Robust stabilization of an airlaunch system after launching phase
Résumé
A Multiple Input Multiple Output (MIMO) controller based on the dynamic feedback linearization technique is designed for the robust global stabilization of a new satellite launching strategy called (unmanned) airlaunch. This strategy consists in using a two-stages launching system. The first stage is composed of an airplane (manned or unmanned) that carries a rocket launcher which constitute the subsequent stages. The control objective is to stabilize the aircraft in the launch phase. It is developed and is applied to the full multi-input multi-output model of the aircraft. The considered model is highly nonlinear, mostly as a consequence of possible large angle of attack, sideslip and roll angle. Finally, the present work illustrates through simulations the good performance of the proposed control algorithm.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|