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We investigate the capture of particles in soft porous media. Liquid foam constitutes a model system for 
such a study, allowing the radii of passage in the pore space to be tuned over several orders of magnitude 
by adjusting the liquid volume fraction. We show how particle capture is determined by the coupling of 
interstitial liquid flow and network deformation, and present a simple model of the capture process that 
shows good agreement with our experimental data.  
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The capture of particles in porous media is widely 

encountered in technological processes of solids extraction 
from suspensions [1], as well as in natural phenomena [2]. 
Particle capture is intimately related to clogging of the pores 
and leads generally to harmful effects such as permeability 
reduction during water flooding operations in the petroleum 
industry or during recharge of aquifers. Clogging is a 
complex phenomenon involving a large number of 
parameters that have been partially decoupled in 
experiments conducted on model systems, such as beds of 
solid spheres [3], sieves [4] or solid channels [5]. The 
capture of particles is generally modelled in terms of size 
exclusion mechanisms, involving a single particle or 
particles aggregates [4, 5]. In these studies, the effects of 
pores deformation were not taken into account, even though 
many porous materials can deform leading to complex 
elasto-hydrodynamic phenomena [6]. Moreover, in certain 
cases, the deformation of the porous network is very 
pronounced, as in unconsolidated soils or in intrinsically 
soft networks, such as biological tissues and blood vessels 
[7]. For soft systems, the pure size exclusion criterion is not 
able to predict the capture of particles and a more general 
theory is required. 

Liquid foams can be considered as soft porous materials, 
exhibiting fine liquid channels between gas bubbles. The 
main asset of foams is their capacity to adjust dynamically 
the channel size over several orders of magnitude, in 
response to changes in interstitial liquid flow conditions [8, 
9]. Moreover, foam channels can capture particles 
suspended in the liquid flowing through the gas bubbles, as 
reported for a broad range of systems [10]. This particle 
retention stabilizes foamed pastes, suspensions or 
emulsions, which have many applications in industry. 

In the work presented here, we study particle capture in 
liquid foam, used as a soft porous medium model. The radii 
of passage in its pore space are tuned over a large range and 
the resulting capture mechanism is shown to depend on the 
coupling of interstitial liquid flow and network deformation. 
We present a simple model of this coupling that extends the 
basic size exclusion criterion to a more general one, showing 
good agreement with our experimental data. 

The foaming solution contains 3 g/L of 
TetradecylTrimethyl-Ammonium Bromide (TTAB) in 
distilled water. Density and shear viscosity of the bulk 
are respectively: ρ = 1000 kg/m3 and η = 10-3 Pa.s. The 
surface tension of the liquid/gas interface is γ = 38 
mN/m. The foam is made in a Perspex tube (length: L = 
60cm and cross-sectional area: S = 25cm2) by injecting 
slowly perfluorohexane saturated nitrogen gas into the 
aqueous solution with a syringe needle. This method 
yields foams with monodisperse bubbles, and the 
presence of perfluorohexane stops the bubble size 
evolution due to coarsening on the time scale of our 
measurements. Changing the syringe needle size allows 
us to vary the bubble radius R in the range 0.5-2mm. 
Once the foam has filled the tube and after a free 
drainage step, a single spherical particle of radius rs is 
inserted and trapped at mid-height in the foam sample, 
using a thin glass capillary. The solid particles that we 
use are green fluorescent polystyrene spheres with a 
density ρs = 1050 kg/m3. As ρs/ρ =1.05, the gravity 
force acting on particles will be neglected in the 
following. The sphere radius rs, is chosen in the range 
from 25 to 170µm and it is sorted by video-microscopy 
to obtain a standard error less than 3%. Then, the upper 
part of the foam is wetted by a constant liquid flow rate, 
Q, or equivalently a liquid flux, dV Q S= . Under these 

steady drainage conditions, the foam liquid fraction, ε, 
is uniform throughout the whole sample, and its value is 
related to Vd through the foam permeability, K. 
Introducing the characteristic liquid velocity, 

2V gRρ η∗ = , and the dimensionless foam 

permeability, 2K K R=% , one can write: 

 

( )dV K Vε ∗= %  or ( )1
dK V Vε − ∗= %  (1) 

 

where 1K −%  is the inverse function of K%. This latter 
quantity has been already determined for the foaming 
solution used in this work and it is published elsewhere 
[11]. Thus, in this experiment, tuning Vd allows us to 
control the foam liquid fraction. For each measurement, 



Vd is increased step by step, starting from a low value, until 
we observe that the trapped particle is ejected from the foam 
sample. Using this procedure we determine the relation 
between dV  or ε, and the radius of capture rcapt of the foam, 
defined as the radius rs of the particles ejected under these 
conditions. Such measurements are  performed for foams 
made with three different bubble radii (0.55mm, 1.45mm 
and 2.15mm) and for several particle radii. In Figure 1, rcapt 
is plotted as a function of Vd and R. The radius of capture 
increases with both Vd and R, and it varies over almost one 
order of magnitude. In the following, we interpret and we 
model these data. 

 
Fig. 1: Capture radius of foams vs. liquid flux. Bubble radius R 

(�) 0.55mm, (�) 1.45mm, (�) 2.15mm. Full lines correspond to eq. 
(8). Dashed-line corresponds to eq. (4). 
 

As a starting point, the radii of passage within the foam 
pore space have to be determined. The geometry of very wet 
foams resembles that of a sphere packing, and the radii of 

passage are: R1
3
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�
�

�
�
�
�
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−= . As the liquid fraction is 

reduced, bubbles flatten at their contacts and the radii of 
passage decrease (see Fig. 2). The geometry of the liquid 
network can be described as channels, the so-called Plateau 
borders, meeting 4 by 4 at nodes [8]. The size of these 
elements can be determined using the Surface Evolver 
software [12]. It is based on the principle that a foam with a 
given gas volume in each bubble has an equilibrium 
structure such that the interfacial energy is minimal. 
Previous work performed on liquid transport through foams 
has shown the relevance of a geometrical description based 
on monodisperse bubbles in a bcc arrangement [8]. Within 
the range of liquid fraction 0 � � � 0.2, the authors reported 
the evolution of the mean curvature of Plateau borders, 
which combines the two principal radii of curvature of their 
interface. For low liquid fractions, i.e. � � 0.02, Plateau 
borders are essentially straight channels characterized by a 

single radius of curvature, r, and a corresponding radius 
of passage is given by the relation: 

( ) ( )2 3
1 2p pr R r Rε δ δ+; , with 1δ ; 13.8 and 

2δ ; 145. Recently, however, it has been shown that the 
bcc structure is stable at low liquid fractions only, i.e. 
0 � � �0.05, and that for higher liquid fractions an 
energetically more favourable fcc structure is 
established throughout the foam sample [13,14]. 

 

 
Fig. 2: Dimensionless radius of passage in foam as a function 
of liquid volume fraction. (�) and (�) correspond to Surface 
Evolver calculations for bcc and fcc structures respectively. 
Full-line: eq.(2). Dashed-line: eq.(3). Dotted-line: values 
deduced from [8]. Sketches illustrate the evolution for the size 
of foam channels. 

 
The monodisperse foams produced in our 

experiments look ordered when observed at the column 
wall. We therefore assume that depending on liquid 
fraction, they exhibit fcc or bcc polycrystalline 
structures, such as those observed in [13]. However, we 
expect the transition from fcc to bcc structures as a 
function of liquid fraction to be smoother than for fully 
crystallized samples. Using the Surface Evolver 
software, we simulate bcc structures for � � 0.1 and fcc 
structures for � � 0.05. In both cases, the radii of pore 
passage are determined directly from the simulated 
shapes of the Plateau borders (Fig. 2). We propose the 
following interpolation which is in good agreement 
with the bcc and fcc data in the full range 0 � � � 0.26: 

 

( )
3

2
0

4 10
1.36

0.45 14.4
pr

R

ελ ε ε
ε

−⋅ += = +
+

 (2) 

 
Note that our data are close to those deduced from [8] 
for � � 0.1. However, a significant deviation is observed 
for higher liquid fractions because in [8] only the 



evolution for the mean radius of curvature in bcc structures 
is considered.  

Results established for solid porous media offer an 
alternative way of estimating the radii of passage in foams. 
Johnson et al. have introduced an effective pore radius Λ 

[15]:  ( ) ( )2 2
2

pore pore
E r dV E r dSΛ = � �
r rr r

, which is a 

volume-to-surface pore ratio with a measure weighted by 

the local value of the electric field ( )E r
r r

 in a conduction 

process. Λ can be viewed as a dynamically weighted 
hydraulic radius. In contrast to the purely geometrical 
hydraulic radius, ( )H pore

r V S= , this weighting eliminates 

contributions from the stagnant regions of the pore space 
that do not contribute significantly to transport. As 
demonstrated in [16], Λ responds indeed directly to 
variations of the constrictions size in the pore space, i.e. the 
radius of passage of the pores: pr Λ: . Interestingly, this 

length can be deduced from both permeability and 
conductivity measurements for a given porous medium: 

( )1 2
8 fm Kσ σΛ = ⋅ , where σ  is the electrical 

conductivity of the sample, fσ  is that of the pore fluid,  and 

m is a constant of order unity [17]. We propose to model the 
radius of passage in foam with the relation: 

 

( )1 2
' 8p fr m Kσ σ= ⋅  (3) 

 
where m’ is a constant. A complete set of data for the 
electrical conductivity of liquid foams and emulsions has 
recently been published and an empirical formula has been 
provided for the electrical conductivity as a function of 
liquid fraction [18]. Data for the permeability of foams with 
interfaces that mimic the solid walls of a porous medium 
where the liquid velocity vanishes at the pore surface, can 
be found in [11, 19]. We describe these experimental results 

using the empirical expression: ' cK abεε%; , with adjusted 
parameters: a = 2.84 10-3, b = 147 and c = 1.9. The 
determination of pr  with eq.(3) requires the constant m’ to 

be adjusted.  We choose m’ = 0.73, such that values 
provided by eq.(3) match those deduced from [8] in the dry 
foam limit � � 0.01 where the radius of passage is precisely 
known. As illustrated in Fig. 2, eq.(3) and eq.(2) are in 
remarkable agreement, suggesting that the interpolation of 
bcc and fcc structures proposed here correctly describes 
how the channel size of monodisperse foams evolves in the 
full range of liquid fractions. This result also suggests that 
the modification of the channel network with liquid fraction, 
expressed in terms of channel length and node coordinance, 
is similar for ordered and disordered structures.   

We now compare the radii of capture rcapt, measured as a 
function of �, to the variation of rp with ε described by eq 
(2). In view of this equation, a geometrical capture criterion 

capt pr r= , would predict: 

 

0

1captr

Rλ
=  (4) 

 
Using eqs (1) and (2), eq. (4) is plotted in Fig. 1. The 
comparison with the measured data shows that at low 
liquid flux, particle capture is indeed governed by a 
purely geometrical criterion. However, as the liquid 
flux increases, experimental data deviate from this 
simple criterion, especially for large bubbles. The 
transition between the captured state and the free state 
for particles in foam can be explained by the balance of 
viscous drag, which drives the particles through the 
foam channels, and capillary forces opposed to the 
particle motion at channel constrictions smaller than the 
particle diameter. We now describe the hydrodynamic 
breakthrough of the particle quantitatively, based on 
capillary and viscous forces. 
 

 
 
Fig. 3: Drawing of the particle at the entrance of a foam 
channel. Left: view along the channel axis. Right: view 
perpendicular to the channel axis  
 

Let us consider a simple geometrical model for the 
foam pore structure: in the cut plane of Fig.3, the 
entrance of a channel is bounded by bubble interfaces 
with a radius of curvature rN given by N pr r C= , 

where C is a geometrical constant. In the frame of Fig.3 
(right), the position of a sphere centred at the entrance 
of the channel has dimensionless coordinates: 

1 1 1pX x r C= = +  and  1 1 pY y r= . As the sphere 

enters the channel, it touches the bubble surfaces for 

1 1Y Y∗=  given by ( ) ( )2 2
1 1s pY C r r C∗ = + − + . 

Because the bubble surface is ‘soft’, this geometrical 
limit of the particle motion can be overpassed, i.e. 

1 1Y Y∗< , and we assume that the resulting deformed 
bubble surface fits the sphere surface. Consequently, 
the capillary force acting on the sphere along the 
channel axis can be written: 
 

( )3 sincap cap cF P S θ=  (5) 

 



where capP  is the bubble capillary pressure, cS  is the 

projected contact area, ( )1
1tan 1Y Cθ −= +� 	A B  is the polar 

angle (see Fig.3) and the coefficient 3 accounts for the three 
contacting bubbles that form the foam channel. Note that as 

1Y  decreases, the contact area increases whereas θ 
decreases, so that the sphere experiences a maximum 
capillary force. Simple geometrical considerations show that 
the maximum capillary force is related to s pr r  and C by: 

 

β/
ps

/

pcap

max,cap
)rr(C

rP

F 152
2

1
2

19 −≈ −  (6) 

 
with � = 5/8. As we consider small Reynolds numbers, the 
viscous drag force is modeled by: 
 

visq p lF r uςη=   (7) 

 
where � is the drag coefficient (which depends on the 
boundary condition at the channel surface) and l du V ε=  is 
the mean liquid velocity in the foam pore space. Assuming 
that capillary and viscous forces balance at the transition 
between the captured state and the free state we obtain a 
general capture criterion: 
 

0

1 ( )capt capt

p

r r
f Ca

r R
βα ε

λ
= = +   (8) 

 
* 2Ca V gRη γ ρ γ= =  is the capillary number, 

( )2 52 19C
β

α ς=  is a constant considered as a fit parameter 

in the following. ( )0( ) capf K P
β

ε ε λ= % %  is a function of the 

liquid fraction only, where ( )cap capP P Rγ=%  is given in 

[20] and K
~ in [11] for the same foaming solution we use in 

this study. Note that Eq.(8) includes the geometrical capture 
criterion given by eq.(4). In Fig.4, experimental data are 
compared to eq.(8) with α = 11.6. Both C and � are required 
to determine  	 in eq.(8). An estimation based on  Surface 
Evolver simulations yields 20 30C ≈ − , which correspond 
to 3 to 5 times the radius of curvature of the channel 
constriction [21]. A Recent experimental study of  small  
particles settling in Plateau borders (formed with the same 
foaming solution as in this work) has provided a value for 
the drag coefficient 73ς ≈ , for the limit case s pr r  close to 

unity [22]. Taking these values for C and � we obtain α ≈ 8, 
which is in reasonable agreement with the fitted value. Fig.4 
shows the effects of both liquid fraction and capillary 
number: (i) the so-called size exclusion criterion of solid 
filters, i.e. 1capt pr r = , is observed at small Ca and small �; 

(ii) as both Ca and �  increase, the ratio of viscous to 
capillary forces increases and the hydrodynamic 

breakthrough is more efficient. The second term of 
eq.(8) increases the radius of capture by 50% beyond its 
value for solid filters. For practical use, Fig.1 shows the 
theoretical radius of capture as a function of Vd and R, 
obtained using eq.(1). This representation clearly shows 
the great benefit of using foams in filtering 
applications: a dynamical control of the radius of 
capture can be achieved by changing the flow rate of 
the filtered particle suspension. 
 

 
Fig. 4: Ratio of capture radius to passage radius as a function 
of liquid volume fraction. The Bubble radius R is (�) 
0.55mm, (�) 1.45mm, (�) 2.15mm. The Full lines correspond 
to eq.(8). 
 

To conclude, we have derived a criterion for particle 
capture in soft porous media, generalizing the classical 
size exclusion criterion of solid filters. We have shown 
that liquid foams are remarkable filtering materials, 
allowing the capture radius to be tuned dynamically 
over one order of magnitude. In this regard, our work 
opens a new way in the design of ‘soft’ filtering 
materials.  
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