stiffness 7,68:107  Nm'
¢ subgrade damping 64,6100 Nsm!
1, sleeper base 65 cm
Model parameters of train 4im668*
2M, car body mass 28800 kg
M, bogie mass 3600 kg
2M,, wheelset mass 500 kg
1. total length 23540 mm
21, wheelset base 245 m
21, bogie base 15,95 m
k, primary suspension stiffness 500 kN m!
k, secondary suspension stiffness 8800 kN m!
¢, primary suspension damping 0,5 kN s m'
C, secondary suspension damping 41,5 kN s m'!
Other simulation parameters
dt time step 6-10% s
K, Hertz contact coefficient 0,87-101 N m37?
C, contact damping coefficient 3-105 N sm!
L, simulation line length 64,45 m
n number of pad elements 7
d number of beams between sleepers 9
N number of defects functions 200
@, upper pulsation 1560 rad s
w9 lower pulsation 12 rad s
llg line grade index 1
14 train velocity 90 km h!

a: parameters taken from [2]
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6. CONCLUSIONS

The model presented in this work allows to predict contact forces and vibrations in all of vehicle and track
components. The validation shows how prediction fits well experimental data and numerical data of other models.

Studying the Fourier spectrum of contact-force in the case of regular defects it has seen that the contact-force can be
treated as an amplitude modulated wave. The carrier frequency is f =V /) , where V is the train speed and A is the
wavelength of defect; the upper and lower sidebands can be calculated adding and subtracting the sleeper passing
frequency from the carrier signal. It has noticed that singular point models overestimate modulation index.

The model of rail support, here introduced, can be more accurate especially for modal analysis of contact-force and
vibrations. In future works we will study new scenarios working on modal analysis.
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