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Abstract—A nonlinear adaptive control law for the stabilization
of synchronous generators in a power network is designed,
based on the new possibilities related with Smart Grids, in
particular the insertion of remote measurements provided by
Phasor Measurement Units (PMU). The proposed control system
is designed in a robust way in order to cope with several
uncertainties like the network parameters, and the intrinsic time
delay on remote measurements. The proposed controller stability
is rigorously proved, and computer simulations illustrate its
good behavior, and suggest that the new measurement and data
transmission devices can bring even better performance.

I. INTRODUCTION

Recently Smart Grids have become a very important trend
in several research communities. Their new technological
possibilities open the path to solve several hard problems in
the literature. This paper aims exactly in investigating a new
possibility on the control of networked power plants (power
generators) using the rather new devices of Smart Grids known
as Phasor Measurement Units (PMU). These devices are far
beyond SCADA, and let one envisage the use of real time
remote measurements on control schemes.

In the last three decades the power systems have been
growing in complexity and extension. The systems that were,
at first, small and near the delivery point have spread to
become interconnected, larger and more complex systems. One
can see, for example, the evolution of the European system in
[12]. This increase in complexity is important and necessary,
and allows us to use the system at its full capability, but
also makes the system more susceptible to disturbances and
new phenomena, like inter-area oscillations ( [12]). In order
to monitor these systems and acquire data to further studies,
the measurement devices called Phasor Measurement Units are
being widely developed and tested.

From the point of view of Control Engineering the power
systems urge for more modern and accurate techniques. Due to
the new reality of power systems, the classic controllers: Auto-
matic Voltage Regulator (AVR) and Power System Stabilizer
(PSS) still largely used, are now decreasing in performance
because the growing stress on the power systems’ operation.
The objective of the control of synchronous generator in a
power system is to ensure Stability and Voltage Regulation
even during network changes, failure and transient dynamics
of others generators connected in the network. This task is

even more complex due to non-linearity, parameter uncertainty
and disturbance in the systems [11].

In [7] and [4] nonlinear adaptive laws are proposed, which
achieve transient stabilization and voltage regulation, but the
models neglect the perturbations from the transient state of
others generators. Good results were obtained by studying a
generator gr in a network of N generators ( [5], [14]) and
using the infinite bus model of a power network. In this context
the adaptive law developed in [14], despite its complexity,
guarantees transient stabilization and L2 and L∞ disturbance
attenuation using only local data and under reasonable assump-
tions. Several other works in the literature have addressed this
field in the last decades ( [3], [9]) using different techniques,
but without explicitly considering Smart Grids technologies.

In this work’s main result, we studied the consequences of
adding the measured data from PMUs in nonlinear adaptive
laws developed following similar procedures than that in [14].
Even if the development and stability analysis are carried out
in rigorous mathematical ways, controller robustness towards
network parameters and data time delays are only illustrated
by simulations. This procedure is a first step to verify the
effectiveness of using these PMU for control, and to envisage
future control schemes that will formally consider and deal
with these disturbances, in particular the time delays.

First it was considered the insertion of undelayed measured
data in the controller developed in [14] to check the perfor-
mance gain remote measurements could provide compared to
adaptations. It was then introduce continuing increasing delays
to verify the robustness of the controller in respect to these
time delays. Secondly, we propose a new nonlinear adaptive
law considering the remote measurements. This control law
performance is then illustrated in the simulation section face
to real situations: short-circuit in a transmission line, inter-
area oscillation and large parameter changes in the network.
We end up the work by some conclusions and future work
that can be developed from the present results.

II. DYNAMIC MODEL

The dynamic model of a power systems of N generators
connected in a network is described by a 3N -order nonlinear
model:
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δ̇i = ωi

ω̇i = − Di

2Hi
ωi +

ω0

2Hi
Pmi −

ω0

2Hi
Pei (1)

Ė′qi =
kci
T ′d0i

ufi −
E′qi
T ′d0i

− (xdi − x′di)
T ′d0i

Idi

and, for the i-th generator, we have the following electrical
equations:

Pei = E′qi

n∑
j=1

[
E′qjGij cos (δij) + E′qjBij sin (δij)

]
= E′qiIqi

Qei = E′qi

n∑
j=1

[
E′qjGij sin (δij)− E′qjBij cos (δij)

]
−x′di

(
I2di + I2qi

)
= E′qiIdi − x′di

(
I2di + I2qi

)
Idi =

n∑
j=1

[
E′qjGij sin (δij)− E′qjBij cos (δij)

]
(2)

Iqi =

n∑
j=1

[
E′qjGij cos (δij) + E′qjBij sin (δij)

]
δij = δi − δj

Vti =

√(
x′diIqi

)2
+
(
E′qi − x′diIdi

)2
Where the first two equations of model 1 are the me-

chanical dynamic of the i-th generator involving the power
angle δi(rad), the relative angular speed ωi(rad/s), the ac-
tive electrical power Pei(p.u.), the input mechanical power
Pmi(p.u.)(seen in this work as a unknown input), the syn-
chronous angular speed ω0(rad/s), the damping coefficient
Di(p.u.)(often neglected) and the inertia constant Hi(s). The
others equations describe the electrical behaviour of the
system, including disturbance, characteristics of the network
and interactions between generators. In these equations are
included the transient quadrature EMF E′qi(p.u.), the control
input ufi(p.u.) to the thyristor amplifier, the gain kci of the
excitation amplifier, the direct axis transient open circuit time
constant T ′d0i(s), the direct axis reactance and the direct axis
transient reactance xdi(p.u.) and x′di(p.u.), respectively, the
reactive electrical power Qei(p.u.), the direct and quadrature
axis current Idi and Iqi, the terminal voltage Vti and the
Gij(p.u.) and Bij(p.u.) which are the elements of the i-th
row and j-th column of the conductance matrix G and the
susceptance matrix B. These two matrix represent the trans-
mission network connecting the generators, they are changing
as the load of any generator changes and are unmeasurable
parameters.
Idi and Iqi play an important role in this model, as one

can see they are the interactions between generators. Within
these equations there are some states of the remote generators,
the power angle and the quadrature EMF, and parameters of

the network, such as the susceptance and conductance. Fur-
thermore these parameters are unmeasurable as they depend
on the whole state of the power system which is constantly
changing.

In normal operation, called pre-fault, the system has as
equilibrium point:

δi = δi0

ωi = 0

E′qi = E′qi0

which implies

Pei = Pmi

for 1 < i < n, that must guarantees that the output voltage
Vti of each generator is equal to its reference constant value
V ∗ti , 1 < i < n.

As one can see, Pei appears linearly in the dynamics of
the angular speed and is also an output to be controlled once
it must be held equal to Pmi. Furthermore it is measurable
(available for feedback) and using it would give to the system
a triangular structure, making it easier to design a controller.

Considering constant Grj and Brj , for 1 < j < n and using
equation 2 we can derive the dynamic of Per, the power output
of the r-th generator:

Ṗer = Ė′qrIqr + İ ′qrEqr = Ė′qr

[
Iqr + E′qrGrr

]
+E′qr

n∑
j=1,j 6=r

[
Ė′qjGrj cos (δrj) + Ė′qjBrj sin (δrj)

]
(3)

−E′qr
n∑

j=1,j 6=r

[
E′qjGrj sin (δrj)− E′qjBrj cos (δrj)

][
ωr − ωj

]
This last equation can be rearranged and the dynamics of

the system with this new state variable can be represented as:

δ̇r = ωr

ω̇r = − Dr

2Hr
ωr +

ω0

2Hr
Pmr −

ω0

2Hr
Per (4)

Ṗer = − 1

T ′d0r
Per −

(xdr − x′dr)
T ′d0r

IdrIqr −
Grr(xdr − x′dr)

T ′d0r

IdrPer
Iqr

−Grr
T ′d0r

P 2
er

I2qr
+
[ kcr
T ′
d0r
I2qr +

Grrkcr
T ′
d0r

Per

Iqr

]
ufr

−
(
Qer +Brr

P 2
er

I2qr
+ x′dr(I

2
dr + I2qr)

)
ωr +

Per
Iqr

Rr

Where the term

Rr =

n∑
j=1,j 6=r

˙̃E′qj

[
Grj cos (δrj) +Brj sin (δrj)

]
+

n∑
j=1,j 6=r

ωj

[
E′qjGrj sin (δrj)− E′qjBrj cos (δrj)

]
represents the remote network dynamics, it means, the dis-

turbance on the r-th generator caused by the remote generators
out of their equilibrium points (as one can see, Rr = 0 when in

DAMM
Comment on Text
an



equilibrium). This expression of the network interconnection
can not be measured, mainly because of the presence of Grj ,
Brj and Ẽ′qj = E′qj −E′qj0, 1 < j < n, j 6= r. Rr represents
the main parameter requiring telecommunication of remote
data, and as a consequence, plays a crucial role in this work.

We then define a new parametrization: θ1r = 1
T ′
d0r

, θ2r =
(xdr−x′

dr)
T ′
d0r

, θ3r =
Grr(xdr−x′

dr)
T ′
d0r

, θ4r = Grr

T ′
d0r

, θ5r = kcr
T ′
d0r
, θ6r =

Grrkcr
T ′
d0r

as the generator electrical constant parameters.
In practice, the exact values of some parameters are hard

to obtain, specially Grr, Brr and Pmr. This last one depends
on the turbine mechanical dynamics and the load, which exact
value is unknown. The first two parameters may change due to
electrical failures and perturbations. In this work, we consider
as known the parameters ω0, Hr, Dr, T ′dr0, xdr, x′dr and kcr
which are mechanical or electrical parameters of the generator,
and can be obtained by off-line experiments. In the same way,
the unknown parameters are assumed to be within known pos-
itives bounds (Grrm, GrrM ), (Brrm, BrrM ), (Pmrm, PmrM )
with Pmr being a class C1 function and |Ṗmr(t)| ≤ ṖMr.

Physical considerations about load, transmission network
and mechanical turbines make the considerations above rea-
sonable in practical applications.

III. CONTROL PROPOSITION

In this chapter we develop our main result, a nonlinear
adaptation law for the control of the synchronous generator
based on the model described above and the design techniques
found in [10] and [13] and developed in [14].

First we define the power angle and the relative angular
speed errors as:

δ̃r = δr − δrs
ω̃r = ωr − ω∗r

Where δrs is the power angle constant reference value (the
pre-fault value) and ω∗r , the relative angular speed time-varying
reference signal here defined as:

ω∗r = −5

4
kδr δ̃r (5)

We define the active electrical power time-varying reference
signal as:

P ∗er =
2Hr

ω0

[
5

4
kωrω̃r +

5

4
kδrωr

− Dr

2Hr
ω∗r + δ̃r +

1

kωpr
ω̃r

]
+ P̂mr (6)

Where P̂mr is the estimate of the input mechanical power,
obtained by the observer:

P̂mr = φr +
2Hr

ω0

(
5

4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

)
ωr (7)

φ̇r =

(
5

4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

)[
− φr +

Dr

ω0
ωr

+Per −
2Hr

ω0

(
5

4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

)
ωr

]

Finally, we can define the active electrical power tracking
error:

P̃er = Per − P ∗er

Now that the tracking error system is complete we may
present the closed loop dynamic for the error system as:

˙̃
δr = −5

4
kδr δ̃r + ω̃r

˙̃ωr = −

(
5

4
kωr +

Dr

2Hr

)
ω̃r − δ̃r +

ω0

2Hr
P̃mr −

ω0

2Hr
P̃er

− 1

kωpr
ω̃r

˙̃Per = −5

4
kpeP̃er +

ω0

2Hr
ω̃r +

Per
Iqr

Rr −
G̃rr
T ′d

P 2
er

I2qr

−G̃rr
(xdr − x′dr)

T ′d

IdrPer
Iqr

+ G̃rr
Per

(I2qr + ĜrrPer)
v′r

−B̃rr
P 2
er

I2qr
ωr + πr −

(
5

4
kωr +

5

4
kδr +

5

4
kper

+
kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr +
1

kωpr

)
P̃mr (8)

Where v′r is equal to:

v′r =
(θ5I

2
qr + θ̂6Per)

Iqr
ufr (9)

with θ̂6 = Ĝrrθ5 (θ5 as defined in chapter 2). And also the
robustifying term:

πr = −kRr
4

P 2
er

I2qr
P̃er −

kr
4
P̃er

[
P 2
er + I2drI

2
qr +

I2drP
2
er

I2qr

+
P 4
er

I4qr

(
1 + ω2

r

)
+ ω2

r

(
I2dr + I2qr

)2]
− kr

4

(
5

4
kωr

+
5

4
kδr +

5

4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

+
1

kωpr

)2

P̃er −
kr
4

P 2
er

I2qr
P̃erR

2
r (10)

and

P̃mr = Pmr − P̂mr

being the observer tracking error with the time derivative
equals to:

˙̃Pmr = −
(5
4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

)
P̃mr

+Ṗmr. (11)

and:



v′r = −5

4
kpeP̃er +

ω0

2Hr
ω̃r +

5Drkδr
4ω0

ωr + B̃rr
P 2
er

I2qr
ωr

+G̃rr

[
(xdr − x′dr)

T ′d

IdrPer
Iqr

+
1

T ′d

P 2
er

I2qr

]
+
Pe
T ′d

+
(xdr − x′dr)

T ′d
IqrIdr +Qeωr + xdr

(
I2qr + I2dr

)
ωr

+
5

4
kδ
(
P̂mr − Pe

)
+

2H

ω0
ω

+
2H

ω0

[
5

4
kωr +

1

kωpr

][(
5

4
kωr +

Dr

2Hr

)
ω̃r + δ̃r

+
ω0

2H
P̃er +

1

kωpr
ω̃r

]
+ πr (12)

As one may notice, the term of remote data Rr appears
in equation 12 , more precisely, in the term πr. We suppose
that the data to perform the calculation of this term will
be measured by the PMU. These units allow us to collect
remote information of others generators, knowing that we
have, associated with Rr, a delay due data telecommunication.

Finally, we can define the Lyapunov Function for the system
and apply equations 8 and 12 to obtain the dynamic of the
adaptations Ĝrr and B̂rr:

Wr =
1

2

(
δ̃2r + ω̃2

r + P̃ 2
er + P̃ 2

mr

)
+
1

2
βBrrB̃

2
rr +

1

2
βGrrG̃

2
rr

Where its time derivative is equals to:

Ẇr = −5

4
kδr δ̃

2
r −

(5
4
kωr +

Dr

2Hr

)
ω̃2
r +

ω0

2Hr
P̃mrω̃r

− 1

kωpr
ω̃2
r −

5

4
kprP̃

2
er + πrP̃er +

Per
Iqr

RrP̃er

−
(5
4
kωr +

5

4
kδr +

5

4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

+
1

kωpr

)
P̃mrP̃er + ṖmrP̃mr − B̃rr

[
P 2
erωrP̃er
I2qr

+βBrr
˙̂
Brr

]
−
(5
4
kper +

kr
4

+
1

kr
+

ω2
0

16H2
r

kωpr

)
P̃ 2
mr

−G̃rr

[
(xdr − x′dr)

T ′d

IdrPer
Iqr

P̃er +
P 2
erP̃er
T ′dI

2
qr

− Perv
′
rP̃er

I2q + ĜrrPer
+ βGrr

˙̂
Grr

]
(13)

So, using the projection algorithm as defined in [14], the
dynamics for the two adaptations are

˙̂
Grr = Proj

{
P̃er
βGrr

[
− (xdr − x′dr)

T ′d

IdrPer
Iqr

− P 2
er

T ′dI
2
qr

+
Perv

′
r

I2q + ĜrrPer

]}
˙̂
Brr = Proj

(
− P̃er
βBrr

P 2
er

I2qr
ωr

)
(14)

Back to equation 13, by completing the squares and using
the proprieties of Proj(x), we can show that:

Ẇr ≤ −5

4

(
kδr δ̃

2
r + kωrω̃

2
r + kprP̃

2
er + kperP̃

2
mr

)
+
Rr(t)

2

kRr
(15)

which assure that all states are arbitrarily ultimately bounded,
with the error region given by the disturbance Rr(t) attenuated
by the arbitrary design parameter kRr. Furthermore, if no
transmission errors or delay corrupt the measurements, and
if we could exactly obtain the measurement of the intercon-
nection expression Rr(t), then we could obtain a globally
exponentially stable system by erasing the last term in (15).
In the real case where errors and delays are intrisical to the
system, the equations above shows that the system will be
ultimately bounded.

IV. SIMULATIONS

To perform the simulation, the control developed here was
applied at each generator of the well known Western System
Coordinating Council (WSCC), a 3-machine, 9-bus system
with parameters available in [2] and described as a two axis
model:

δ̇i = ωi

ω̇i = − Di

2Hi
ωi +

ω0

2Hi
Pmi −

ω0

2Hi
Pei

Ė′di = − E
′
di

T ′q0i
− (xqi − x′di)

T ′q0i
Iqi (16)

Ė′qi =
kci
T ′d0i

ufi −
E′qi
T ′d0i

− (xdi − x′di)
T ′d0i

Idi

where we considered in the simulations, that Di = 0, for
1 ≤ i ≥ 3. One may notice that this system is equivalent to
the one described in chapter 2 by making xqi = x′di neglecting,
thus, the dynamic of the fast damper-winding E′di.

The simulations were carried out to illustrate the perfor-
mance of the controller during normal events, such as inter-
area oscillation and some intense events as a short-circuit in
a transmission line. For this last one we compare the results
with the controller in [14] with the same parameters described
in the article.

The inter-zone oscillation phenomenon was simulated by
including, in the input mechanical power of one generator,
a sinusoidal component with amplitude equals to 10% of
the total input in low frequency, 1Hz. A rather soft, but
constant phenomenon while the short-circuit is a fast and
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intense changing in the network and will show the controller
robustness.

A. Transmission Line Short-Circuit

Here we present the effect of a three phase short circuit
occurring at t = 1s. This is one of the hardest faults that can
affect the system, but at the same time, a current fault that
happens every day in average for a country wide system.

Fig. 1. Proposed controller [G1 (dot), G2 (solid), G3 (dash)]: a) δi − δis ;
b) ωi; c) Pei.

Fig. 2. Proposed controller [G1 (dot), G2 (solid), G3 (dash)]: a) Vti; b)
ufi.

It can be seen in Fig 1, that the proposed controller allow all
states of the three generators to be kept in reasonable bounds,
and that they recover their original values from before the fault.
In the same way the output voltage and the control input is
shown in Fig 2.

Fig. 3. Regulation with PSS [G1 (dot), G2 (solid), G3 (dash)]: a) Pei ; b)
Vti; c) ufi.

For comparison, the same fault is dealt with a PSS (Power
System Stabilizer) controller. As we can see in Fig 3, the
controller cannot hold such fault.

Fig. 4. Controller from [14] [G1 (dot), G2 (solid), G3 (dash)]: a) δi − δis
; b) ωi; c) Pei.

Fig. 5. Controller from [14] [G1 (dot), G2 (solid), G3 (dash)]: a) Vti; b)
ufi.

Finally, the results for the controller proposed in [14] is
presented in Fig 4 and Fig 5. In both groups of simulations,
one can see that the proposed controller has very similar
performances to [14], but with a simpler algorithm and with
a smaller number of adaptations. Nevertheless both control
algorithms managed to stabilize the system even in such
critical situation, but the proposed algorithm is smoother which
means less stress to the actuator.

Fig. 6. Proposed controller [G1 (dot), G2 (solid), G3 (dash)]: a) δi − δis ;
b) ωi; c) Pei.
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Fig. 7. Proposed controller [G1 (dot), G2 (solid), G3 (dash)]: a) Vti; b)
ufi.

This last two figures (6 and 7) show the effects of adding a
delay of 1s in Rr(t). The delay represents the data transmis-
sion time from the PMU to the local central. For nowadays
technologies 1s is quite a long delay, but shows that the effect
of the data transmission is not relevant for the controller
because the results were almost the same obtained by the
controller without delay.

B. Inter-area Oscillations

In this section we will simulate the behaviour of the
controller and the voltage output in the case of inter-zone
oscillations.

Fig. 8. Oscillation in G1 [G1 (dot), G2 (solid), G3 (dash)]: a) δi − δis ; b)
ωi; c) Pei.

In Fig 8, we show the response of the controller for an
oscillation in the active electrical power in generator 2. As
one can see, we have small error, which shows a the response
of the controller to such event.

Fig. 9. Oscillation in G2 [G1 (dot), G2 (solid), G3 (dash)]: a)Vti; b) ufi.

In Fig 9 is the same scenario as Fig 8, but for the voltage
output and the control signal. The control signal shows high
amplitude oscillations in the same frequency of the mechanical
power input. However, the output voltage remains stable in
spite of the disturbance, with oscillations smaller than 5% of
the current value.

V. CONCLUSION

The present work has developed a new control scheme
inspired in previous works, in particular [14], but based in
less adaptations and with a simpler design. This new controller
has also the advantage of being better fit for the use of remote
measurements in its structure.

The good behaviour of the new controller can be appreciated
in the proposed simulations, where the new controller was
able to assure system’s stability even face severe faults, and
has shown to be as robust as the one in [14] even if much
simpler.

In future works, we will continue to study how remote
dynamics can be integrated to control schemes, and how time
delays can be formally taken into account.
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scheme based in the new possibilities offered by SmartGrids, in particular Phasor Measurement Unities (PMU).
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