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The present work addresses the problem of estimating the translation speed vector of an unmanned aerial vehicle only based on measurements of angles, angular speeds and translation accelerations. This is a delicate problem since this kind of system is commonly known as unobservable. In order to build this result we have first demonstrated that this problem, even if the linearized model is unobservable, the considered nonlinear system is in fact unobservable only inside a domain, but observable in another state space region. This result has been established by the study of the nonlinear observability of the considered system. In addition we briefly introduce a nonlinear adaptive observer that allow the estimation of translation speeds even in the case of outputs disturbed by measurement noise, wind or model errors, with rigorous theoretical proofs of the proposed results. The designed observers, based on adaptive control techniques, need the well known condition of persistency of excitation. Finally, we have shown that this condition in fact brings the system to an observable state space manifold. The considered manifold is easily reachable for a wide class of unmanned aerial vehicles including helicopters and quadrotors since these manifolds depend on the measurable and fully controllable states of this class of system, and as consequence, independent of the observer's results.

I. INTRODUCTION

The objective of this work is to study the possibility of estimating the translation speed vector of an unmanned aerial vehicle only based on measurements of angles, angular speeds and translation accelerations. This is a well known problem in robotics and mechanics in general, and was classically known as non-observable.

This estimation may be constructed based on other methods using different sensors like cameras and lasers, relying on probabilistic and statistic techniques like sensor fusion. These techniques on the other hand can not be applied to small drones where size, payload, energy consumption and computer resources are extremely limited. Furthermore, these techniques do not provide rigorous convergence proofs and leave unanswered questions about the fundamental concepts of system's observability. For all these reasons, the proposed work does not consider these techniques. In the same way, in many situations (indoors, urban or close to large structures for example) it is not possible to use GPS related devices, and those are also not considered in the present work.

Many recent articles were dedicated to the (nonlinear) estimation of state variables and external or internal parameters Khadidja Benzemrane and Gilney Damm are with IBISC Laboratory -Université d'Evry Val d'Essonne, Evry, France [khadidja.benzemrane,gilney.damm]@ibisc.fr Giovanni L. Santosuosso is with the Dipartimento di Ingegneria Elettronica, Universitá di Roma Tor Vergata, Rome, Italy santosuosso@ing.uniroma2.it of unmanned aerial vehicles (see [START_REF] Bonnabel | A non-linear symmetrypreserving observer for velocity-aided inertial navigation[END_REF], [START_REF] Cheviron | Robust nonlinear fusion of inertial and visual data for position, velocity and attitude estimation of UAV"journal=In practice[END_REF], [START_REF] Pflimlin | Nonlinear attitude and gyroscope's bias estimation for a VTOL UAV[END_REF], [START_REF] Vissiere | Using distributed magnetometers to increase IMU-based velocity estimation into perturbed area[END_REF], [START_REF] Zhao | Discrete nonlinear observers for inertial navigation[END_REF]). But in the best knowledge of authors, none has addressed the question of system observability, and in particular the translational speed. This part of the state vector was in general considered as non-observable, and most examples rely on the direct integration of the acceleration coupled to the measurements of other sensors by a sensor fusion algorithm. This scheme is very sensitive to measurement noises and uncertainties and in practice presents large errors.

In previous works, ( [START_REF] Benzemrane | Développement d'observateurs et application au drone XSF[END_REF], [START_REF] Benzemrane | Adaptive Observer and Kalman Filtering[END_REF], [START_REF] Benzemrane | Adaptive Observer and Kalman Filtering[END_REF], [START_REF] Benzemrane | Unmanned aerial vehicle speed estimation via nonlinear adaptive observers[END_REF]) we had proposed an estimation scheme based on nonlinear adaptive techniques. Under some well known, and easily fulfilled, constraints of persistency of excitation this estimator may in fact obtain exponentially stable estimations of the state space for the undisturbed system. This is a quite unexpected result for a classically known unobservable system. This lead us to a deeper study of the system's observability. In fact, the tangent linearization of the considered system is non-observable, but a study of observability for the nonlinear system shows that this is only valid in part of the state space. This means that there exist observable and unobservable manifolds. Furthermore, the persistency of excitation condition brings the system to an observable manifold, and this explains why it is possible to design an observer to the considered system. This analysis was only made using the definition of local observability, what implies in analysing the observability close to some trajectories of states. In those results it was shown that a sinusoidal trajectory was inside the observability space of a flying object.

In the present work, we will extend this result using the nonlinear observability definition, but will extend our study on a family of manifolds created by sinusoidal inputs of different frequencies and amplitudes.

II. OBSERVABILITY

The concept of observability of nonlinear systems is a quite delicate matter. In most cases the standard procedure is to linearize the complete system around an operating point, and then analyse its observability by the standard procedure for linear systems.

Considering a generic unmanned aerial vehicle (UAV), its dynamic model may be expressed as follows, where η 1 [x, y, z] T be the UAV position vector represented in the global reference frame, let η 2 [φ, θ, ψ] T be the Euler angles vector represented in the global reference frame (roll pitch and yaw respectively) ; we also assume that ν 1 [u, v, w] T is the translational speed vector represented in the local reference frame (surge, sway and heave respectively) and ν 2

[p, q, r] T is the angular speed vector represented in the local reference frame. The UAV model in state space form collects the set of the first order differential equations expressing η1 , η2 , ν1 , ν2 , as a function of η 1 , η 2 , ν 1 , ν 2 . To be more specific, the linear velocity in the fixed reference frame η1 = ( ẋ, ẏ, ż) T can be expressed as a function of η 2 , ν 1 , via the set of differential equalities

ẋ = cosθ cosψ u + (sinφ sinθ • cosψ -cosφ sinψ) v + (cosφ sinθ cosψ + sinφ sinψ) w ẏ = cosθ sinψ u + (sinφ sinθ sinψ + cosφ cosψ) v + (cosφ sinθ sinψ -sinφ cosψ) w ż = -sinθ u + sinφ cosθ v + cosφ cosθ w (1)
The time derivatives of the Euler angles η2 =( φ, θ, ψ) satisfy the following equations :

φ = p + (sinφ q + cosφ r) tanθ θ = cosφ q -sinφ r ψ = (sinφ q + cosφ r) cosθ -1 (2)
We assume that X, Y and Z are the aerodynamic forces applied by the motors to the UAV such that :

m u = m(-qw + rv) + X -m g sinθ m v = m(-ru + pw) + Y + m g sinφ cosθ m ẇ = m(-pv + qu) + Z + m g cosφ cosθ (3)
where g is the gravity acceleration constant, m is the drone mass. In the angular setting we obtain

I xx ṗ = L -(I zz -I yy ) q r I yy q = M -(I xx -I zz ) r p I zz ṙ = N -(I yy -I xx ) p q (4)
L, M and N being the aerodynamic torques provided by the motors. This model consider, without less of generality, a simplification of the inertia matrix in respect to symmetry plans.

The present problem considers as available for measurements the orientation (Euler Angles), angular velocities and acceleration of the vehicle. In this context 1 , defining the system state vector

   S = [φ, θ, ψ, p, q, r, u, v, w] T y = [φ, θ, ψ, p, q, r, u, v, ẇ] T Ω = [X, Y, Z, L, M, N ] T (5)
equations ( 2)-( 4) can be written in a compact notation as

Ṡ = f (S, Ω), S ∈ R 9 y m = h(S, Ω), y ∈ R 6 (6) 
where f : R 9 × R 6 → R 9 is a smooth function depending on the state and the control input Ω, and h(S, Ω) is the second 1. We will not consider position estimation. For this reason, the state vector does not include it. equality in [START_REF] Benzemrane | Unmanned aerial vehicle speed estimation via nonlinear adaptive observers[END_REF] where u, v, ẇ are expressed as functions of S and Ω via (3).

The paper objective may then be stated as : given system (6) study if it is possible to design observation strategies yielding exponentially converging estimates of the state S from the measurable output y, to be eventually included in any control strategy of system [START_REF] Bonnabel | A non-linear symmetrypreserving observer for velocity-aided inertial navigation[END_REF].

In practical terms, from [START_REF] Benzemrane | Unmanned aerial vehicle speed estimation via nonlinear adaptive observers[END_REF] we deduce that the observation algorithm focuses on the estimation of the unmeasurable state variables ν 1 , based on the measurable variables η 2 , ν1 and ν 2 given by the standard sensors embedded in the drone.

Observability of linearized system

The standard procedure to study the observability of a nonlinear system is to linearize the model around an equilibrium point and to use the linear techniques to study this linearized model.

In the case of the estimation of the translational speed of an aerial vehicle, if one does the linearisation of the system around an equilibrium point S =   η2 ν1 ν2   given by :

η 2 ⇒ η2 =   φ θ ψ   ν 2 ⇒ ν2 =   0 0 0   ν 1 ⇒ ν1 =   ū v w  
will obtain an standard observability matrix given by :

O =      C C A . . . C A n-1     
that in the present case has a rank equal to 6. As a consequence the system is considered as not observable.

Nonlinear Observability

The design of state observers for linear systems has been extensively addressed in the literature. In that case, it is easy to check if a system is observable, and this property is valid for all state space. For a nonlinear system, the fact that the system is observable in a region does not means that this property is kept for the whole space. This means that two distict states x 1 and x 2 produce the same output y(x 1 ) = y(x 2 ) = ȳ for a given input Ω. This follows from the standard definition of distinguishability (Isidori and other references).

In fact, the observability of a nonlinear system is also dependent of the system's inputs as well as the states. One simplified procedure to verify this observability is to check the local observability of the system for constant inputs. To this purpose, we recall the following definition (see [?]).

Definition 1: Let G denote the set of all finite linear combinations of the Lie derivatives of h 1 , . . . , h p with respect to f for various values of Ω = constant. Let dG denote the set of all their gradients. If we can find n linearly independent vectors within dG, then the system is locally observable.

The observability matrix O = dG is given by :

O =   L 0 f h ... L p-1 f h  
The system is locally observable if O has full rank.

This method allows to find observable and unobservable points and trajectories, but is very limited. We have applied this method in ( [START_REF] Benzemrane | Adaptive Observer and Kalman Filtering[END_REF]) to establish the existance of observable trajectories for the nonlinear in the case of pure sinusoidal inputs in the three aerodynamic torques provided by the motors. Unfortunatelly, nothing could be said in respect of the effects of sinusoidal amplitudes and frequencies. In the present work we extend this result in order to better characterise the effect of these parameters.

The first step was to augment the system states by an exciting exosytem. We were inspired by recent results from A. Isidori like [START_REF] Byrnes | Nonlinear internal models for output regulation[END_REF] and [START_REF] Byrnes | Further results on output regulation by pure error feedback[END_REF] for example. We then define the exosystem whose states are ζ L , ζ M and ζ N , with dynamics described by :

ζL = 0 f 1 -f 1 0 ζ L = A L ζ L ζM = 0 f 2 -f 2 0 ζ M = A M ζ M ζN = 0 f 3 -f 3 0 ζ N = A N ζ N (7) 
Variables ζ L , ζ M and ζ N are considered available for measurement, f 1 , f 2 and f 3 stand for the sinusoid's frequencies. Amplitudes and phases on the other hand are a function of initial conditions L (0), ζ M (0) and ζ N (0).

These oscillators are then used to provide torques L, M and N applied to the aerial vehicle. These torques may be defined as :

L * = 1 0 ζ L 1 0 M * = 1 0 ζ M 1 0 N * = 1 0 ζ N 1 0 (8) 
In this way, the extended system may be expressed as :

                    φ θ ψ ṗ q ṙ u v ẇ ζL ζM ζN                     =                   (sin(φ) q + cos(φ) r) tan(θ) cos(φ) q -sin(φ) r (sin(φ) q + cos(φ) r) cos(θ) -1 -(Izz -Iyy)rq -(Ixx -Izz)pr -(Iyy -Ixx)pq (-qw + rv -g sinθ) (-ru + pw + g sinφ cosθ) (-pv + qu + g cosφ cosθ) 0 0 0                   + B                   φ θ ψ p q r u v w ζ L ζ M ζ N                   +                   0 0 0 L * M * N * X Y Z 0 0 0                   y = C                   φ θ ψ p q r u v w ζ L ζ M ζ N                   +                   0 0 0 0 0 0 (-qw + rv -g sinθ) + X (-ru + pw + g sinφ cosθ) + Y (-pv + qu + g cosφ cosθ) + Z 0 0 0                   B =                  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A L 0 0 0 0 0 0 0 0 0 0 0 0 A M 0 0 0 0 0 0 0 0 0 0 0 0

A N                   C =                  
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

                 
In this new extended system, the inputs where replaced by states, and the observability study, even if restricted to pure sinusoidal inputs, is much easier. This study has shown that the system is observable if vectors ζ L , ζ M and ζ N are not identically equal to zero. In the beginning, we have studied the case where the three sinusoids were of diferent frequencies and amplitudes. In that case, system's observability was assured, confirming our previous works. A more interesting, and in some sense unexpected, result is that even in the case where frequencies and/or amplitudes are not different, the observability is still assured. Since the observers developed in ( [START_REF] Benzemrane | Adaptive Observer and Kalman Filtering[END_REF], [START_REF] Benzemrane | Adaptive Observer and Kalman Filtering[END_REF] and [START_REF] Benzemrane | Unmanned aerial vehicle speed estimation via nonlinear adaptive observers[END_REF]) were based on adaptive techniques, we expected to find the standard "rule of the tumb" of distinct sinusoids in order to attain persistance of excitation. But the present work shows that even only one frequency brings the system to an observable manifold. We can then conclude that each sinusoidal input makes system's dynamics evolve on an observable manifold, and that there exists a family of manifolds parametrized on input's amplitudes and frequencies.

III. OBSERVER DESIGN

Notice that the measured output can be expressed as

y = [y 1 , y 2 ] T = [φ, θ, ψ, p, q, r y1 , u, v, ẇ y2 ] T
where the vector y 2 = ν1 = [ u, v, ẇ] T is available for measurement, so that equation ( 3) is re-written as

ν1 (t) = Φ(t)ν 1 (t) + Λ(t) y 2 (t) = ν1 (t) (9) 
with the matrix Φ as :

Φ(t) =   0 r -q -r 0 p q -p 0   ( 10 
)
and the vector Λ defined as

Λ(t) =   -g sinθ + X g sinφcosθ g cosφ cosθ + Z   (11) 
In the following we design a reduced-order observer which estimates the translational velocity of the UAV recalling that, in order to guarantee that p(t), q(t) and r(t) are different from zero, the control inputs have to be chosen such that the system oscillates around the equilibrium point. We introduce an estimate of the linear velocity :

ν1 =   û v ŵ  
The observer described by the following equations :

ν1 = ν1 + KΦ T ζ ζ = -cζ + Φν 1 (12) 
whith a constant c > 0, a diagonal constant matrix K ∈ R 3 × R 3 , K > 0, a vector ζ that is an internal variable, for all initial conditions ν ∈ R 3 and ζ ∈ R 3 garantees, under some conditions on matrix Φ that will be introduced during the proof, the convergence to zero of estimation error ν1 = ν 1 -ν1 that satisfies the following equation :

ν1 = -KΦ T ζ (13) 
Proof:

The stability proof is standard and follows Lyapunov techniques. Consider the Lyapunov function :

V = 1 2 ζ T ζ + 1 2 νT 1 K -1 ν1 (14) 
By computing the time derivative of V , we have :

V = -c ζ 2 + ζ T Φν 1 + νT 1 K -1 (-KΦ T ζ) = -c ζ 2 + νT 1 Φ T ζ + νT 1 Φ T ζ V = -c ζ 2 (15) 
Then, V ≤ 0. The previous equations imply that ζ and ν1 are bounded and that 0 ≤ V (t) ≤ V (0). Here we introduce the Hypothesis (1) that Φ(t) is bounded, and then the second equation of system [START_REF] Nijmeijer | Nonlinear dynamical control systems[END_REF] assures that ζ is also bounded, and then

V = -cζ ζ is bounded.
As a consequence V is uniformly continuous, and according to Barbalat's Lemma, since V ≥ 0, V tends to zero. This in turns implies, from [START_REF] Vissiere | Using distributed magnetometers to increase IMU-based velocity estimation into perturbed area[END_REF], that ζ also converges to zero. Then, according to [START_REF] Pflimlin | Nonlinear attitude and gyroscope's bias estimation for a VTOL UAV[END_REF] and the convergence of ζ to zero, results that ν1 also converges to zero. Now, stating the Hypothesis (2) that Φ is also bounded, it is shown using the equation :

ν1 = Λ(Φ T ζ + ΦT ζ)
that ν1 is also bounded and then ν1 is uniformly continuous. As a consequence it can now be stated that ν1 converges to a constant, since ν1 converges to zero.

From the second equation of system [START_REF] Nijmeijer | Nonlinear dynamical control systems[END_REF], since ζ converges to zero, and its forcing term Φν 1 is uniformly continuous :

Φν 1 = 0 (16) 
Multiplying equation ( 16) by Φ(t), and integrating it by a time period T , one arrives to :

t+τ t Φ(s) Φ T (s)ds ν1 = 0 (17) 
It was shown that ν1 converges to a constant, and as a consequence this equation has a unique zero solution if and only if the matrix Φ(t) satisfies the persistency of excitation condition, which means that there exist strictly positive constants α and T such that for any t > t 0 :

t+T t Φ(τ )Φ T (τ )dτ ≥ kI (18) 
where k > 0 (Hypothesis (3)).

Then the observer [START_REF] Nijmeijer | Nonlinear dynamical control systems[END_REF] assures global assymptotical estimation of the unmeasurable states representing the linear velocities of the considered vehicles.

Remark 1: Hypothesis (1-3) are easily satisfied for a large class of aerial vehicles like helicopters, quadrotors ans PVTOLs, since motors assure the boundness of the angular speeds [p, q, r] T with bounded control magnitude.

Remark 2: Hypothesis (3) reflects the observability study presented in section II. The persistance of excitation condition comes from the adaptive control field, and is not necessarily related with the concept of observability. It is interesting to remark that in the present case, both concepts (observability and persistance of excitation) coincide.

IV. SIMULATION RESULTS

In this section we illustrate the observer designed above to estimate the linear velocity of an quadrotor UAV (see [START_REF] Azouz | Modeling and development of a 4rotors helicopter UAV[END_REF]) based on measurements of angles, angular velocities and linear accelerations.

In all simulations the observer estimations have initial conditions set to zero, while the desired states are time varying (and different from zero at t = 0). In all simulations, we have used the following parameters values : The orientations and angular speeds of the UAV are plotted on Fig. 1 and2. Small periodic orbits were considered in order to satisfy the persistency of excitation condition (equation ( 18)). Some constraints must also be satisfied to garantee the stability of the physical system : the angles have to be less than 0,1 rad (about 6 degrees) and the frequency of the needed oscilations must be less than 1Hz.

We have considered the case of additive measurement noise on the accelerations. The measured acceleration is presented in Fig. 3 where the noise µ is 10 percent of the measured acceleration.

The time history of the three speeds to be observed is shown in Fig. 4(a), and observer estimates in Fig. 4(b). Finally, Fig. 4c illustrates the observation error going to a residual set given by the noise amplitude. Pursuiting previous results, this work has shown that in the case of simple sinusoidal inputs in torques will produce a family of observable manifolds, parametrised in frequency and amplitude of the considered sinusoids. Furthermore, in oposition as what would be expected, the observability property does not need different frequencies and amplitudes in the inputs. Finally, we have shown that the condition of persistance of excitation needed for a proposed observer indeed brings the system to an observable region.

The characterization of system's observability allows the developpement of other observer algorithms since the system is brougth to an observable region. This is easily achievable for a large class of unmmaned aerial vehicles like helicopters, quadrotors and PVTOLs. It is important to notice that in these vehicles, angular dynamics are fully measurable and controlable. As a consequence, it is possible to bring these systems to an observable region independetly of observer convergence.
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