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Abstract:

Cooperative Manipulators:Humanoid Robots: Screw theory

This paper studies the kinematic modeling and analysis of two cooperative manipulators. Cooperative ma-

nipulators are defined as multi-arm systems working together on a common task. The task is defined as the
transportation of an object in space. In this paper the cooperative system is the dual arm of the humanoid
Nao robot, where the serial structure of each arm has five degrees of freedom. The mobility of the closed
loop system is analyzed and the nature of the possible motion explored. The serial singular configurations
of the system are considered. Furthermore the parallel singularities due to the system constraints and chosen

actuation scheme are analyzed.

1 INTRODUCTION

The capability of dual independent arms when pro-
cessing parts reduces the need for custom fixtures and
permits the use of a simpler end effector. The system
can then execute sophisticated tasks that may be diffi-
cult for a single arm system. For example, rather than
using a large serial robot a cooperative system dis-
tributes a heavy load among several smaller robots.
Similarly if the object is of an unwieldy, non-rigid
or awkward composition, the single arm robot may
struggle to manipulate it.

By using a cooperative system of two or more ma-
nipulators, both the location and the internal forces
of the object can be controlled. The two principal
approaches that avail of force sensors on the robot
are: hybrid position/force control (Uchiyama and
Dauchez, 1988) and impedance control (Bonitz and
Hsia, 1996), (Sadati and Ghaffarkhah, 2008), (Cac-
cavale et al., 2008).

Another approach is to formulate kinematic rela-
tions that create a task space describing the multi-arm
system while grasping an object. The main meth-
ods are known as Symmetric formulation (Uchiyama
and Dauchez, 1988) and Task orientated formulation
(Chiacchio et al., 1996; Caccavale et al., 2000). Both
create a cooperative task space of velocity variables,
describing the object motion in space and the relative
motion between the end effectors (i.e forces applied
on object). On the other hand, the system can also be

viewed as a redundantly actuated parallel manipula-
tor. In this case kinematic constraint equations are de-
rived that establish a relationship between the chosen
independent and dependent joint variables (Yeo et al.,
1999; Liu et al., 1999; Cheng et al., 2003; Ozkan and
Ozgoren, 2001). The dependent joint variables adopt
values that ensure loop closure at each instant.

Most of the preceding work has been carried out
with dual arm systems, where both arms are either
of planar or 6-DOF spatial composition. Thus away
from singularities, the grasped object has a mobility
of 3 or 6 respectively. On the other hand the study
of lower mobility cooperative manipulators has been
limited. In (Yeo et al., 1999) the cooperation be-
tween a 5-DOF and 4-DOF robot is used in conjunc-
tion with a passive joint in order to execute a 4-DOF
position/force task. In (Zielinski and Szynkiewicz,
1996) admissible path planning for two 5-DOF robots
is explored. In (Bicchi et al., 1995) a generalized
method based on the Jacobian matrix of each arm,
and their constraint relations with the object, is for-
mulated. Analysis of these matrices permits the cal-
culation of the mobility, possible first order differen-
tial motions and manipulability velocity ellipsoids of
general multiple limb robots. The scheme is validated
on two cooperating 4-DOF SCARA robots.

Lower mobility systems suffer from three types of
singularities, limb (serial) singularities, actuation and
constraint (parallel) singularities (Amine et al., 2011).
For a closed chain system, certain joints must be des-



ignated actuated and others passive. In (Liu et al.,
1999) the presence of parallel singularities of a coop-
erative system with passive joints is explored. The is-
sue of a valid selection of actuators, for cooperative
manipulators is addressed in (Ozkan and Ozgoren,
2001). In both cases an analysis of the Jacobian ma-
trix is carried out. Conversely screw theory can be
used to locate and understand parallel singularities in
closed chain mechanisms (Zlatanov et al., 2002).

In this paper the cooperative system, defined by
the two arms of Aldebaran NAO T14 humanoid robot
and a grasped object, is examined. The system has
been modeled as a closed chain mechanism (Sec-
tions 2 and 3). The originality of this paper lies in the
use of screw theory techniques to analyze the system’s
mobility, singularities and motion type. The benefit of
this approach is that special configurations such as the
loss of stiffness, loss of DOF etc., can be determined
without the complex derivation of the Jacobian matri-
ces (or their inverses) (Sections 4 and 5).

2 DESCRIPTION OF THE
SYSTEM

Figure 1: NAO T14 (Courtesy of Aldeberan-Robotics) with
schematic representation of its arm.

The NAO T14 robot illustrated in Fig.1 is the ex-
perimental platform used. The Modified Denavit-
Hartenberg (MDH) notation (Khalil and Kleinfinger,
1986) is used to describe the system as given in Ta-
ble 1. The right arm consists of joints 1-5 and the left
arm consists of joints 6-10. Once the object is grasped
a closed loop is formed from the two arms, the ob-
ject and the common robot torso. As illustrated in
Fig. 2, link 5 of the closed chain is composed of link
5, link 10 of the open chain and the object. Frame 10
is thus fixed on link 5. We introduce frame 11, that is
equivalent to frame 10, but its antecedent is frame 5.
The system has in this case only nine bodies. Hence

Figure 2: Closed Loop Formulation.

joint 10 is denoted as the cut joint. The table parame-
ters are explained as:

e j is the joint number, a(j) is its antecedent joint

e G; is the joint type: revolute (0;=0), prismatic
(oj=1) or fixed (6,;=2)

e z; is the jth joint axis
e u; is the common normal between z,;) and z;

e Xx; is perpendicular to z; and one of the succeeding
axes, z; such that a(k) = j

e 7; is the angle between X, ;) and u; about z,,( ;)

e bjis the distance between x,,(;) and u; along z,
e d; is the distance between z,(;) and z; along u;

e 0 is the angle between z,(;) and z; about u;

e 0; is the angle between u; and x; about z;

e 7; is the distance between u; and x; along z;

Yj = b;j = 0 when X, is perpendicular to z;

The parameters of frame 11 in Table 1 are defined
by the grasp. Therefore, when the robot grasps the
object, the transformation matrices of each serial arm
are calculated. The parameters defining frame 11 with
gespect to frame 5 are calculated such that they yield

Ti1.

Ty = (0T5)710T10 (1)

iTj is the 4 x 4 transformation matrix from frame i to
frame j. The six parameters defining frame 11 can be
found by solving the following equation:

5T11 = rotz(yn) -tmnsz(bll) : VOIX(OLH) .
transy(dn) - rot;(011) - trans (r11) (2)

where rot;(0) indicates a rotation of 6 radians about
the ith axis and trans;(l) a translation of / meters
along the ith axis.



Table 1: MDH Parameters of NAO robot of the closed loop chain.
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3 KINEMATIC CONSTRAINT
EQUATIONS

The location, velocity and acceleration of the
frame at the cut joint must be equivalent when calcu-
lated via either chain. This ensures a constant object
grasp throughout the trajectory. In the closed loop for-
mulation, some joints may be actuated and some oth-
ers could be passive. Let q, contain the joint variables
that are actuated, qp contain the passive joint vari-
ables and ¢, contain the passive joint variable where
the chain is considered to be cut. The passive and
cut joint variables can be obtained in terms of the ac-
tive joint variables using the following geometric con-
straint equations:

T ' T T T4 TS Ty = "T*T7 ' Ts* To’Tio (3)
The kinematic constraints are given by:

[ g1
011
Vi1
q9

q2
10
vi0
L 410

493
44
L 45
ge
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where q, and ¢, contain the joint velocities of the right
arm and the left arm, respectively. °vj is the linear
velocity and o ; the angular velocity of frame j in
frame 0, 9] ; is the kinematic Jacobian matrix of frame
j w.r.t. frame 0. As frames 10 and 11 are coincident:

A I =7 4, )

Jio| g | =Joaw

W | | @O0
[V11:|_|:V10] ©
by substitution from (4) and (5)
0 _0 qar —
[ 90 Jio | [ a ] 0 (7)

By rearranging the rows and columns of (7), a rela-
tionship is obtained between the passive joint veloci-
ties and the actuated joint velocities

qq
G, G, 0 . _
Gw Gpe G || ¥ |70  ®
qc
that can be rewritten as
Jeq=0 )
From the first row of (8), we obtain:
4 =Gq. (10)
where
G=-G,'G, (11)
From the second row of (8), we obtain:
qc = —GEI (Gac +Gpc G) qa (12)

Upon differentiation of (8) with respect to time the
acceleration constraints equation is expressed as:

Ga

G, G, 0 X C

Gac Gpc Gc ('(;p +ch_0 (13)
c

4 MOBILITY ANALYSIS

The DOF of the system, » is equal to the number
of independent infinitesimal translations and orienta-
tions in the task space. In this section the DOF of the
object when grasped firmly by the two arms is exam-
ined by various methods. Each serial arm has 5-DOF
however once the object is firmly grasped by each
arm, a closed chain is formed and the object DOF be-
comes four.



4.1 Chebychev-Griibler-Kutzbach

The CGK formula is used to determine the mecha-
nism DOF from the number of joints, loops and con-
straint type. CGK is very easy to use but gives in-
correct results for a number of mechanisms. [ is the
number of joints, ¢; is the independent kinematic con-
straint equations for loop j. b is the number of inde-
pendent loops j:

b
n:l—ch (14)
=1

n=10—-6=4 (15)
4.2 Moroskine’s method

The mobility of a parallel mechanism can be cal-
culated exactly by using closed loop kinematic con-
straint equations.

n=I1—c=1—rank(J.) (16)

The constraint Jacobian matrix is defined from (9).
The primary drawback is that rank(J.) is difficult to
obtain symbolically, therefore it is obtained numeri-
cally for random configurations.

Jo=1[ % —"Juo | (17)
The DOF can be found as the number of independent
joints before loop closure minus those that lose their
independence after the loop is closed. the numerical
calculation gives rank(J.) =6

n=10—6=4 (18)
4.3 Gogu’s Method

To overcome the limitations of the CGK and Morosk-
ine’s method, Gogu (Gogu, 2007) proposed a scheme
that determines the correct mobility yet does not re-
quire the costly calculation of the kinematic con-
straint equations. Instead the dimension of the op-
erational space of each serial manipulator i, denoted
as dim(E;), is employed. The mobility is given by!:

[ — (dim(E1) +dim(Ez)) +dim(Ei [ \E2)  (19)

Ly j and @; stand for an instantaneous translation along

or rotation around an axis j respectively.

In order to find dim(E; (N E;), the operational spaces
that can be generated by each serial arm are exam-
ined. Five directions are chosen from both E, and E;
in order to minimize the intersection.

oy _ -
0y
0
my spor | &
E=| " Do @, (20)
X
b "
L Vz | -
F o - o
©: spor | &
E=1| v = | o, (21)
vy Vy
L Vz L Vz
0y
_ | 9y
é(ErﬂEz) | o (22)
Vx
dim(E,(\E;) =4 (23)

The feasible motions would be given by (22).
4.4 Screw Theory

In the previous section the mobility is obtained as 4,
however it must be stressed that in the case of 5 DOF
serial arms, the previous method does not reveal the
nature of these motions instead only their dimension
is given. In order to elucidate the motion type, screw
theory is used.

4.4.1 Mobility Analysis Based on Screw Theory

Screw theory can be used to analyze the instantaneous
motions of complex mechanisms (Hunt, 1978; Ball,
1900). A screw of pitch A is defined as:

s
= 24

% { SXTr+As } 24
s is the unit vector of the rotational axis of the screw.
r is the vector from any point on the axis to the ori-
gin. A zero-pitch screw and an infinite-pitch screw
are given respectively by:

vl ] e

sSXr S

For every screw system, consisting of » linearly inde-
pendent screws, there exists a reciprocal screw system
of dimension 6 —n. Two screws $; and $; are recip-
rocal if their instantaneous power is zero, namely,

033 I3 ! _
({ L 055 ]$1> $=0 (26)



The following reciprocity conditions are defined
from (26):
1. A $ is reciprocal to a $.. if their axes are normal
to each other;

2. A $. is always reciprocal to another $;

3. Two $p are reciprocal to each other if their axes
are coplanar;

A zero-pitch twist gy corresponds to a pure rotation
about its axis and an oo-pitch twist €. corresponds to
a pure translation along its axis. A zero-pitch wrench
o corresponds to a pure force along its axis and an co-
pitch wrench {.. corresponds to a pure moment about
its axis.

The twist system T’ and the wrench system W' of
a serial kinematic chain i composed of f joints are
given by:

!
T, , W=[\W 27)
j=1

The twist system T and the wrench system W of a par-
allel kinematic chain composed of m serial chains are
given by:

m
T=T , W=&w (28)
i=1 i=1

f
where A = & B; means A is spanned by vectors
j=1

f
Bi..r and A = (1 B; means A is intersection of vec-
j=1
tors of By..z
Table 1 shows that NAO T14 is composed of five
revolute joints. From (27), the twist systems T” and T/
of its right and left arms are defined as’:

T" = span(€o1,€02,€03,€04,€05) (29)
!
T = span(€o6,€07,€08,€09,€010)  (30)

The first two joints of each arm intersect and con-
stitutes a universal (U)-joint. The last three joints
also intersect and are equivalent to a spherial (S)-
joint. Since the twist system of each arm is a 5-
system, its reciprocal wrench system is a 1-system.
Using the reciprocity condition 3, it can be shown that
each arm applies one pure force (a zero-pitch wrench
Coi,i = 1,2) to the object along an axis intersecting
the U- and S-joint axes. Thus, the wrench systems of
the two arms are defined as:

W, =span(Lo1) , Wy =span({p) (31)

From (28), the constraint wrench system applied to
the object is a 2-system given by:

W =W, W, = span (Co1, ) (32)

2y and [ stand for right and left.

Figure 3: Reciprocal twists to parallel constraint forces
(2T2R motion mode).

The object twist system is reciprocal to W°. Thus, it is
a 4-system and the object has four DOF.

4.4.2 Motion Analysis Based on Screw Theory

When the constraint forces are parallel, i.e., §o1 || Co2,
reciprocity condition 1 states that there are two inde-
pendent co-pitch twists, €. and €., reciprocal (nor-
mal) to o1 and p. Reciprocity condition 3 states
that there are also two independent zero-pitch twists,
€01 and &g, reciprocal(coplanar) to {o; and (g as
shown in Fig. 3. Therefore, the corresponding motion
mode is 2T2R3.

When &o; #f (o2, but intersect, reciprocity condi-
tion 1 states there is one oco-pitch twist €. recipro-
cal(normal) to both {y; and £y, and condition 3 states
there are three independent zero-pitch twists, €g1, €02
and &3, reciprocal (cooplanar) to both {y; and (g
as shown in Fig. 4. Consequently, the corresponding
motion mode is 1T3R.

S SINGULARITY ANALYSIS

This section deals with the singularity analysis of
the NAO 14 when it firmly grasps an object. Limb
singularities can be characterized by a loss of DOF
locally, while a gain of DOF or a lack of stiffness
is known as a parallel singular configuration (Amine
etal., 2011),(Amine et al., 2012).

3T and R stand for Translation and Rotation, respec-
tively.
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object

Figure 4: Reciprocal twists to intersecting constraint forces
(1T3R motion mode).

5.1 Limb Singularities

A limb singularity is similar to the singularity of a
serial manipulator. It occurs for the dual-arm system
when the limb kinematic screw system (twist system)
degenerates. Consequently, the grasped object loses
one or more DOF in such a configuration. From (25)
and (29) the kinematic Jacobian matrix of the right
arm can be written as:

S1 XTIy Sp2XIp S3XI3 S4XIg S5XTIs
(33)
Let the wrist center be the origin of the frame where
vectors rj, i = 1,...,5 are expressed. Equation (33)
becomes

. S1 $2 $3 S4 S5
Jr_|:sl><l‘1 soxry 03 03 03:| (34)

S1 S> S3 S4 S5
Jr = |:

The right arm reaches a limb singularity if and
only if matrix J, is rank deficient. The relations lead-
ing to rank deficiency are examined in Table 2. Con-
dition 1,2,4 can be immediately ruled out as the axes
in question are always orthogonal. Furthermore, the
structure of the arm means the S-joint cannot lie on s,
thereby excluding condition 5, leaving two singular
configurations.

Table 2: Rank deficiency of J,

No. Config. Value
1 St || S2 -
2 S3 || S4 -
3 S3 || S5 q4 = (V==
4 S4 || S5 -
5 Sy XTIy = 03 -
6 sy xr; =03 qzzatan(_d—?)

5.2 Parallel Singularities

The loss of stiffness due to a parallel singularity can
be characterized by a degeneracy of screw system rep-
resenting the wrenches. Examples are given in Ta-
ble 3.

Table 3: Linear Dependence of Screws.

No. | G, Condition
>2 1 & collinear axes
>2 | L parallel axes
>3 | {o | intersect the same point
>6 | & intersect the same line
1 | o | L toplane formed by || o

5.2.1 Constraint Singularities

A constraint singularity occurs when the constraint
wrench system (32) degenerates, i.e., when {p; and
Coo are linearly dependent (condition 1 in Table 3).
The closed loop system reaches such a configuration
when the two S-joint centers lie on s; and s¢, from the
geometric model:

-3 3
=atan | — and =atan | — 35)
q2 ( 4 > q7 ( d3>

From Table 2 it is noted that when the closed loop sys-
tem reaches a constraint singularity, both arms reach
a limb singularity. Four wrenches forming a 3-system
as described in Fig. 5 are applied on the object: the
constraint wrenches {y; and , and the wrenches due
to the serial singularity of each arm o1 and oz, As
a consequence, the object has 3-DOF in this configu-
ration.

o1 Cost
T COsZ
b = -
e “w v T
¥, »

Figure 5: Constraint singularity of the dual arm system.

5.2.2 Actuation Singularities

In section 3 the system is modeled with actuated (in-
dependent) and passive (dependent) joint variables. In
this section a selection criterion is given for a suitable
actuated joints. Once an actuator is locked, it imposes
a wrench on the object. The actuator wrench for joint



i is denoted as C;’U This wrench is reciprocal to all
the twists of the arm except the actuator twist itself
and furthermore it should not lie in W¢. The actuation
wrench system W, applied on the object is the span of
actuation wrenches from both arms, namely,

W' = span (W:,WY') (36)

The constraint wrenches and actuation wrenches of
both arms should form a 6-system. This system is
denoted as the global wrench system and is defined
as:

W=weaw 37

An actuation singularity occurs when (37) degener-
ates while (32) does not. Since it is possible to ac-
tuate any four of the ten joints there are m
=210 possible actuation schemes. By excluding non-
symmetrical actuation schemes, one hundred actua-
tion schemes remain. It should be noted that since all
the joints in the arm can be actuated, a redundant actu-
ation scheme can decrease the likelihood of actuation
singularities.

Example 1: qa = [q1 ¢2 g6 g7]- Since it is gen-
erally preferable to actuate joints close to the base, the
case when the base U-joints are actuated is examined.
Using the reciprocity condition 3, the global wrench
system is derived:

o A pure force {§, || s> and intersecting s3,84,85 is
coplanar to all twists except that generated by g

e A pure force {J, || s1 and intersecting s3,S4,85 is
coplanar to all twists except that generated by ¢»

o A pure force (f || s¢ and intersecting sg, 9,10 is
coplanar to all twists except that generated by gg

e A pure force {J,, || s7 and intersecting sg, S, 81 is
coplanar to all twists except that generated by g7

The global wrench system as illustrated in Fig. 6,
is then given by W = span(Co1 Loz Cf; &5, T C57)-
A line between point A and point B (the S-Joints cen-
ters of either arm) can be drawn. This line is inter-
sected by all six constraint forces regardless of the
configuration of the robot. Therefore this actuation
scheme is not admissible, for any configuration the
global wrench system degenerates, i.e. rank(W) =
5, rank(W°) = 2, rank(W*) = 4, resulting in an uncon-
trollable closed chain mechanism.

Example 2: q, = [q1 ¢2 ¢3 ¢7]. To find the ac-
tuation wrench applied by g3, the planes I, Ils
spanned by (sg, s») and (s4, S5) respectively, are ex-
amined. The actuation wrench

1. if TIj» and Il4s intersect, there is a pure force (f,
acting along the intersection line formed by the
two planes

|

S Il s

ng [I's1

$2

Qgs [ s7

Figure 6: Non-Admissible Actuation scheme.

2. if I1}> and Ilys are parallel, there is a pure mo-
ment (% acting around the line normal to both
two planes

The global wrench system for case 1 is shown in Fig.7
and is W = span(Co1 Co2 Cf; G Gz Cf7)- In this case
an actuation singularity occurs whenever the line {f};
contains points A or B. Other such singularities can be
obtained simply by observing when the wrench sys-
tem formed by two or more wrenches degenerates (as
shown in Table 3), for instance the case where ng and
g, become collinear.

S6s

Co Il s6

Figure 7: Admissible Actuation scheme.

6 CONCLUSIONS

In conclusion, this work has presented a comprehen-
sive study of the two arms of the NAO robot when
engaged in a cooperative task. The system is modeled



as a closed loop kinematic chain. Using the mod-
els of the system, an analysis of the structure of the
robot is given. The degree of freedom of an object be-
ing simultaneously grasped by both arms was inves-
tigated. The singular configurations of the robot are
also discussed. The singularities of the serial arm are
straightforward, more interesting is the appearance of
constraint singularities. The issue of actuation singu-
larities, present due to the dependent joint variables of
the closed chain, is investigated. By considering the
wrenches exerted by the actuators, both an admissible
and inadmissible actuation scheme was illustrated.
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