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Abstract

This paper proposes two methods based on the Polynomial Chaos to carry out

the stochastic study of a self-excited non-linear system with friction which is

commonly used to represent brake-squeal phenomenon. These methods are

illustrated using three uncertain configurations and validated using compar-

ison with Monte Carlo simulation results. First, the stability of the static

equilibrium point is examined by computing stochastic eigenvalues. Then,

for unstable ranges of the equilibrium point, a constrained harmonic balance

method is developed to determine subsequent limit cycles in the determin-

istic case; it is then adapted to the stochastic case. This demonstrates the

effectiveness of the methods to fit complex eigenmodes as well as limit cycles

dispersion with a good accuracy.
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1. Introduction

This work follows the study conducted in (Sinou and Jézéquel, 2007b)

which investigated the influence of damping and friction coefficient on the

stability of the equilibrium point using an analytical deterministic criterion.

The main results of this study are recalled in Section 2.1. Our objective is

to propose a stochastic approach for such a system and to demonstrate the

ability of the proposed method to handle systems with friction in a more gen-

eral view. Brake systems are indeed hard to characterize accurately because

of the high variability of operating conditions (Ibrahim, 1994). A stochastic

approach seems then highly adequate for design of robust products. If Monte

Carlo (MC) simulations can be carried out for small models, it is way too

expensive for larger systems such as finite element models used in industrial

context. Moreover, brake squeal arises as the static equilibrium becomes un-

stable (Kinkaid et al., 2003). In this case, the system - being non-linear -

converges toward limit cycles whose amplitude and frequency are unknown:

these systems are part of the self-excited systems family. Characterization

of these limit cycles is then an important point to be taken care of.

The method proposed herein, based on the expansion of stochastic ele-

ments on the Polynomial Chaos, is much less expensive than MC simulations

when it comes to larger systems and does not share convergence radius prob-

lems as methods relying on Taylor series do (Ghanem and Spanos, 2003).

Some recent work uses Polynomial Chaos expansion and derivatives such as

Multi-Element generalized Polynomial Chaos (MEgPC) (Wan and Karniadakis,

2005) to demonstrate stability of equilibria of stochastic systems using the

Lyapunov function (Fisher and Bhattacharya, 2008; Nechak et al., 2011) or
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to compute limit cycles in the time domain (Nechak et al., 2012) when the

equilibrium loses stability. Recent papers propose evaluation of Hopf bifur-

cation point (when stability changes) using MEgPC for a system with dry

friction when one parameter (the friction coefficient) varies but does not

investigate the non-linear effects in the unstable range (see (Nechak et al.,

2013) for a 2-dofs system and (Sarrouy et al., 2013) for a finite element model

of a brake).

Our first objective is to show that using a proper decomposition of eigen-

modes, Polynomial Chaos provides accurate results on eigenvalues dispersion

resulting from one or more uncertain parameters and hence on the stability

of equilibria for a system undergoing multiple uncertainty sources. The sec-

ond point of this paper addresses the dispersion of limit cycles that occur in

the unstable ranges which are responsible for brake squeal. To this end, a

constrained harmonic balance method is proposed. This modified harmonic

balance method overcomes the problem of dealing with an unknown cycle

period and long term integration problems that arise when using a time inte-

gration scheme as in (Nechak et al., 2012). The proposed method suits both

deterministic and stochastic cases.

The paper is composed as follows: Section 2 first exposes the model and

its equations along with main results from previous deterministic study. The

three uncertain configurations that will be numerically processed are then

detailed. Section 3 is devoted to theoretical discussion. First, computation

of eigenmodes using a Polynomial Chaos expansion is explained. Then, the

method for computing the limit cycles is exposed in the deterministic con-

text and adapted to the stochastic approach. Finally, numerical results for
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the three uncertain cases illustrate efficiency of the methods and physical

phenomena are analysed.

2. System deterministic study

A simple system similar to the one studied in (Sinou and Jézéquel, 2007b)

is considered. This kind of phenomenological model was introduced by

Hultén (1993) in order to study squeal vibration in drum brakes and is suf-

ficient to investigate friction-induced vibrations. After a brief description,

main deterministic results are recalled. Then, three uncertain configurations

used as application material are described.

2.1. System description

The system considered is a simple mass linked to a moving band by two

non-linear springs attached to plates (k1 + knl1 and k2 + knl2 ) in orthogonal

directions . The friction coefficient at contact between the plates and the

band is denoted µ. Damping is also introduced through c1 and c2 dashpots.

A schematic is presented in Fig. 1. Such a low order model may not contain

all the necessary information to provide fully reliable predictions as stated

in recent studies (Butlin and Woodhouse, 2009, 2010). This non-linear 2

degrees of freedom model will nonetheless provide an acceptable method

application support whose results may be compared to the conclusions of

Sinou and Jézéquel (2007b). The proposed method could be applied without

any modification to larger models.
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Figure 1: Mass with double rubbers: plan

Equations describing the system dynamic behaviour are:




1 0

0 1





︸ ︷︷ ︸

M

q̈ +




η1ω01 0

0 η2ω02





︸ ︷︷ ︸

D

q̇ +




ω2
01 −µω2

02

µω2
01 ω2

02





︸ ︷︷ ︸

K

q+







ϕ1q
3
1 − µϕ2q

3
2

µϕ1q
3
1 + ϕ2q

3
2







︸ ︷︷ ︸

fnl(t,q,q̇)

=







0

0






(1)

where ω0i =
√

ki/m, ηi = ci/
√
mki and ϕi = knli /m.

Base value set is ω01 = 2π× 1000 rad.s−1, ω02 = 2π× 600 rad.s−1, η1 = 0.06,

η2 = 0.02, ϕ1 = 1 · 1011 m−2.s−2, ϕ2 = 1 · 109 m−2.s−2 and µ = 0.398. q size

will be denoted n = 2.

As demonstrated in (Sinou and Jézéquel, 2007b,a), this system has a null

equilibrium (q∗ = 0 and q̇∗ = 0) whose stability depends on the friction

parameter µ. Stability is determined by real parts of eigenvalues of the
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tangent system at equilibrium point:

Mq̈ + (D +Dq̇fnl(t,q
∗, q̇∗)) q̇ + (K +Dqfnl(t,q

∗, q̇∗))q = 0 (2)

where Dqfnl(t,q
∗, q̇∗) and Dq̇fnl(t,q

∗, q̇∗) stand for derivatives of fnl with

respect to q and q̇ at equilibrium point (q∗, q̇∗). It turns out from fnl ex-

pression that Dq̇fnl(t,q
∗, q̇∗) = 0 as the non-linear terms do not depend on

q̇. Moreover, the equilibrium having null coordinates, Dqfnl(t,q
∗, q̇∗) = 0

too. Then, the tangent system can be expressed in the following augmented

form: 


K 0

0 M





︸ ︷︷ ︸

B

ẋ−




0 K

−K −D





︸ ︷︷ ︸

A

x = 0, x =







q

q̇






(3)

The corresponding eigenvalue problem with a normalization condition which

defines eigenvectors uk uniquely is

Auk = λkBuk and uT
kBuk = 1, 1 ≤ k ≤ 2n = 4 (4)

Whenever one of the eigenvalue λk has a positive real part, the system is

unstable.

For µ ranges for which instability occurs, the mode being unstable de-

pends on the (η1ω1)/(η2ω2) ratio. Non-linear springs lead to existence of

limit cycles for these ranges, whose frequency is a priori unknown. Numer-

ical determination of these limit cycles and of their frequencies is explained

in Section 3.2.

2.2. Uncertain configurations

Three different uncertain configurations will be dealt with in Section 4,

each of them having a different purpose. They are described below, including
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numerical differences to the base value set previously stated.

Dispersion of parameters are expressed as functions of independent random

variables ξi which follow a standard normal distribution. This is a classical

distribution and matches the basic theoretical frame of Polynomial Chaos.

The first uncertain configuration considers dispersion on the friction co-

efficient µ. This will illustrate consequences of µ dispersion on the system

stability and will be used to validate the method by comparing PC results

to MC simulations. For this case, one will use

µ(ξ) = µ+∆µξ (5)

with µ = 0.398 and ∆µ = 5
100
µ = 0.0199.

This dispersion impacts K matrix as well as the non-linear contribution fnl.

The chosen set of values puts the system close to the stability limit.

The second configuration focuses on (η2ω02)/(η1ω01) ratio action with

regard to the mode becoming unstable. To this end, a µ value is chosen so

as to ensure having an unstable static equilibrium. The ratio is varied by

taking into account dispersion on η2.

η2(ξ) = η2 +∆η2ξ (6)

with η2 = 0.034 and ∆η2 =
14.7
100
η2 = 0.005, that is a standard deviation equal

to 14.7% of the mean value η2 for η2. Moreover, η1 = 0.02 and µ = 0.55.

The (η2ω02)/(η1ω01) nominal ratio is then equal to 1.02.

Variation of η2 implies variation of damping matrix D only.

Finally the two previous parameters undergo dispersion at the same time

depending on two different random variables ξ1 and ξ2. This will prove that
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both methods can handle configurations with multiple uncertain parameters.

µ(ξ) =µ+∆µξ1 (7a)

η2(ξ) =η2 +∆η2ξ2 (7b)

with µ = 0.56, ∆µ = 1
100
µ = 0.0056, η2 = 0.0333 and ∆η2 = 1

100
η2 =

0.000333. Moreover, η1 = 0.02 as in the previous case that is (η2ω02)/(η1ω01) =

1. Theses variations affect K and D matrices as well as the non-linear forces

fnl.

3. Theoretical discussion

Introducing uncertainty on some parameters modifies the dynamic equa-

tion (1) and uncertain quantities are to be added:
(

M + M̃(ξ)
)

q̈ +
(

D + D̃(ξ)
)

q̇ +
(

K + K̃(ξ)
)

q + f̃nl(t, q̇, q̇; ξ) = 0 (8)

where tilde quantities depend on a set of random variables ξ used to de-

scribe uncertainty. We assume that these variables follow a standard normal

distribution.

The randomness of the inputs has consequences on eigenvalues. The

method used to evaluate their dispersion is exposed in the next subsection.

Furthermore, as stated in Section 2.1, limit cycles appear when equilibria

become unstable. These cycles are also affected by dispersion of the inputs.

Section 3.2 proposes a method to compute these limit cycles with unknown

period in the deterministic case and its adaptation to the stochastic case.

3.1. Eigenvalue problem for equilibria

Using the same transformation that the one applied to (1) to get (4),

the stochastic eigenvalue problem with a normalization condition is deduced
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from (8):

(

A+ Ã(ξ)
)

ũk = λ̃k

(

B+ B̃(ξ)
)

ũk, ũT
k

(

B+ B̃
)

ũk = 1,

1 ≤ k ≤ 2n (9)

where tilde matrices are added to introduce uncertainty and ũk and λ̃k re-

spectively denote stochastic eigenvectors and eigenvalues.

As stated in the introduction, the method at stake relies on the expansion

of stochastic eigenmodes onto the Polynomial Chaos (PC). This expansion

consists in decomposing uncertain quantities on a basis of Hermite multivari-

ate polynomials denoted ψψn as introduced by Ghanem and Spanos (2003).

These polynomials are most appropriate for Gaussian stochastic processes.

The computation of these polynomials and the appropriate scalar product

are recalled in Appendix A.

Stochastic eigenvalues and eigenvectors of augmented system (9) are here

decomposed on both the deterministic augmented eigenmodes and the poly-

nomial chaos using complex weights:

λ̃k(ξ) = λk

N∑

s=1

(
(k)as + j (k)bs

)
ψψs(ξ) (10)

ũk(ξ) =
P∑

p=1

(
(k)γ̃p(ξ) + j (k)µ̃p(ξ)

)
up (11)

with

(k)γ̃p(ξ) =
N∑

n=1

(k)γnpψψn(ξ) and
(k)µ̃p(ξ) =

N∑

n=1

(k)µn
pψψn(ξ) (12)

giving

ũk(ξ) =
P∑

p=1

(
N∑

n=1

(
(k)γnp + j (k)µn

p

)
ψψn(ξ)

)

up (13)
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where the coefficients (k)γnp ,
(k)µn

p ,
(k)as and (k)bs are real and j denotes the

imaginary unit (j2 = −1). ψψ1 will conventionally denote the constant poly-

nomial equal to 1; means of polynomials with index greater than or equal to

2 are then null.

This decomposition using P deterministic eigenvalues and eigenvectors is

a generalization of what is proposed in (Dessombz, 2000; Dessombz et al.,

1999). Using complex weights, real and imaginary parts of stochastic eigen-

values and eigenvectors can evolve independently. In this paper, all the de-

terministic modes are used for projection of stochastic eigenvectors, P = 2n.

Using this decomposition for eigenmodes, one also applies it to the stochas-

tic matrices of Eq. (9). This new writing of matrices can be achieved by using

a Karhunen-Loève decomposition or assuming them so regarding experimen-

tal results:

Ã =

NA∑

n=2

Anψψn(ξ) and B̃ =

NB∑

n=2

Bnψψn(ξ) (14)

Having ψψ1(ξ) = 1, it is associated with the deterministic components A and

B and only polynomials with zero mean are considered for the decomposition

of these matrices.

To get the final system of equations that leads to the unknowns (k)γnp ,

(k)µn
p ,

(k)as and
(k)bs once solved, Eqs. (9) are projected onto the polynomial

chaos basis ψψk(ξ), 1 ≤ k ≤ N using the dedicated scalar product defined

in Appendix (A.5). During this step, one has to compute scalar products

of the form < ψψi1 . . . ψψij , ψψn >. Let us point out that these quantities can

be evaluated and stored once for all, being reused for further studies and

that many of them are null, implying simplification of the resulting set of

equations. This is an advantage provided by the chosen intrusive approach
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compared to non intrusive approaches which require the use of quadrature

formula to evaluate the unknown coefficients. To overcome the problem

of dealing with complex valued functions, real and imaginary parts of the

subsequent equations are separated. This generates 2P (P + 1)N non-linear

(quadratic) equations, that is as many as unknowns. This set of equations

can be solved through a general non-linear solver relying for example on the

Levenberg-Marquardt scheme.

Once the PC expansion is obtained, stochastic indicators such as mean or

standard deviation are computed by evaluating eigenmodes using their PC

decomposition on a large MC sample.

3.2. Constrained HBM for limit cycles determination

3.2.1. Deterministic case

As recalled previously, the self-excited non-linear system tends to draw

limit cycles when the static equilibrium is unstable. Coming from a mode

coupling, these limit cycles have an unknown period. To determine their

properties while avoiding a direct time-integration process, a well-known

method is the harmonic balance method (HBM) which consists in a Galerkin

approach using a basis of trigonometric functions. However this method is de-

signed to approximate periodic solutions with known period

(Cameron and Griffin, 1989; von Groll and Ewins, 2001). Briefly, the time

vector q(t) is developed in a truncated Fourier series:

q(t) =
a0√
2
+

K∑

k=1

(ak cos(kωt) + bk sin(kωt)) (15)

where coefficients ak and bk are real vectors with same size as q, and ω =

2π/T is the limit cycle angular frequency. This development imposes q̇ and
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q̈ as well.

Once reinjected in the dynamical equation, the time variable is eliminated

by projecting the system of equations onto the functions 1/
√
2, cos(kωt) and

sin(kωt) using the scalar product

< f, g >=
2

T

∫ T

t=0

f(t)g(t)dt (16)

If q size is n, this generates a square system of equations with size n(2K+1).

Yet, when angular frequency ω is unknown, the system is not square

anymore and one usually wishes to add an equation or remove an unknown.

Work presented in (Coudeyras et al., 2009) explores the first solution by

adding a constraint on real parts of eigenvalues of the tangent system. This

procedure requires a lot of computation and does not fit further developments

when uncertainties is introduced. Therefore, this study proposes to explore

the second solution which consists in removing an unknown by setting it to a

given value as suggested in (Seydel, 1988). It will be referred to as CHBM for

Constrained Harmonic Balance Method. It is an interesting improvement of

usual HBM procedure that provides a way to catch limit cycles of self-excited

non-linear systems which is hardly treated in the literature.

For the current system, q(t) is developed with only one harmonic and

no constant term (for centred solutions approximation only); an unknown is

removed by assigning a given value a∗1 to the first component of a vector:

q(t) = a cos(ωt) + b sin(ωt), a =







a∗1

a2






,b =







b1

b2






(17)

Injecting this decomposition in the dynamic equation (1) and projecting the

resulting set of equations onto cos(ωt) and sin(ωt) functions using scalar
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product (16), one finally gets the algebraic set

(
K − ω2M

)
a+ ωDb+

3

4







(a∗1
3 + a∗1b

2
1)ϕ1 − (a32 + a2b

2
2)µϕ2

(a∗1
3 + a∗1b

2
1)µϕ1 + (a32 + a2b

2
2)ϕ2






= 0 (18a)

(
K − ω2M

)
b− ωDa+

3

4







(a∗1
2b1 + b31)ϕ1 − (a22b2 + b32)µϕ2

(a∗1
2b1 + b31)µϕ1 + (a22b2 + b32)ϕ2






= 0 (18b)

where the four unknowns are a2, b1, b2 and ω.

3.2.2. Stochastic case

When some parameters are uncertain, the limit cycles are affected too.

Dispersion is then approximated using an expansion of CHBM unknowns on

the polynomial chaos:

ã2(ξ) =
N ′

∑

n=1

αn
2ψψn(ξ) , b̃1(ξ) =

N ′

∑

n=1

βn
1ψψn(ξ),

ω̃(ξ) =
N ′

∑

n=1

̟nψψn(ξ), b̃2(ξ) =
N ′

∑

n=1

βn
2ψψn(ξ),

(19)

where decomposition coefficients αn
2 , β

n
1 , β

n
2 and ̟n are real.

These approximations are injected into the CHBM deterministic equations

(18) where uncertainty on matrices and non-linear function have been in-

troduced. For example, for the third uncertain configuration processed in

Section 4.2 (i.e. uncertainties for the friction coefficient µ and the damping
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ratio η2), one gets

(

(K + K̃(ξ))− ω̃2(ξ)M
)







a∗1

ã2(ξ)







+ ω̃(ξ)(D + D̃(ξ))







b̃1(ξ)

b̃2(ξ)







+
3

4







(a∗1
3 + a∗1b̃

2
1(ξ))ϕ1 − (ã32(ξ) + ã2(ξ)b̃

2
2(ξ))(µ+ ξ1∆µ)ϕ2

(a∗1
3 + a∗1b̃

2
1(ξ))(µ+ ξ1∆µ)ϕ1 + (ã32(ξ) + ã2(ξ)b̃

2
2(ξ))ϕ2







= 0

(20a)

(

(K + K̃(ξ))− ω̃2(ξ)M
)







b̃1(ξ)

b̃2(ξ)







− ω̃(ξ)(D + D̃(ξ))







a∗1

ã2(ξ)







+
3

4







(a∗1
2b̃1(ξ) + b̃31(ξ))ϕ1 − (ã22(ξ)b̃2(ξ) + b̃32(ξ))(µ+ ξ1∆µ)ϕ2

(a∗1
2b̃1(ξ) + b̃31(ξ))(µ+ ξ1∆µ)ϕ1 + (ã22(ξ)b̃2(ξ) + b̃32(ξ))ϕ2







= 0

(20b)

with

K̃(ξ) = ξ1∆µ




0 −ω2

02

ω2
01 0



 (21a)

D̃(ξ) = ξ2∆η2




0 0

0 ω02



 (21b)

The final set of 4N ′ equations is obtained by projecting this system onto

the Hermite polynomials ψψn, 1 ≤ n ≤ N ′ using the associate scalar product

(A.5). The final system of equations providing the decomposition of CHBM

coefficients on PC is non-linear and solved using an appropriate algorithm.
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4. Results and Discussion

This part is dedicated to application of the methods exposed in the pre-

vious section. Each of the three proposed cases permits the illustration of

different physical phenomena and is a support for showing suitability of the

approaches for accurate stochastic studies.

4.1. Case 1: dispersion on friction coefficient µ - Stability analysis

Variation of the friction coefficient µ has effect on the static equilibrium

stability. Therefore, focus is put on accuracy of eigenvalues and especially

their real part. First, PC coefficients are evaluated for different orders D

of expansion, namely 1 ≤ D ≤ 3. Having only one random variable ξ, the

PC basis used consists in N = D + 1 polynomials ψψn, 1 ≤ n ≤ N where

ψψ1(ξ) = 1, ψψ2(ξ) = ξ, ψψ3(ξ) = ξ2 − 1 and ψψ4(ξ) = ξ3 − 3ξ. Then a set of

10000 sample points ξ(j) is generated (using a standard normal distribution)

and used to evaluate λ̃k(ξ
(j)), 1 ≤ k ≤ 4, 1 ≤ j ≤ 10000 using the different

PC approximations as well as direct Monte Carlo computation. This last set

of values is considered as the reference set. Note that is has been verified

that µ values resulting from this sample made physical sense.

Results are showed on Fig. 2. On this figure, only eigenvalues with pos-

itive imaginary part are displayed, others being directly complex conjugate.

The left panes are devoted to the imaginary parts and the right ones to the

real parts. Fig. 2 (a) displays Monte Carlo simulations results while the

three lower blocks (b) to (d) display histograms of absolute relative error

computed as follow for relative error on imaginary part

erel =

∣
∣Im

(
λPC

)
− Im

(
λMC

)∣
∣

|Im (λMC)| × 100 (22)
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MC PCE order 1 PCE order 2 PCE order 3

Stable 5187 4705 5185 5213

Unstable 4813 5295 4815 4787

Table 1: Uncertain µ: comparison of PC expansion (PCE) results with MC simulation

(stable occurrences counts)

and in an equivalent way for real parts. MC and PC superscripts denote

values obtained using direct Monte Carlo and PC expansion evaluation re-

spectively. This error is computed for each mode (1 and 2) and each point

ξ(j) of the sample, leading to the proposed histograms.

One can see that error on imaginary part is almost negligible whatever the

PC order is. On the contrary, the real part of eigenvalue for mode 1 really

takes advantage on the higher orders. Finally, order D = 3 gives accurate

enough results with an error mostly lower than 5 percent.

Moreover, these eigenvalues being mainly used to predict the stability of

the equilibrium, the number of stable and unstable occurrences is summed

up in Table 1. Once again, order 2 and order 3 PC expansions reproduce

these counts with very little difference to the Monte Carlo reference.

This comparison shows that even for great dispersion of the input value

(standard deviation being 5 % of the nominal value with a Gaussian reparti-

tion, it means that 99% of the values are within a range with width equal to

30% of the nominal value), the PC expansion method suits representation of

eigenvalues dispersion and so the system stability and instability rate with a

satisfying accuracy.
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Figure 2: Uncertain µ: comparison of PC expansion results with MC simulations.

Left half: quantities relative to imaginary part of eigenvalues. Right half: quantities

relative to real part of eigenvalues. (a) MC simulations; (b) to (d) histograms of absolute

relative error (in percent) between PC and MC results for each mode and different PC

orders D. Light blue: mode 1; dark blue: mode 2.
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4.2. Case 2: dispersion on damping ratio η2 - Limit cycles study

The aim of this configuration being to monitor η2 influence on the mode

becoming unstable and the subsequent limit cycles, the friction coefficient µ

is chosen great enough to ensure unstable equilibria whatever η2 value may

be.

First, eigenmodes PC expansion coefficients were evaluated using an order 3

decomposition. Then a sample of 10000 points was used to evaluate eigen-

values. Results are presented in Fig. 3. They confirm that the instability

may come from either mode 1 or mode 2 depending on the value of η2.
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Figure 3: Uncertain η2: unstable mode histograms. (a) Unstable mode number; (b)

Imaginary part and (c) Real part of unstable eigenvalue. Light blue: mode 1, dark blue:

mode 2

In a second time, stress is put on the limit cycles. Their dispersion is eval-

uated using the CHBM method exposed in Section 3.2 using a∗1 = 2 · 10−3.

Different orders for PC expansion are tested and compared to deterministic

results for 11 points ξ(j) equally spaced between −3 and +3. For each vari-

able a2, b1, b2 and ω, the absolute relative error between the value obtained

using PC expansion and the one obtained using direct calculation is evalu-
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ated. Results are summed up in Fig. 4. This shows that order 3 and order

4 expansions give very accurate results. The deterministic results were pre-

viously checked using them as initial conditions for a time integration with

duration T = 2π/ω for each of the 11 test points and verifying that initial

and final states were almost identical. Order 4 PC expansion is retained for
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Figure 4: Uncertain η2: CHBM PCE results comparison with deterministic results for

different PC expansion orders using absolute relative error in percent.

–·–: order D = 2; –+–: order D = 3; –×–: order D = 4.

comparison with MC simulation on a larger sample. Fig. 5 exposes the re-

sults of this comparison by showing MC simulation results for each variable

a2, b1, b2 and ω as well as the absolute relative error (in percent) between PC

expansion and MC simulation. This confirms that error is mostly lower than

1 % for each variable and hence that PC expansion is an accurate method
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to describe stochastic CHBM coefficients. Moreover, direct computation for

a sample with 10000 points required 190 s while PC method only used 0.60

s for evaluation of PC expansion of coefficients and 0.24 s for evaluation of

the 10000 realizations: direct MC simulation is about 226 times longer than

the proposed method.

Finally, PC expansion with order 4 is used to rebuild cycles over time to

visually check occupation rate in different spaces as depicted on Fig. 6. The

procedure used to build these portraits is the following: for each point ξ(j),

q and q̇ vectors are evaluated at 1000 time points τk = 2π/1000 × (k − 1)

using formula:

q
(j)
k =







a∗1

ã2(ξ
(j))






cos(τk) +







b̃1(ξ
(j))

b̃2(ξ
(j))






sin(τk) (23a)

q̇
(j)
k = ω(ξ(j))



−







a∗1

ã2(ξ
(j))






sin(τk) +







b̃1(ξ
(j))

b̃2(ξ
(j))






cos(τk)



 (23b)

Then, to build (q1, q2) portrait for example, minimum and maximum values

for each variable are evaluated and a grid is used with 251 bins in each

direction to divide (q1, q2) space. For each cycle q
(j)
k , 1 ≤ k ≤ 1000, q

(j)
k

at time τk is located in the grid. If it is located in the same bin as the

previous time point q
(j)
k−1, it is not counted; otherwise, +1 is added to the bin

weight. This avoids affecting too much weight to a bin because of high time

discretization. When all the cycles are processed, the weights are divided by

the number of cycles (10000) and multiplied by 100: this gives for each grid

point a percentage of occupation.

As can be seen on Fig. 6 (a), two modes can contribute when the equilibrium

is unstable resulting in two different main orientations for the cycles.
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4.3. Case 3: dispersion on both variables µ and η2

For this last configuration, two independent random variables are used.

First, eigenvalues are decomposed on PC using an order 2 expansion. This

involves the following polynomials: ψψ1(ξ) = 1, ψψ2(ξ) = ξ1, ψψ3(ξ) = ξ2,

ψψ4(ξ) = ξ21 − 1, ψψ5(ξ) = ξ1ξ2 and ψψ6(ξ) = ξ22 − 1. Using the random sample

of 10000 points represented in Fig. 7 (a), one can rebuild the eigenvalues and

plot the location probability (in percent) of the unstable eigenvalue in the

complex plane. It is also possible to distinguish between the occurrences for

which mode number 1 becomes unstable and the ones for which instability

comes from mode number 2 (Fig. 7 (b) and (c)). It turns out that for this

configuration, all the occurrences are relative to an unstable equilibrium.

Among the 10000 points, 5375 become unstable because of mode 1 and 4625

because of mode 2.

After the stability study, the limit cycles were fitted using an order 2

PC expansion. Using the same procedure as the one described previously,

one can draw portraits in different spaces as depicted in Fig. 8. This time,

dispersion being smaller than in the second case, one cannot clearly identify

very different behaviours because mode 1 and mode 2 keep being very close

from one another.

5. Conclusions

Two methods designed for stochastic study of systems with friction were

exposed. The first one provides a way to evaluate complex eigenmodes dis-

persion by using an expansion of stochastic eigenmodes on both the determin-

istic eigenmodes and the Polynomial Chaos. The second method evaluates
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dispersion on limit cycles amplitudes and frequencies. It can been seen as an

improvement of the usual HBM combined with a constraint that provides a

way to deal with limit cycles having an unknown period and a Polynomial

Chaos expansion of its coefficients.

Through three uncertain configurations, they were demonstrated to be accu-

rate and efficient, using comparison with direct calculation, even in the case

of wide uncertainty ranges.

A. Hermite multivariate polynomials

Hermite polynomials (one dimension) can be defined using a derivative

hn(ξ) = (−1)neξ
2/2d

ne−ξ2/2

dξn
(A.1)

or recursively (formula from (Sudret and Der Kiureghian, 2000, Section 3.2)):

h0(ξ) = 1 (A.2a)

dhn(ξ)

dξ
= nhn−1(ξ) (A.2b)

hn(0) =







0 if n is odd

(−1)n/2
n!

2n/2(n
2
)!

if n is even
(A.2c)

The general formula for multidimensional Hermite polynomials is

ψψm(ξi1 , . . . , ξin) = (−1)ne
1

2
ξTξ ∂ne−

1

2
ξTξ

∂ξi1 . . . ∂ξin
(A.3)

but the formula used in practice to compute the multivariate Hermite poly-

nomials is the one found in (Sudret and Der Kiureghian, 2000, Chap. 3,
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Section 3.1): for Q random variables, the multivariate Hermite polynomials

of order d can be expressed as

ψψα =

Q
∏

i=1

hαi
(ξi) (A.4)

with α = (α1, . . . , αQ) ∈ {0, . . . , d}Q such that
∑Q

i=1 αi = d.

There are exactly
(d+Q− 1)!

d!(Q− 1)!

polynomials with degree d. That is, for Q random variables, there are N

polynomials with degree less than or equal to D:

N =
(D +Q)!

D!Q!

These polynomials are orthogonal with respect to the following scalar

product

< f, g >=
1

√
2π

Q

∫ +∞

ξ1=−∞

. . .

∫ +∞

ξQ=−∞

f(ξ1, . . . , ξQ)

× g(ξ1, . . . , ξQ)e
−ξTξ/2dξ1 . . . dξQ (A.5)
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