
Dynamic Reduction of Rollbacks in Wireless

Multi-user Virtual Environments

Abdul Malik Khan1, Sophie Chabridon1, and Antoine Beugnard2

1 Institut TELECOM, TELECOM SudParis
CNRS UMR SAMOVAR
9 rue Charles Fourier

91011 Evry cedex, France
{Abdul malik.Khan,Sophie.Chabridon}@institut-telecom.fr

2 Institut TELECOM, TELECOM Bretagne
Computer Science Department, CS83818

29238 Brest cedex 3, France
Antoine.Beugnard@institut-telecom.fr

Abstract. In distributed virtual environments such as multiplayer
games, where many users interact in real time while communicating
through a network, the users may have an inconsistent view of the game
world because of the communication delays across the network. Consis-
tency maintenance algorithms must be used to have a uniform view of
the game world. The majority of these algorithms use rollback mecha-
nisms to correct the inconsistencies that occur because of the disorder
of the arrival of update messages. These rollbacks are very costly, es-
pecially when playing a game, using high-latency wireless networks, on
mobile terminals which have limited memory and processing speed. In
this paper, we present a dynamic and adaptive approach for reducing
the number of rollbacks in distributed virtual environments on wireless
mobile devices. This approach takes into account the underlying network
latency and the semantics of the game virtual world to dynamically de-
cide whether a rollback is needed in case inconsistencies have occurred
or can be possibly avoided. We evaluate our approach on a simplified
version of a Football game on hand-held devices and show that this dy-
namic rollbacks’ reduction approach improves the responsiveness of the
game and maintains consistency of the game state while limiting the use
of processing power and memory space.

Keywords: Multiplayer Mobile Games, Latency Hiding, Data Synchro-
nization, Consistency Algorithm.

1 Introduction

Networked Multiplayer Games are becoming more and more popular with the
advances in hardware technologies and enriched game design improving immer-
sive feelings. However one of the main issues hindering the real-time interaction
in these games is network delays. To enforce strong consistency, events transfer

M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 100–116, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Dynamic Reduction of Rollbacks 101

should satisfy total order [2], however this would degrade [4] the performance of
the game. Because of the unordered delivery of events and the network delays
induced by unreliable protocols, the game state can be inconsistent at different
points in time.
To address this issue, synchronization algorithms are used to reach a consistent
state at all the players. There are two approaches to state consistency main-
tenance. In the conservative approach, all the participants must wait for the
acknowledgement of their update messages and reach a global consistent state
before advancing. Unfortunately, this approach cannot be applied to continu-
ous applications such as multiplayer games where the state of the simulation
changes not only as the result of user actions but also with the passage of time.
Also, waiting for acknowledgements would violate the interactivity property. In
the optimistic approach, the participants process events without waiting for the
arrival of late events and repair any potential inconsistency when it actually oc-
curs. This approach is suitable for mobile continuous interactive applications as
it preserves the game experience of the players even with a high network latency
and variations in the connectivity as in wireless networks.

Different mechanisms [10,3,5,6,13] can be used to repair inconsistencies in the
optimistic approach. Among the proposed solutions, rollback mechanisms are a
popular solution to remove the inconsistencies that occur because of late arriv-
ing messages when using unreliable network protocols. However, these rollback
mechanisms use static approaches to solve inconsistencies without keeping in
view the changes in the network and game environments. In wireless networks,
the communication delays are higher as compared to wired networks and also
jitters can occur impacting the network delays. Also, we believe that in a multi-
player game, different objects and regions in the game have different consistency
requirements that vary during the game play as we have already discussed in [9].
In this paper, we propose an optimistic approach based on a dynamic rollback
mechanism which adapts its behaviour according to the changes in the network
conditions and the consistency requirements of the game at a particular time.
The aim is to considerably reduce the number of rollbacks which occur because
of variations in the wireless network latency and to improve the playability of
the game on mobile devices. Furthermore, we introduce the idea of critical ac-
tions to denote highly sensitive events in the game which impact the outcome
of the game results. The update messages representing these actions cannot be
discarded and must be eventually delivered. Also the rolling back of these mes-
sages can have an adverse effect on the result and the usability of game. Our
approach tries to avoid, whenever possible, the rollbacks of such critical actions
(or events) by relaxing the consistency requirement during the game play.

This paper is organized as follows. In section 2, we discuss some related works.
In section 3, we discuss the need for a more dynamic approach to consistency
maintenance. In section 4, we discuss our proposed solution for dynamic rollback
reduction. In section 4.1, we propose the idea of critical actions and then in
section 4.2 we use this concept to define relations between game events that
can help discard late arriving events without performing any rollback. In section

102 A.M. Khan, S. Chabridon, and A. Beugnard

5, we present an example scenario to explain our approach. Based upon the
concepts discussed in sections 3 and 4, we give in section 6 an algorithm for the
reduction of the number of dynamic rollbacks. In section 7, we discuss the trade-
off between interactivity and consistency. In section 8, we give the results of our
experimentation on the proposed approach. Section 9 concludes this paper and
discusses some future work.

2 Related Works

Time Warp [10] is an optimistic synchronization algorithm that allows remote
participants to execute their events without the guarantee of a causally consis-
tent execution. Time Warp takes a snapshot of the state at the reception of a
command and issues a rollback to an earlier state if a command older than the
last executed command is received. With an unreliable transmission protocol
and high delays in wireless networks, the number of late arriving commands can
greatly increase the number of rollbacks which can be very costly for users of
mobile terminals keeping in view their limited memory and processing capacity.
Moreover, frequent rollbacks can affect the playability of the game. The local lag
approach can be used with Time Warp to force the local events to wait for the
late arriving events before displaying them. This allows to reduce the number of
inconsistencies that can occur, but at the cost of a decreased responsiveness of
the game.
In [5,6], the authors present an event correlation algorithm for mirrored server
architectures to decrease the number of rollbacks. The events which are not cor-
related to earlier events and arrive late can be discarded without rolling back
the previously executed commands. These papers, however, do not present any
definition or approach for finding the correlation between events.
[13] uses a correlation algorithm for P2P Massively Multiplayer Online Games
(MMOGs). According to their definition, two events are correlated if “they both
update the same state variables associated to a given game element”. Apart from
repairing inconsistencies, an approach called dead-reckoning [1] can be used to
predict the future positions of objects in the game world for increasing the inter-
activity of the virtual environment and hiding the network latency. Additionally,
the local lag [10] allows to delay the display of local command(s) so that update
messages from remote players can arrive, thereby avoiding a causal disorder of
messages. We have already proposed in [9] the idea of dynamically changing the
parameters for dead-reckoning and local lag according to the network delays and
the positions and speeds of the game’s objects. In this paper, we combine this
idea with our dynamic rollback reduction approach to achieve consistency in
multiplayer games according to the need of the situation.

3 A Dynamic Approach to Consistency Maintenance

In the previous section, we discussed different synchronization algorithms used
for consistency maintenance in multiplayer games. Because of the rollback and

Dynamic Reduction of Rollbacks 103

re-processing of commands, Time Warp is very costly in terms of memory and
processor usage and hence is not very suitable for mobile games. The local lag
approach, combined with dead-reckoning, is suitable for high latency networks.
But because of changing delays and jitters in wireless networks, a fixed local lag
can cause inconsistencies in the game state across different nodes. Also, we be-
lieve that the message discarding approach presented in [7] can be interesting to
combine with local-lag. This is because in wireless networks, there are messages
which arrive late due to the network jitter and hence must be discarded as these
late arriving messages may cause inconsistencies. In this section, we present a
dynamic approach in which the consistency maintenance algorithm changes its
parameters according to different factors of the environment: e.g. the network
load, the type of objects, the location of an object in the virtual world etc. In this
section, we first discuss the conditions under which these different parameters
are dynamically changed and then we combine these different approaches into
the form of an algorithm.

3.1 Observations

While playing a multiplayer game, some inconsistencies may occur due to the
communication delays across the network. The game programmers estimate
these delays in order to compensate for the late arriving messages from remote
users. Because of the jitters, especially in wireless networks, these delays may
vary greatly. Therefore, it is necessary to observe the network load during the
game play and to compensate for these delays accordingly. In a rich multiplayer
game, there are many different types of objects in the virtual environment. The
velocities and directions of these objects vary according to their nature. For ex-
ample, in a tennis game, the speed of the tennis ball is greater than the speed of
the players. Also, a player has to react sharply to the movement of a ball. There-
fore, these different types of objects in the game world have different consistency
requirements. The algorithm responsible for consistency management has to re-
act not only to the varying latencies of the underlying network infrastructure,
but also has to deal appropriately with the various types of objects of the game.
We also observe that the consistency requirement for an object not only depends
upon its speed, but also upon its position in the virtual world. For example, in
a car racing game, we need strict consistency management when two cars are
very close to each other and they both are approaching the finishing line. Based
upon these observations, we believe that a consistency maintenance algorithm
must take into account the context of the game along with the variations in the
network communication delays.

3.2 An Adaptable Local Lag

When a message about an object is received from a remote user, this object
has a certain distance, possibly zero, from the other objects, destination, or any
other important entity in the game world, called pivot. We therefore change the
value of the local lag according to three factors:

104 A.M. Khan, S. Chabridon, and A. Beugnard

1. If the object concerned by the message we have received from the remote
user is coming closer towards the pivot, we reduce the value of the local
lag. If the object is going away from the pivot, we increase the value of
the local lag upto a certain limit called Local-lagu. This increase can be
continuous with respect to the motion of the object, or can be discrete based
on zones as in [12]. The rate of the change of the value of the local lag
is application dependent, and the programmer must specify it during the
development of the game. In the next section, we present an approach to
help the programmer to specify these values to a component responsible for
consistency management.

2. The value of the local lag also changes according to the network load. When
the number of messages arriving later than a certain waiting time reaches
a certain level Nd, we increase the value of the local lag. This increase in
the number of messages arriving late can be due to jitters in the network.
Note that the value of the local lag is proportional to the network latency,
but we cannot increase it more than a certain limit because it would have
a bad effect on the responsiveness. This upper limit can be dependent on
the pace of the game. If the game or an object in the game demand high
responsiveness, we should not increase the local lag value above a certain
limit. This limit can be specified by the game developer.

3. We can set different local lag values for different types of objects according
to their importance in the game. For example, we can have a smaller value
of local lag for the ball and a higher value for the players in a tennis game.
Indeed, the responsiveness of the ball must be high to satisfy the interaction
requirement as in [14]. Again, we need an interface provided by the com-
ponent implementing the algorithm so that game developer can specify the
relative values of local lags for different objects in the virtual environment.

3.3 Adaptable Dead Reckoning

The dead-reckoning approach relies on a threshold represented the maximum
distance tolerated between the real object trajectory and the predicted one.
This threshold value should be situation and environment dependent. Different
objects have different consistency requirements at different regions in the game
and hence the dead-reckoning should adapt dynamically according to the situ-
ation. For this purpose, we propose the idea of critical regions to denote those
regions where strong consistency is required.

Critical Regions. We define a Critical Region as a region in the game where we
need strict consistency so that all the players have a consistent view of the game in
that region. A critical region is one in which inconsistencies can violate the fairness
of the game or can annoy a player because his expectations are violated. Therefore,
we propose to use real update messages instead of predictions in those regions. For
example, in the case of a tennis match, if the ball hit by one player is touching the
ground near the base line on the other side of the court, and the opponent player

Dynamic Reduction of Rollbacks 105

d

l

v
b

v
p

Fig. 1. Area around the base line constitute a critical region in Tennis game

is quite far from the ball, we stop the dead-reckoning so as to increase the fairness
between the players.The ball will touch the ground only when the originalmessage
is received and hence the result of the score will be correct.

The calculation of the decision whether to use dead-reckoning or not can
normally be done through some easy arithmetics. For example, in Figure 1,
let vb and vp be the current speed of the ball and the maximum speed of the
opponent player respectively. Let l be the distance covered by the ball from the
centre of the court to the point where it touches the ground and d be the distance
of the player from that point. The ball will reach the ground in l/vb time units
and during that time the player can cover a distance of vp ∗ l/vb distance units.
So if d > vp ∗ l/vb, then the player cannot reach the ball, and we can stop dead-
reckoning from near the net where we did the calculation. Of course, the ball
will stop and jump into the air for a short period of time near the centre of the
court. This will not affect the playability and the fairness of the game because
we know that the opponent could not reach the ball in any case. Note that, if we
do not use the idea of critical region and continue with dead-reckoning, we may
predict a wrong position for the ball touching the ground near the base line and
that wrong decision may cause one player to loose a point which he otherwise
would have won.

Apart from critical regions, the dead-reckoning mechanisms is also dependent
upon the network load and the nature of the object. For example, we can have
different dead-reckoning thresholds for different objects according to their move-
ment and importance in the game world. This threshold must be specified by
the game developer to the component responsible for consistency maintenance.

106 A.M. Khan, S. Chabridon, and A. Beugnard

4 Dynamic Reduction of the Number of Rollbacks

In this section, we present the concepts that can help to dynamically reduce the
number of rollbacks in high latency wireless networks.

4.1 Critical Actions

We first introduce the concept of critical action (or event). We define critical
actions as commands in the game, that unlike position update messages, affect
the output of the game for other objects. For example, a shoot command can
increase the points of one object and can kill or reduce the moving capability of
another object. Hence, we consider the shooting command as a critical action.
The delivery of critical actions is highly essential, however, as we will see in the
next section, there are times when dropping such events does not violate the
outcome of the game. Moreover, the rollback of a critical action can cause the
users to quit the game because their expectations were violated [14]. This hap-
pens when there is difference between the state that they could achieve because
of their own actions and the resultant state after the rollback. Therefore, efforts
must be made to deliver the critical actions before users’ expectations are vio-
lated and rollbacks of critical actions should be avoided whenever possible. We
argue that in certain cases, such as with a very high latency in wireless networks
and when the action is not taking place in a critical region, the critical action
message can eventually be dropped if arriving very late. The definition of very
depends upon the nature of the game and the value of the network latency and
the local lag at that time.

4.2 Weak and Critical Correlation

Introduced in [5], the concept of obsolescence states that an event that arrives
late at a recipient while some event that was issued earlier than this event (i.e.
having greater time stamp) has already been processed, is obsolete and must
be discarded. Additionally, the concept of correlation states that if this obsolete
message is correlated to an earlier processed event, then all the events till that
correlated event must be rollbacked and reprocessed along with this new arriving
message. [5], however, does not define any mechanism to calculate the correlation
between any two events. [13] defines two events to be correlated if they are
associated with a single object.

We introduce here the new concepts of weak correlation and critical
correlation by incorporating the notions of critical regions and critical actions.
We propose that any late arriving event should be considered obsolete if it is
neither in a critical region nor it is a critical action. A critical action in a crit-
ical region should never be considered obsolete and must be guaranteed to be
eventually delivered.

Dynamic Reduction of Rollbacks 107

We now give the definitions 1 of the properties of weak and critical correla-
tions based upon the concept of correlation.

Correlation χ,
Given two events eci and ecj ∈ Ec, where Ec is the set of all events that belong
to oi and oj ǫ O, the set of all objects, with time stamps Ti and Tj , such that
Ti < Tj, then,
eci χ ecj iff
(eci; ecj, s) → s1 ∧ (ecj ; eci, s) → s2 ∧ s1 �= s2. s1,s2 ∈ S, the set of all states.

It means that the ordered execution of correlated events is necessary to reach a
consistent state. We now define the two properties of weak and critical correla-
tions.

Property 1: weak correlation χw Two events are weakly correlated if they are
correlated to each other, but are either non-critical actions or do not occur in
any critical zone.

Property 2: critical correlation χc Two events are critically correlated if they
are correlated to each other, and in addition, those two events belong to the set
of critical actions and they occur in a critical zone.

All correlated events that are non-critical events are weakly correlated.

4.3 Relaxed Consistency

In our definition of relaxed consistency, when the number of late arriving mes-
sages increases above a threshold value, thereby indicating a high network la-
tency, we rollback only those events that are critically correlated and we discard
weakly correlated events. We also increase the local lag value for critical events
so as to further decrease the number of rollbacks and better satisfy the user
expectations with regard to the game.

Whenever the number of late arriving messages decreases below the threshold
value, then we stop the discarding of weakly correlated events. This is because the
number of rollbacks has already decreased following the decrease in the network
latency, so processing weakly correlated events will not increase the number of
rollbacks beyond a certain limit. Also we decrease the value of the local lag to
increase interactivity for the users. For all other events that are not critical, we
discard them when arriving late, because it will not affect the playability of the
game and will unnecessarily increase the number of rollbacks thereby wasting
the limited processing power and memory space of mobile terminals.

1 We adopt a simplified version of a syntax based on a Plotkin-style operational se-
mantics (Plotkin 1981 [11]). In particular, (ei; ej , s) → s∗ denotes an initial game
state s from which the final game state s∗ is reached through two subsequent events,
namely ei and ej .

108 A.M. Khan, S. Chabridon, and A. Beugnard

5 An Example Scenario

In figure 2, we show an example game scenario in which a character hits a
moving target (an animal in the figure) with their gun shots. To hit the target,
the shooter first sends a warning (or ready) sign before shooting it. Without a
warning sign, it cannot shoot the target. In the figure, a circle around the animal
denotes a critical region where a gun shot can hit the target.

Suppose that the warning sign w2 arrives later than the actual shot s2. Since
s2 hits an area which is outside of the critical region, we do not need to perform
any rollback when w2 arrives since it will not affect the outcome of the game.
We say that s2 and w2 are weakly correlated. In case w1 arrives later than
s1, then we have to apply a rollback because we cannot discard W1 as it will
violate the game rule of warning before shooting. We say that w1 and s1 are
critically correlated. If we have already experienced a large number of rollbacks
thus suggesting a high network latency, we increase the value of the local lag so
as to give more time to late arriving messages and hence decrease the number
of rollbacks in the critical region.

Fig. 2. A game with two players

Dynamic Reduction of Rollbacks 109

6 Dynamic Rollbacks Reduction Algorithm

In this section, we present a dynamically adaptive synchronization algorithm
based on the concepts of obsolescence and correlation using the optimistic ap-
proach as already discussed in the previous sections. In our algorithm, we propose
to minimize the number of rollbacks with our dynamic approach. The purpose
of reducing the number of rollbacks is to avoid unexpected behaviour during the
game and to allow a smooth flow of the game. Also, in case of a game played
on mobile phones, rollbacks are very costly in terms of their use of memory and
processing resources which are limited on small portable devices.

In our approach, we combine the use of local lag and the notions of critical re-
gion and critical action. A local lag is the artificial introduction of a delay (both
at emitter and receiver nodes) so as to allow an ordered processing of those mes-
sages which were isssued earlier but arrived later than other messages because
of the network delay. If the number of rollbacks oversteps a certain threshold,
we increase the value of the local lag, so that more and more messages could
arrive on time. However, when a player enters a critical region and the latency
is not very high, we reduce the value of local lag and increase the frequency
of message sending to achieve high interactivity. When the number of required
rollbacks increases in the critical region, then, instead of doing rollbacks for all
arriving events, we discard weakly correlated events and increase the frequency
of update messages to minimize the dependency, i.e. correlation, on a single late
arriving message.

The pseudo code for the algorithm is given in Algorithm 1. In the given
algorithm, lines 10 through 14 are the most important as far as the concept of
correlation and obsolescence and the avoidance of rollbacks are concerned.

We discard any message that arrives late (and became obsolete) and is not
correlated with any previous message (lines 7 and 8). Otherwise, if a message
arrives late but is correlated to some previous message ec and the number of
rollbacks is less than a certain threshold, then we apply a rollback on all the
messages processed before ec including ec itself and re-process them in the correct
order (line 11). In line 14, we rollback only critically correlated events as now
the latency is very high and the number of rollbacks has reached a certain limit.
In lines 16 to 18, we increase the value of the local lag if the number of rollbacks
oversteps some limit so as to avoid processing related messages in an incorrect
order. This will also decrease the number of obsolete discarded messages which
could be related to any future message(s). We keep a different value for rollbacks
threshold in critical regions and change the values of the local lag and Dead-
Reckoning thresholds in these regions if the number of rollbacks reaches a certain
level (lines 24 and 25). Lines 2 to 25 are repeated in a loop throughout the
execution of a game session.

There is no doubt that the interactivity will be decreased at the cost of con-
sistency and correctness of results. We discuss the issue of interactivity in the
next section.

110 A.M. Khan, S. Chabridon, and A. Beugnard

Algorithm 1. Correlation and Obsolescence based adaptive algorithm

1: Calculate the local lag at the beginning of the game for each class of objects
according to network latency and responsiveness requirement of the object(s).

2: Change the local lag if the network load has changed or the location of an object
is changed

3: if the message arrives during its local-lag specified time then

4: Buffer the message according to its local lag value before playing out
5: GOTO line 20 (apply DR)
6: end if

7: if the message is obsolete (not arriving in its speicified local lag time) and not
correlated with events already processed during the local lag time interval then

8: Discard the message
9: else

10: if the number of rollbacks is less than a certain threshold then

11: Rollback the messages, process this message and then all others
12: end if

13: else

14: Rollback only critically correlated events and discard all others
15: end if

16: Calculate the number of rollbacks
17: if the number of rollbacks reaches a certain limit then

18: Increase the value of local lag.
19: end if

20: Apply Dead Reckoning
21: if the object has entered the critical region and/or the network load has changed

then

22: Change the threshold value for DR for that object
23: end if

24: if the number of rollbacks reaches a certain limit in the critical region then

25: decrease the value of DR threshold and increase local lag value
26: end if

7 Responsiveness vs Consistency

By waiting for late arriving messages with an increase of the local lag value, the
consistency is improved. However, it means that even local actions (and those
remote events that arrived earlier because of low latency) must be delayed before
playing out. Thus, it decreases the responsiveness (or interactivity) of the game.
If a game requires high responsiveness, then we need to reduce the value of the
local lag which can disturb the causal order of events (and increase the need for
rollbacks), thus compromising the consistency of the system. Hence there is a
trade-off between these two properties in a distributed interactive application.

We propose to apply different degrees of interactivity and responsiveness for
different situations and/or regions of a game. For example, if a player has to
shoot a static target, we need high consistency but low responsiveness since
the target is static and during the time the bullet hits (or misses) the target,
we do not need high interactivity from the system, but we need a fair result.

Dynamic Reduction of Rollbacks 111

responsiveness

consistency

high consistency

 region

highly interactive

 region

0

1

Fig. 3. Trade-off between consistency and responsiveness in different game regions

By applying a suitable value of local lag, the shooting player will observe that
his shoot action has taken place at a slow pace, but will get the true results.
However, we need high responsiveness from the system in some other cases,
such as hitting a ball coming towards a player in a baseball game. The trade-off
between responsiveness and consistency is shown in figure 3. Although we have
shown consistency (and responsiveness) on a scale from 0 to 1, where 1 means
absolute consistency, absolute consistency is never achieved in distributed virtual
environments and hence consistency should be compromised for the sake of a high
system responsiveness.

8 Evaluation

In the evaluation of the proposed approach, we are interested primarily in the
measurement of two parameters.

1. the number of rollbacks;
2. the amount of dropped events;

For experimenting our proposed solution, we have developed a simple Football
(Soccer) game using J2ME and Java servlet technologies. The game logic resides
on a mobile phone and different players interact with each other via a server
which is a simple message queue servlet. In the game, we have characters rep-
resenting the different players and a goal post, which corresponds to a critical
region. Each player has a circle of specific radius representing the critical region
around them. A player can earn points by either hitting another player or the

112 A.M. Khan, S. Chabridon, and A. Beugnard

critical region

critical regions

Fig. 4. A simple Football game

goal post with a bullet. The rules of the game allow the player to be hit only
in the critical region shown by the rectangular shape. The game is shown on
Figure 4.

The server randomly selects messages to be delayed deliberately by storing
them in a server side queue before clients can receive these messages. When
a delayed message arrives at the client, it calculates whether this message is
correlated with another message or not. In our game semantics, a message is
correlated with another message if it belongs to a bullet (critical action) or if
a player entered a critical region. In case of a very high consistency, we can
drop even the hit message because it will have no effect upon the result since
our game rules allow a player to be hit only in a critical region. If the message
is not correlated, we simply drop it, otherwise we apply a rollback mechanism
and reprocess all the already processed messages. We continuously calculate the
number of rollbacks and apply our dynamically adaptive algorithms by changing
dead-Reckoning and local lag thresholds to control the number of rollbacks. In
essence, we measure the number of rollbacks in the critical regions and outside
the critical regions, and the number of messages discarded while the players
are in a critical region and outside it. We also compare these results with the
fixed-correlation based approach and the Time Warp algorithm, where there is
no concept of obsolescence and correlation. The results are shown in figure 5.

From the figure, it is clear that the number of rollbacks required for Time
Warp is higher than for the other two approaches. This was expected, as Time

Dynamic Reduction of Rollbacks 113

Fig. 5. Rollbacks comparison in three different approaches

Warp does not drop any message and applies rollbacks for all late arriving mes-
sages. The result of our approach is better than the result for fixed-correlation
based approach, because we rollback only those messages which are critically
important, and discard non-critical messages in case of high delays.

Figure 6 compares the number of messages re-processed per rollback as a
function of their correlation probability. In case of a low probability of correlation
(high No-Correlation probability on the x-axis), our Critical Correlation based
approach reprocesses a smaller number of messages as compared to the Time
Warp and Simple Correlation based approaches. This is because in case of lesser
correlation probability, there are even lesser chances that the messages will be
critically correlated and hence they are discarded without affecting the outcome
of the game. However, in the case of a high correlation (low No-Correlation
probability percentage), our result approaches that of the Time Warp and Simple
Correlation based approaches. This happens only when almost all messages are
critically correlated which is very rare in a real game scenario, where players
enter and exit the critical regions and only a few of their actions are critical.

Figure 7 compares the increase in the total number of rollbacks as a function
of the time elapsed during the game play.

Note that on the Y-axis, we show the number of rollbacks required as a whole
i.e. when the rollback mechanism has to be applied, and not the number of

114 A.M. Khan, S. Chabridon, and A. Beugnard

Fig. 6. Comparison of events processed per rollback

messages to be rollbacked which can be manifold higher than these numbers. For
the reasons discussed in the previous paragraph, our approach performs better
than simple correlation. The increase in the number of required rollbacks is
linear in case of simple correlation because we periodically delay only correlated
update messages at regular intervals. In the figure, for the critical correlation-
based approach, the increase in the number of rollbacks is not uniform (the graph
is not straight). This is because even if we delay messages periodically at regular
intervals, they may not be critically correlated at that junction of time and hence
are discarded without the need for applying a rollback mechanism. It must be
noted here that our approach is dependent upon the strategy of the players of
the game as when and where they send critically correlated messages. In the
worst case scenario, when all the received messages are critically correlated, our
mechanism is equal to that of the simple correlation mechanism.

9 Conclusions and Perspectives

In this paper, we introduced a dynamic and adaptive approach for consistency
maintenance. We proposed a dynamic mechanism for the reduction of the num-
ber of rollbacks in multiplayer games on mobile phones. We introduced the
concepts of critical actions and critical regions, and with the help of these
two notions, we showed that we can relax the consistency requirements when-
ever the game rules allow it, thus reducing the number of rollbacks consider-
ably. We showed, through our experimentation on a simple Football game, that
our approach performs better than the Time Warp and the simple correlation
approaches.

Dynamic Reduction of Rollbacks 115

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50000 100000 150000 200000 250000

Nu
mb

er
of

Ro
llb

ack
s

Time in milliseconds

Rollbacks in simple correlation
Rollbacks in critical correlation

Fig. 7. Rollbacks comparison as a function of elapsed time

In the future, we would like to insert this algorithm as a part of our synchro-
nization medium, a distributed component responsible for consistency mainte-
nance as proposed in [8]. This way, the game developer(s) will be able to reuse
these complex consistency maintenance algorithms without changing the game
logic code.

Acknowledgments. This work is in parts supported by the Higher Education
Commission of Pakistan (www.hec.gov.pk).

References

1. Application protocols. In: IEEE Standard for Distributed interactive Simulation.
IEEE Std. 1278.1-1995 (1995)

116 A.M. Khan, S. Chabridon, and A. Beugnard

2. Cheriton, D.R., Skeen, D.: Understanding the limitations of causally and totally
ordered communication. SIGOPS Oper. Syst. Rev. 27(5), 44–57 (1993)

3. Cronin, E., Filstrup, B., Kurc, A.R., Jamin, S.: An efficient synchronization mech-
anism for mirrored game architectures. In: NetGames 2002: Proceedings of the 1st
Workshop on Network and System Support for Games, pp. 67–73. ACM Press,
New York (2002)

4. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys 36(4), 372–421 (2004)

5. Ferretti, S., Roccetti, M.: A novel obsolescence-based approach to event delivery
synchronization in multiplayer games. Int. J. Intell. Games & Simulation 3(1), 7–19
(2004)

6. Ferretti, S., Roccetti, M.: Fast delivery of game events with an optimistic synchro-
nization mechanism in massive multiplayer online games. In: ACE 2005: Proceed-
ings of the 2005 ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology, pp. 405–412. ACM, New York (2005)

7. Ishibashi, Y., Tasaka, S., Tachibana, Y.: Adaptive causality and media synchroniza-
tion control for networked multimedia applications. In: IEEE International Con-
ference on Communications (ICC), pp. 232–241. IEEE Computer Society (2001)

8. Khan, A.M., Chabridon, S., Beugnard, A.: Synchronization medium: a consistency
maintenance component for mobile multiplayer games. In: NetGames 2007: Pro-
ceedings of the 6th ACM SIGCOMM Workshop on Network and System Support
for Games, pp. 99–104. ACM, New York (2007)

9. Malik Khan, A., Chabridon, S., Beugnard, A.: A dynamic approach to consistency
management for mobile multiplayer games. In: NOTERE 2008: Proceedings of the
8th International Conference on New Technologies in Distributed Systems, pp. 1–6.
ACM, New York (2008)

10. Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and Timewarp: Provid-
ing Consistency for Replicated Continuous Applications. IEEE Transactions on
Multimedia 6(1), 47–57 (2004)

11. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

12. Santos, N., Veiga, L., Ferreira, P.: Vector-Field Consistency for Ad-Hoc Gaming.
In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp.
80–100. Springer, Heidelberg (2007)

13. Xiang-bin, S., Fang, L., Ling, D., Xing-hai, Z.: An event correlation synchronization
algorithm for mmog. In: Eighth ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
SNPD 2007, June 30-August 1, vol. 1, pp. 746–751 (2007)

14. Zhou, S., Shen, H.: A consistency model for highly interactive multi-player online
games. In: ANSS 2007: Proceedings of the 40th Annual Simulation Symposium,
pp. 318–323. IEEE Computer Society, Washington, DC (2007)

	Dynamic Reduction of Rollbacks in Wireless Multi-user Virtual Environments
	Introduction
	Related Works
	A Dynamic Approach to Consistency Maintenance
	Observations
	An Adaptable Local Lag
	Adaptable Dead Reckoning

	Dynamic Reduction of the Number of Rollbacks
	Critical Actions
	Weak and Critical Correlation
	Relaxed Consistency

	An Example Scenario
	Dynamic Rollbacks Reduction Algorithm
	Responsiveness vs Consistency
	Evaluation
	Conclusions and Perspectives

