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In this paper we consider non parametric finite translation mixtures. We prove that all the parameters of the model are identifiable as soon as the matrix that defines the joint distribution of two consecutive latent variables is non singular and the translation parameters are distinct. Under this assumption, we provide a consistent estimator of the number of populations, of the translation parameters and of the distribution of two consecutive latent variables, which we prove to be asymptotically normally distributed under mild dependency assumptions. We propose a non parametric estimator of the unknown translated density. In case the latent variables form a Markov chain (Hidden Markov models), we prove an oracle inequality leading to the fact that this estimator is minimax adaptive over regularity classes of densities.

Introduction

Finite mixtures are widely used in applications to model heterogeneous data and to do unsupervised clustering, see for instance [START_REF] Maclachlan | Finite Mixture Models[END_REF] or [START_REF] Marin | Bayesian modelling and inference on mixtures of distributions[END_REF] for a review. Latent class models, hidden Markov models or more generally regime switching models may be viewed as mixture models. Finite mixtures are therefore to be understood as convex combinations of a finite number of probability distributions over the space the data lives in, including both static (when the latent variables are independent) and dynamical models. Most of the developed methods use a finite dimensional description of the probability distributions, which requires some prior knowledge of the phenomenon under investigation. In particular applications, it has been noticed that this may lead to poor results and various extensions have been considered. The first natural extension is to consider mixtures with an unknown number of components. This has been extensively studied and used in the literature both from a Bayesian or frequentist point of view, see [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], [START_REF] Richardson | On Bayesian analysis of mixtures with an unknown number of components (with discussion)[END_REF], [START_REF] Ishwaran | Bayesian model selection in finite mixtures by marginal density decompositions[END_REF], [START_REF] Chambaz | Bounds for Bayesian order identification with application to mixtures[END_REF], [START_REF] Chambaz | A MDL approach to HMM with Poisson and Gaussian emissions. Application to order indentification[END_REF], Gassiat and van Handel (pear), to name but a few. However when the emission distribution, i.e. the distribution of each component, is misspecified this results in an overestimation of the number of components, as explained in the discussion in [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]. Thus, there has recently been interest in considering nonparametric mixture models in various applications, see for instance the discussion on the Old faithfull dataset in Azzaline and [START_REF] Azzaline | A look at some data in the Old Faithful geyser[END_REF], the need for nonparametric emission distributions in climate state identification in [START_REF] Lambert | A non-parametric hidden Markov model for climate state identification[END_REF] or the nonparametric hidden Markov model proposed in [START_REF] Yau | Bayesian nonparametric hidden Markov models with applications in genomics[END_REF]. In absence of training data, mixture models with nonparametric emission distributions are in general not identifiable without additional structural constraints. In a seminal paper, [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] discussed identifiability issues in a 2 -component nonparametric mixture model under repeated measurements (or multivarate) and showed that identifiability essentially only occured if there is at least 3 repeated measurements for each individual. This work has been extended by various authors including [START_REF] Kasahara | Nonparametric identification and estimation of multivariate mixtures[END_REF], [START_REF] Bonhomme | Nonparametric estimation of finite mixtures[END_REF] and references therein. Identifiability recent results about mixtures may also be found in [START_REF] Allman | Identifiability of parameters in latent structure models with many observed variables[END_REF].

Consider location models

Y i = m Si + ǫ i , i ∈ N (1.1)
where (S i ) i∈N is an unobserved sequence of random variables with finite state space {1, . . . , k}, (ǫ i ) i∈N is a sequence of independent identically distributed random variables taking values in R, and m j ∈ R, j = 1, . . . , k. The aim is to estimate the parameters k, m 1 , . . . , m k , the distribution of the latent variables (S i ) i∈N and the distribution F of the ǫ i 's. As usual for finite mixtures, one may recover the parameters only up to relabelling, and obviously, F may only be estimated up to a translation (that would be reversly reported to the m j 's). However the identifiability issue is much more serious without further assumptions. To illustrate the identifiability issues that arise with such models, assume that the S i 's are independent and identically distributed. Then the Y i 's are independent and have distribution

P µ,F (.) = k j=1 µ(j)F (• -m j ) . (1.2)
Here, µ(j) ≥ 0, j = 1, . . . , k, k j=1 µ (j) = 1, m j ∈ R, j = 1, . . . , k, and F is a probability distribution on R. An equivalent representation of (1.2) corresponds for instance to k = 1, m 1 = 0 and F = P µ,F the marginal distribution. [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF] have considered model (1.2) with the additional assumption that F is symmetrical and under some constraints on the m j , in the case of k ≤ 4 , see also L. [START_REF] Bordes | Semiparametric estimation of a two components mixture model[END_REF] and [START_REF] Butucea | Semiparametric mixtures of symmetric distributions[END_REF] in the case where k = 2 for an estimation procedure and asymptotic results.

In this paper, we investigate model (1.1) where the observed variables are not independent and may be non stationary. Interestingly, contrarywise to the independent case, we obtain identifiability without any assumption on F under some very mild conditions on the process S 1 , • • • , S n , see Theorem 2.1. To be precise, if Q is the k × k-matrix such that Q i,j is the probability that S 1 = i and S 2 = j, we prove that the knowledge of the distribution of (Y 1 , Y 2 ) allows the identification of k, m 1 , . . . , m k , Q and F as soon as Q is a non singular matrix, whatever F may be. Building upon our identifiability result, we propose an estimator of k, and of the parametric part of the distribution, namely Q and m 1 , . . . , m k . Here, we do not need the sequence (X i ) i∈N to be strictly stationary and asymptotic stationarity is enough, then Q is the stationary joint disribution of two consecutive latent variables. Moreover, we prove that our estimator is √ n-consistent, with asymptotic Gaussian distribution, under mild dependency assumptions, see Theorem 3.1. When the number of populations is known and if the translation parameters m j , j ≤ k are known to be bounded by a given constant, we prove that the estimator (centered and at √ n-scale) has a subgaussian distribution, see Theorem 3.2.

In the context of hidden Markov models as considered in [START_REF] Yau | Bayesian nonparametric hidden Markov models with applications in genomics[END_REF], we propose an estimator of the non parametric part of the distribution, namely F , assuming that it is absolutely continuous with respect to Lebesgue measure. This estimator uses the model selection approach developped in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF], with the penalized estimated pseudo likelihood contrast based on marginal densities k j=1 μ(j)f (y -mj ). We prove an oracle inequality, see Theorem 4.1, which allows to deduce that our non parametric estimator is adaptive over regular classes of densities, see Theorem 4.2 and Corollary 1.

The organization of the paper is the following. In section 2 we present and prove our general identifiability theorem. In section 3 we define an estimator of the order and of the parametric part, and state the convergence results: asymptotic gaussian distribution and deviation inequalities. In section 4, we explain our non parametric estimator of the density of F using model selection methods, and state an oracle inequality and adaptive convergence results. Most of the proofs are given in the Appendices.

General identifiability result

Let Q k be the set of probability mass functions on {1, . . . , k} 2 , that is the set of k×k matrices Q = (Q i,j ) 1≤i,j≤k such that for all (i, j) ∈ {1, . . . , k} 2 , Q i,j ≥ 0, and

k i=1 k j=1 Q i,j = 1.
We consider the joint distribution of (Y 1 , Y 2 ) under model (1.1), which has distribution

P θ,F (A × B) = k i,j=1 Q ij F (A -m i )F (B -m j ), ∀A, B ∈ B R (2.1)
where B R denotes the Borel σ field of R and θ = m,

(Q i,j ) 1≤i,j≤k,(i,j) =(k,k) , with m = (m 1 , . . . , m k ) ∈ R k . Recall that in this case, ordering the coefficients m 1 ≤ m 2 ≤ • • • ≤ m k and replacing F by F (.
-m 1 ) leads to the same model so that without loss of generality we fixe

0 = m 1 ≤ m 2 ≤ • • • ≤ m k . Let Θ k be the set of parameters θ such that m 1 = 0 ≤ m 2 ≤ . . . ≤ m k and Q ∈ Q k , where Q = (Q i,j ) 1≤i,j≤k , Q k,k = 1 -(i,j) =(k,k) Q i,j . Let also Θ 0 k be the set of parameters θ = m, (Q i,j ) 1≤i,j≤k,(i,j) =(k,k) ∈ Θ k such that m 1 = 0 < m 2 < . . . < m k and det(Q) = 0.
We then have the following result on the identification of F and θ from P θ,F .

Theorem 2.1 Let F and F be any probability distributions on R. Let k and k be positive

integers. If θ ∈ Θ 0 k and θ ∈ Θ 0 k, then P θ,F = P θ, F =⇒ k = k, θ = θ and F = F.
Remark 1 In the same way, it is possible to identify ℓ-marginals, for any ℓ ≥ 2, that is the distribution of (S 1 , . . . , S ℓ ), m and F on the basis of the distribution of (Y 1 , . . . , Y ℓ ).

Remark 2

The independent case considered in [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF], L. Bordes and [START_REF] Bordes | Semiparametric estimation of a two components mixture model[END_REF], [START_REF] Butucea | Semiparametric mixtures of symmetric distributions[END_REF] is a special case where det(Q) = 0 for which our identifiability result does not hold. An important class of models is that of hidden Markov models. In that case, if Q is the stationary distribution of two consecutive variables of the hidden Markov chain, det(Q) = 0 if and only if the transition matrix is non singular and the stationary distribution gives positive weights to each point. When k = 2, we thus have det(Q) = 0 if and only if S 1 and S 2 are not independent.

Proof of Theorem 2.1

Denote by φ F the characteristic function of F , φ F the characteristic function of F , φ θ,1 (respectively φ θ,1 ) the characteristic function of the distribution of m S1 under P θ,F (respectively under P θ, F ), φ θ,2 (respectively φ θ,2 ) the characteristic function of the distribution of m S2 under P θ,F (respectively under P θ, F ), and Φ θ (respectively Φ θ) the characteristic function of the distribution of (m S1 , m S2 ) under P θ,F (respectively under P θ, F ). Then since the distribution of Y 1 is the same under P θ,F and P θ, F , one gets that for any t ∈ R,

φ F (t) φ θ,1 (t) = φ F (t) φ θ,1 (t) .
(2.2)

Similarly, for any t ∈ R, φ F (t) φ θ,2 (t) = φ F (t) φ θ,2 (t) . (2.3)
Since the distribution of (Y 1 , Y 2 ) is the same under P θ,F and P θ, F , one gets that for any

t = (t 1 , t 2 ) ∈ R 2 , φ F (t 1 ) φ F (t 2 ) Φ θ (t) = φ F (t 1 ) φ F (t 2 ) Φ θ (t) .
(2.4)

There exists a neighborhood V of 0 such that for all t ∈ V , φ F (t) = 0, so that (2.2), (2.3) and (2.4) imply that for any t

= (t 1 , t 2 ) ∈ V 2 , Φ θ (t) φ θ,1 (t 1 ) φ θ,2 (t 2 ) = Φ θ (t) φ θ,1 (t 1 ) φ θ,2 (t 2 ) .
(2.5)

Let t 1 be a fixed real number in V . Φ θ (t 1 , t 2 ), φ θ,2 (t 2 ), Φ θ (t 1 , t 2 ), φ θ,2 (t 2 ) have analytic continuations for all complex numbers z 2 , Φ θ (t 1 , z 2 ), φ θ (z 2 ), Φ θ (t 1 , z 2 ), φ θ (z 2 ) which are entire functions so that (2.5) holds with z 2 in place of t 2 for all z 2 in the complex plane C and any t 1 ∈ V . Again, let z 2 be a fixed complex number in C. Φ θ (t 1 , z 2 ), φ θ,1 (t 1 ), Φ θ (t 1 , z 2 ), φ θ,1 (t 1 ) have analytic continuations Φ θ (z 1 , z 2 ), φ θ (z 1 ), Φ θ (z 1 , z 2 ), φ θ (z 1 ) which are entire functions so that (2.5) holds with z 1 in place of t 1 and z 2 in place of t 2 for all (z 1 , z 2 ) ∈ C 2 . Let now Z be the set of zeros of φ θ,1 , Z be the set of zeros of φ θ,1 and fix z 1 ∈ Z. Then, for any

z 2 ∈ C, Φ θ (z 1 , z 2 ) φ θ,1 (z 1 ) φ θ,2 (z 2 ) = 0.
(2.6)

We now prove that z 2 → Φ θ (z 1 , •) is not the null function. For any z ∈ C,

Φ θ (z 1 , z) = k ℓ=1   k j=1 Q ℓ,j e imj z1
  e im ℓ z .

Since 0 = m 1 < m 2 < . . . < m k , if Φ θ (z 1 , •)
was the null function, we would have for all ℓ = 1, . . . , k

k j=1 Q ℓ,j e imj z1 = 0,
which is impossible since det(Q) = 0. Thus, Φ θ (z 1 , •) is an entire function which has isolated zeros, φ θ,2 (•) also, and it is possible to choose z 2 in C such that Φ θ (z 1 , z 2 ) = 0 and φ θ,2 (z 2 ) = 0. Then (2.6) leads to φ θ,1 (z 1 ) = 0, so that Z ⊂ Z. A symmetric argument gives Z ⊂ Z so that Z = Z. Moreover, φ θ,1 and φ θ,1 have growth order 1, so that using Hadamard's factorization Theorem (see [START_REF] Stein | Complex Analysis[END_REF] Theorem 5.1) one gets that there exists a polynomial R of degree ≤ 1 such that for all z ∈ C, φ θ,1 (z) = e R(z) φ θ,1 (z) .

But using φ θ,1 (0) = φ θ,1 (0) = 1 we get that there exists a complex number a such that φ θ,1 (z) = e az φ θ,1 (z). Using now 0 = m 1 < m 2 < . . . < m k , and 0 = m1 < m2 < . . . < mk we get that φ θ,1 = φ θ,1 . Similar arguments lead to φ θ,2 = φ θ,2 . Combining this with (2.5) we obtain Φ θ = Φ θ which in turns implies that k = k and θ = θ. Thus, using (2.2), for all t ∈ R such that φ θ,1 (t) = 0, φ F (t) = φ F (t). Since φ θ,1 has isolated zeros and φ F , φ F are continuous functions, one gets φ F = φ F so that F = F .

3 Estimation of the parametric part

Assumptions on the model

Hereafter, we are given a sequence (Y i ) i∈N of real random variables with distribution P ⋆ . We assume that (1.1) holds, with (S i ) i∈N a sequence of non-observed random variables taking values in {1, . . . , k ⋆ }. We denote by F ⋆ the common probability distribution of the ǫ i 's, and m ⋆ ∈ R k ⋆ the possible values of the m Si 's. We assume:

(A1) (S i , S i+1 ) converges in distribution to Q ⋆ ∈ Q k ⋆ . For θ ⋆ = (m ⋆ , (Q ⋆ i,j ) (i,j) =(k ⋆ ,k ⋆ ) ), θ ⋆ ∈ Θ 0 k ⋆ ,
and all differences m ⋆ j -m ⋆ i , i, j = 1, . . . , k ⋆ , i = j, are distinct.

We do not assume that k ⋆ is known, so that the aim is to estimate θ ⋆ and k ⋆ altogether. Assumption (A1) implies that the marginal distributions in Q ⋆ are identical so that we write from now on

φ θ ⋆ = φ θ ⋆ ,1 = φ θ ⋆ ,2 .
The idea to estimate θ ⋆ and k * is to use equation (2.5) which holds if and only if the parameters are equal. Consider w any probability density on R 2 with compact support S, positive on S and with 0 belonging to the interior of S ; typically S = [-a, a] 2 for some positive a. Define, for any integer k and θ ∈ Θ k :

M (θ) = R 2 |Φ θ ⋆ (t 1 , t 2 ) φ θ,1 (t 1 ) φ θ,2 (t 2 ) -Φ θ (t 1 , t 2 ) φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 )| 2 |φ F ⋆ (t 1 ) φ F ⋆ (t 2 )| 2 w (t 1 , t 2 ) dt 1 dt 2 . (3.1)
We shall use M (θ) as a contrast function. Indeed, thanks to Theorem 2.1, θ ∈ Θ 0 k is such that M (θ) = 0 if and only if k = k ⋆ and θ = θ ⋆ . We estimate M (•) by

M n (θ) = R 2 Φ n (t 1 , t 2 ) φ θ,1 (t 1 ) φ θ,2 (t 2 ) -Φ θ (t 1 , t 2 ) φ n,1 (t 1 ) φ n,2 (t 2 ) 2 w (t 1 , t 2 ) dt 1 dt 2 , (3.2)
where Φ n is an estimator of the characteristic function of the asymptotic distribution of (Y t , Y t+1 ), φ n,1 (t) = Φ n (t, 0) and φ n,2 (t) = Φ n (0, t). One may take for instance the empirical estimator

Φ n (t 1 , t 2 ) = 1 n n-1 j=1 exp i (t 1 Y j + t 2 Y j+1 ) . (3.3)
We require that Φ n is uniformly upper bounded; if Φ n is defined by (3.3) then it is uniformly upper bounded by 1. Define, for any t

= (t 1 , t 2 ) ∈ R 2 Z n (t) = √ n Φ n (t) -Φ θ ⋆ (t)φ F ⋆ (t 1 ) φ F ⋆ (t 2 ) .
Our main assumptions on the model and on the estimator Φ n are the following.

(A2) The process (Z n (t)) t∈S converges weakly to a Gaussian process (Z (t)) t∈S in the set of complex continuous functions on S endowed with the uniform norm and with covariance kernel Γ(•, •).

(A3) There exist real numbers E and c (depending on θ ⋆ ) such that for all x ≥ 0 and n ≥ 1,

P ⋆ sup t∈S |Z n (t)| ≥ E + x ≤ exp -cx 2 .
(A2) will be used to obtain the asymptotic distribution of the estimator, and (A3) to obtain non asymptotic deviation inequalities. Note that (A2) and (A3) are for instance verified if we use (3.3), under stationarity and mixing conditions on the Y j 's. This follows applying results of [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF], [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] and [START_REF] Rio | Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes[END_REF].

Definition of the estimator

Our contrast function verifies M (θ) = 0 if and only if θ = θ ⋆ only when we restrict θ to belong to ∪ k∈N Θ 0 k . When minimization is performed over ∪ k∈N Θ 0 k it may happen that the minimizer is on the boundary. To get rid of this problem, we build our estimator θ n using a preliminary consistent estimator θn , and then restrict the minimization using the information given by θn . Define for any integer k, I k a positive continuous function on Θ 0 k and tending to +∞ on the boundary of Θ 0 k or whenever m tends to infinity. For instance one may take

I k m, (Q i,j ) (i,j) =(k,k) = -log detQ - k i=2 log |m i -m i-1 | (1 + m ∞ ) 2 . Let (k n , θn ) be a minimizer over {(k, θ) : k ∈ N, θ ∈ Θ k } of C n (k, θ) = M n (θ) + λ n [J (k) + I k (θ)]
where J : N → N is an increasing function tending to infinity at infinity and (λ n ) n∈N a decreasing sequence of real numbers tending to 0 at infinity such that

lim n→+∞ √ nλ n = +∞ (3.4) Define now θ n as a minimizer of M n over θ ∈ Θ kn : I kn (θ) ≤ 2I kn θn .
In case k ⋆ is known, we may choose another estimator. Let K be a compact subset of Θ 0 k ⋆ . We denote by θ n (K) a minimizer of M n over K. This estimator will also be used as a theoretical trick in the proof of the asymptotic distribution of θ n .

Asymptotic results

Our first result gives the asymptotic distribution of θ n . To define the asymptotic variance, we define ∇M (θ) the gradient of M at point θ and D 2 M (θ) the Hessian of M at point θ. We also set V the variance of the gaussian process

{C (t) [Z (-t) φ θ ⋆ (-t 1 ) φ θ ⋆ (-t 2 ) -Φ θ ⋆ (-t) (Z(-t 1 , 0)φ θ ⋆ (-t 2 ) + Z(0, -t 2 )φ θ ⋆ (-t 1 ))] +C (-t) [Z (t) φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 ) -Φ θ ⋆ (t) (Z(t 1 , 0)φ θ ⋆ (t 2 ) + Z(0, t 2 )φ θ ⋆ (t 1 ))]} w (t) dt where C (t) = Φ θ ⋆ (t) ∇ (φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 )) -∇Φ θ ⋆ (t) φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 ) .
Theorem 3.1 Assume (A1), (A2), and (3.4). Then D 2 M (θ ⋆ ) is non singular, and for any compact subset

K of Θ 0 k ⋆ such that θ ⋆ lies in the interior of K, √ n(θ n (K)-θ * ) converges in distribution to the centered Gaussian with variance Σ = D 2 M (θ ⋆ ) -1 V D 2 M (θ ⋆ ) -1 .
Moreover, √ n( θ n -θ * ) converges in distribution to the centered Gaussian with variance Σ.

If one wants to use Theorem 3.1 to build confidence sets, one needs to have a consistent estimator of Σ. Since D 2 M is a continuous functions of θ, D 2 M θ n is a consistent estimator of D 2 M (θ ⋆ ). Also, V may be viewed as a continuous function of Γ(•, •) and θ, as easy but tedious computations show. One may use empirical estimators of Γ(•, •) which are uniformly consistent under stationarity and mixing conditions, to get a consistent estimator of V . This leads to a plug-in consistent estimator of Σ. Another possible way to estimate Σ is to use a boostrap method, following for instance [START_REF] Clemencon | Pseudo-regenerative block-bootstrap for hidden markov chains[END_REF] when the hidden variables form a Markov chain.

When we have deviation inequalities for the process Z n , we are able to provide deviation inequalities for √ n(θ n (K) -θ * ). Such inequalities have interest by themselves, they will also be used for proving adaptivity of our non parametric estimator in Section 4.

Theorem 3.2 Assume (A1) and (A3). Let K be a compact subset of Θ 0 k ⋆ such that θ ⋆ lies in the interior of K. Then there exist real numbers c ⋆ , M ⋆ , and an integer n ⋆ such that for all n ≥ n ⋆ and M ≥ M ⋆ ,

P ⋆ √ n θ n (K) -θ ⋆ ≥ M ≤ 8 exp -c ⋆ M 2 .
In particular, for any integer p,

sup n≥1 E P ⋆ √ n θ n (K) -θ ⋆ p < +∞.
4 Estimation of the non parametric part in the case of hidden Markov models

In this section we assume that P ⋆ is the distribution of a stationary ergodic hidden Markov model (HMM for short), that is the sequence (S t ) t∈N is a stationary ergodic Markov chain. We also assume that the unknown distribution F ⋆ has density f ⋆ with respect to Lebesgue measure. Thus the density s ⋆ of Y 1 writes

s ⋆ (y) = k ⋆ j=1 µ ⋆ (j) f ⋆ y -m ⋆ j , where µ ⋆ (j) = k ⋆ i=1 Q ⋆ j,i , 1 ≤ i ≤ k ⋆ .
We shall assume moreover: (A4) For all i, j = 1, . . . , k ⋆ , Q ⋆ i,j > 0, and there exists δ > 0 such that

R [f ⋆ (y)] 1-δ dy < +∞.
Notice that, if the observations form a stationary HMM and if for all i, j = 1, . . . , k ⋆ , Q ⋆ i,j > 0, then the sequence is geometrically uniformly ergodic, and applying results of [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF], [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] and [START_REF] Rio | Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes[END_REF], (A2) and (A3) hold if we use (3.3).

We propose to use model selection methods to estimate f ⋆ using penalized marginal likelihood. We assume in this section that k ⋆ is known, and that we are given an estimator

θ n = (( m i ) 1≤i≤k ⋆ , ( Q i,j ) (i,j) =(k ⋆ ,k ⋆ ) ) = θ n (K) of θ ⋆ for some compact subset K of Θ 0 k ⋆ such that θ ⋆ lies in the interior of K. Let µ(i) = k ⋆ j=1 Q i,j , 1 ≤ i ≤ k ⋆ . Define for any density function f on R ℓ n (f ) = 1 n n i=1 log   k ⋆ j=1 µ (j) f (Y i -m j )   .
Let F be the set of probability densities on R. We shall use the model collection (F p ) p≥2 of Gaussian mixtures with p components as approximation of F . Let us define for any integer p

F p = p i=1 π i ϕ ui (x -α i ) , α i ∈ [-A p , A p ], u i ∈ [b p , B], π i ≥ 0, i = 1, . . . , p, p i=1 π i = 1
(4.1) where B and A p , b p , p ≥ 2, are positive real numbers, and where ϕ β is the Gaussian density with variance β 2 given by ϕ β (x) = exp(-x 2 /2β 2 )/β √ 2π. For any p ≥ 2, let f p be the maximizer of ℓ n (f ) over F p . Define

D n (p) = -ℓ n f p + pen (p, n) .
Our model selection estimator f will be given by f p whenever p is a minimizer of D n .

Oracle inequality

The following theorem says that a suitable choice of the penalty term pen (p, n) leads to an estimator having good non asymptotic and asymptotic properties. In the following,

s p (•) = k ⋆ j=1 µ (j) f p (• -m j ) , is the estimator of s ⋆ , S ⋆ p = { k ⋆ j=1 µ ⋆ (j) f • -m ⋆ j , f ∈ F p }
for any p ≥ 2, h 2 (•, •) is the Hellinger distance and K(•, •) the Kullback-Leibler divergence between probability densities. For any p ≥ 1, fix some f p ∈ F p and set

s p = k ⋆ j=1 µ ⋆ (j) f p • -m ⋆ j .
Of course to derive good behaviour of the estimator from the oracle inequality, one will have to choose carefully f p .

Theorem 4.1 Assume (A1), (A3) and (A4). Let (x p ) p≥2 be a sequence of positive real numbers such that Σ = p≥2 e -xp < +∞. Then there exist positive real numbers κ and C, depending only on Q ⋆ and δ such that, as soon as

pen (p, n) ≥ κ n k ⋆ p log n + log 1 b p + log A p + x p 1 + log 1 + 1 b δ p ,
one has

E P ⋆ h 2 (s ⋆ , s p ) ≤ C inf p≥2 (K (f ⋆ , f p ) + pen (p, n) + E P ⋆ [V p ]) + Σ n with V p = 1 n n i=1 log k ⋆ j=1 µ(j)f p (Y i -m j ) k ⋆ j=1 µ ⋆ (j)f p (Y i -m ⋆ j )
.

The proof of Theorem 4.1 is postponed to Appendix C. Notice that the constant in the so-called oracle inequality depends on P ⋆ , so that the result of Theorem 4.1 is not of real practical use. Also, the upper bound depends on θ, for which the results in Section 3 are for large enough n. However, Theorem 4.1 is the building stone to understand how to choose a penalty function and to prove adaptivity of our estimator.

Adaptive estimation

We prove now that s p is an adaptive estimator of s ⋆ , and that, if max j µ ⋆ (j) > 1 2 , f p is an adaptive estimator of f ⋆ . Adaptivity will be proved on the following classes of regular densities.

Let y 0 > 0, c > 0, M > 0, τ > 0, C > 0, λ > 0 and L a positive polynomial function on R. Let also β > 0 and γ > (3/2 -β) + . If we denote P = (y 0 , c 0 , M, τ, C, λ, L), we define H loc (β, γ, P) as the set of probability densities f on R satisfying:

• f is monotone on (-∞, -y 0 ) and on (y 0 , +∞), and inf |y|≤y0 f (y) ≥ c 0 > 0.

• ∀y ∈ R, f (y) ≤ M e -τ |y| (4.2)
• log f is ⌊β⌋ times continuously differentiable with derivatives ℓ j , j ≤ β satisfying for all x ∈ R and all |y -x| ≤ λ,

|ℓ ⌊β⌋ (y) -ℓ ⌊β⌋ (x)| ≤ ⌊β⌋!L(x)|y -x| β-⌊β⌋ and R |ℓ j (y)| 2β+γ j f (y)dy ≤ C.
We use s p where the penalty is set to

pen (p, n) = 3κ n (k ⋆ p + x p ) log n.
Theorem 4.2 Assume (A1), ( A3) and (A4). Then for any P, β ≥ 1/2 and γ > (3/2β) + , there exists C(β, γ, P) > 0 such that

lim sup n→+∞ n (log n) 3 2β 2β+1 sup f ⋆ ∈H loc (β,γ,P) E P ⋆ h 2 (s ⋆ , s p ) ≤ C(β, γ, P).
Thus, s p is adaptive on the regularity β of the density classes up to (log n) 3β/(2β+1) , see [START_REF] Maugis-Rabusseau | Adaptive density estimation using finite gaussian mixtures[END_REF] for a lower bound of the asymptotic minimax risk in the case of independent and identically distributed random variables. Using Theorem 4.2, we can also derive adaptive asymptotic rates for the minimax L 1 -risk for the estimation of f * .

Corollary 1 Assume (A1), (A3), (A4) and that max j µ ⋆ (j) > 1 2 . Then for any P,

β ≥ 1/2 and γ > (3/2 -β) + , lim sup n→+∞ n (log n) 3 β 2β+1 sup f ⋆ ∈H loc (β,γ,P) E P ⋆ f p -f ⋆ 1 ≤ 2 C(β, γ, P) (2 max j µ ⋆ (j) -1)
.

It is possible that the constraint, max j µ ⋆ (j) > 1/2 is not sharp, however note that the Fourier transform of s ⋆ is expressed as

φ θ ⋆ φ f ⋆ with φ θ ⋆ (t) = k j=1 µ ⋆ (j)e itm ⋆
j and φ f ⋆ the Fourier transform of f ⋆ , and that |φ θ ⋆ (t)| > 0 for all t ∈ R if and only if max j µ ⋆ (j) > 1/2, applying the main theorem of [START_REF] Moreno | The zeros of exponential polynomials (i)[END_REF].

Proof of Corollary 1

We shall use

s ⋆ -s p 1 ≤ 2h (s ⋆ , s p ) ,
together with

s ⋆ -s p 1 = k ⋆ j=1 µ ⋆ (j) f ⋆ • -m ⋆ j - k ⋆ j=1 µ (j) f p (• -m j ) 1 ≥ k ⋆ j=1 µ ⋆ (j) ( f p -f ⋆ ) (• -m j ) 1 -θ n -θ ⋆ - k ⋆ j=1 µ ⋆ (j) f ⋆ • -m ⋆ j -f ⋆ (• -m j ) 1 ≥ 2 max j µ ⋆ (j) -1 f p -f ⋆ 1 -θ n -θ ⋆ -f ⋆ • -m ⋆ j -f ⋆ (• -m j ) 1
which follows by using iteratively the triangle inequality. Using β ≥ 1/2, Theorem 3.2. and Theorem 4.2, we thus get that lim sup

n→+∞ n (log n) 3 β 2β+1 sup f ⋆ ∈H loc (β,γ,P) E P ⋆ f p -f ⋆ 1 ≤ 2 C(β, γ, P) (2 max j µ ⋆ (j) -1) as soon as lim n→+∞ n (log n) 3 β 2β+1 sup f ⋆ ∈H loc (β,γ,P) E P ⋆ f ⋆ • -m ⋆ j -f ⋆ (• -m j ) 1 = 0. (4.3) Now, since f ⋆ ∈ H loc (β, γ, P) with β ≥ 1/2, if | m j -m ⋆ j | ≤ λ, | log f ⋆ (y -m j ) -log f ⋆ (y -m ⋆ j )| ≤ L(y -m ⋆ j )| m j -m ⋆ j | β∧1 .
Set M ≥ 1 2c ⋆ , and a > 0 such that, if |y| ≤ n a , then L(y)| m j -m ⋆ j | β∧1 ≤ 1. Observe also that since θ n stays in a compact set, for large enough n, if |y| ≥ n a , then for any j, |y -m j | ≥ n a /2 and |y -m ⋆ j | ≥ n a /2. We obtain, using |e u -1| ≤ 2u for 0 ≤ u ≤ 1:

f ⋆ • -m ⋆ j -f ⋆ (• -m j ) 1 ≤ 2 M log n n -(β∧1)/2 L(y -m ⋆ j )f ⋆ (y -m ⋆ j )dy +2 |y|≥n a /2 f ⋆ (y)dy + 1l θ ⋆ -θn > √ M log n/ √ n ,
and (4.3) follows from Theorem 3.2, β ≥ 1/2 and the fact that f ⋆ ∈ H loc (β, γ, P) has exponentially decreasing tails.

Computation of f p

The computation of f p may be performed using the EM-algorithm, which is particularly simple for Gaussian mixtures. Indeed, for

f = p i=1 π i ϕ βi (• -α i ), k ⋆ j=1 µ (j) f (• -m j ) is a mixture of pk ⋆ Gaussian densities φ βi (• -α i -m j ) with weights π i µ (j). Starting from an initial point ((π 0 i ) 1≤i≤p , (v 0 i ) 1≤i≤p , (σ 0 i ) 1≤i≤p
), the EM l-th iteration may be easily computed as

π l+1 i = k ⋆ j=1 n t=1 µ (j) π l i ϕ β l i Y t -m j -α l i p i ′ =1 k ⋆ j=1 n t=1 µ (j) π l i ′ ϕ β l i ′ Y t -m j -α l i ′ , i = 1, . . . , p, α l+1 i = T -Ap,Ap k ⋆ j=1 n t=1 (Y t -m j ) µ (j) π l i ϕ β l i Y t -m j -α l i k ⋆ j=1 n t=1 µ (j) π l i ϕ β l i Y t -m j -α l i , i = 1, . . . , p,
where for any real numbers C 1 , C 2 , T C1,C2 is the troncature function:

T C1,C2 (x) = x1l C1≤x≤C2 + C 1 1l x<C1 + C 2 1l x>C2 , and 
σ l+1 i = T bp,B   k ⋆ j=1 n t=1 Y t -m j -v l i 2 µ (j) π l i ϕ β l i Y t -m j -α l i k ⋆ j=1 n t=1 µ (j) π l i ϕ β l i Y t -m j -α l i   , i = 1, . . . , p.
A Proof of Theorem 3.1

First of all, we prove a lemma we shall use several times. Using ||A| 2 -|B| 2 | ≤ |A -B|||A| + |B|| and the fact that characteristic functions are uniformly upper bounded by 1, we get that for any integer k and any θ ∈ Θ k :

|M n (θ) -M (θ)| ≤ 2 Φ n (t 1 , t 2 ) -Φ θ ⋆ (t 1 , t 2 ) φ F ⋆ (t 1 ) φ F ⋆ (t 2 ) + φ n (t 1 ) φ n (t 2 ) -φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 ) φ F ⋆ (t 1 ) φ F ⋆ (t 2 ) w (t 1 , t 2 ) dt 1 dt 2 .
The upper bound does not depend on k and θ, Φ n is uniformly upper bounded, and we get sup

k≥2, θ∈Θ k |M n (θ) -M (θ)| = O sup t∈S Z n (t) √ n = O P ⋆ (1/ √ n) (A.1)
which together with Theorem 2.1 gives

Lemma 1 If (k n , θ n ) n , θ n ∈ Θ kn
, is a random sequence such that there exists an integer K ≥ k * , and a compact subset T of ∪ k≤K Θ 0 k such that

P * (k n ≤ K and θ n ∈ T ) → 1 and M n (θ n ) = o P ⋆ (1), then P * (k n = k ⋆ ) → 1 and θ n = θ ⋆ + o P ⋆ (1). Since C n k n , θn ≤ C n (k * , θ *
) and M n is a non negative function, we get

J(k n ) + I kn θn ≤ [J(k ⋆ ) + I k ⋆ (θ ⋆ )] + M n (θ ⋆ ) -M (θ ⋆ ) λ n ,
so that using (A.1), assumption (A2) and (3.4) we get

J(k n ) + I kn θn ≤ [J(k ⋆ ) + I k ⋆ (θ ⋆ )] + o P ⋆ (1) . (A.2) Also, M n θn ≤ M n (θ ⋆ ) + λ n [J(k ⋆ ) + I k ⋆ (θ ⋆ )] ,
so that M n θn = o P ⋆ (1) .

Thus, using (A.2) and Lemma 1

P * (k n = k ⋆ ) → 1 and θn = θ ⋆ + o P ⋆ (1). (A.3) Set now K = {θ ∈ Θ k ⋆ : I k ⋆ (θ) ≤ 4I k ⋆ (θ ⋆ )}. K is a compact subset of Θ 0 k ⋆ . Let E n be the event (k n = k ⋆ and θ n = θ n (K)).
Using Lemma 1, we get that θ n (K) is a consistent estimator of θ ⋆ , and using (A.3) and Lemma 1, we get also that θ n is a consistent estimator of θ ⋆ , so M n has the same minimizer on K and on {I kn (θ) ≤ 2I kn ( θn )}, with probability tending to 1, since it belongs to a neigbourhood of θ * . Thus, P ⋆ (E n ) → 1. Now, since

θ n = θ n (K)1l En + θ n 1l E c n ,
Theorem 3.1 follows as soon as we prove that √ n(θ n (K) -θ ⋆ ) converges in distribution to the centered Gaussian with variance Σ. But this is a straighforward consequence of

D 2 M n (θ n ) θ n (K) -θ ⋆ = ∇M n (θ ⋆ ) ,
for some θ n ∈ Θ k ⋆ such that θ n -θ ⋆ ≤ θ n (K) -θ ⋆ , the consistency of θ n (K) and the following Lemma

Lemma 2 Assume (A1) and (A2). Then

• √ n∇M n (θ ⋆
) converges in distribution to a centered gaussian with variance V .

• D 2 M (θ ⋆ ) is non singular, and for any random variable θ n ∈ Θ k ⋆ converging in P ⋆probability to θ ⋆ , one has

D 2 M n (θ n ) = D 2 M (θ ⋆ ) + o P ⋆ (1) .

Proof of Lemma 2

First notice that, in every formula, taking the conjugate of any involved function at point t is the same as taking the function at point -t. This is also verified for derivatives. Write now for any θ ∈ Θ k ⋆ and any t = (t 1 , t 2 )

G n (θ, t) = Φ n (t) φ θ,1 (t 1 ) φ θ,2 (t 2 ) -Φ θ (t) φ n,1 (t 1 ) φ n,2 (t 2 )
so that, if ∇G n (θ, t) denotes the gradient of G n with respect to θ at point (θ, t), one has

∇M n (θ ⋆ ) = [∇G n (θ ⋆ , t) G n (θ ⋆ , -t) + ∇G n (θ ⋆ , -t) G n (θ ⋆ , t)] w (t) dt. Now, writing Φ n (t) = Zn(t) √ n + Φ θ ⋆ (t)φ F ⋆ (t 1 )φ F ⋆ (t 2
) and using (A2) one gets easily

√ n∇M n (θ ⋆ ) = {φ F ⋆ (t 1 )φ F ⋆ (t 2 ) [Φ θ ⋆ (t) ∇ (φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 )) -∇Φ θ ⋆ (t) φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 )] [Z n (-t) φ θ ⋆ (-t 1 ) φ θ ⋆ (-t 2 ) -Φ θ ⋆ (-t) (Z n (-t 1 , 0)φ θ ⋆ (-t 2 ) + Z n (0, -t 2 )φ θ ⋆ (-t 1 ))] +φ F ⋆ (-t 1 )φ F ⋆ (-t 2 ) [Φ θ ⋆ (-t) ∇ (φ θ ⋆ (-t 1 ) φ θ ⋆ (-t 2 )) -∇Φ θ ⋆ (-t) φ θ ⋆ (-t 1 ) φ θ ⋆ (-t 2 )] [Z n (t) φ θ ⋆ (t 1 ) φ θ ⋆ (t 2 ) -Φ θ ⋆ (t) (Z n (t 1 , 0)φ θ ⋆ (t 2 ) + Z n (0, t 2 )φ θ ⋆ (t 1 ))]} w (t) dt + O P ⋆ 1 √ n
and the convergence in distribution of √ n∇M n (θ ⋆ ) to a centered gaussian with variance V follows.

Similar computation gives that for any

θ ∈ Θ k ⋆ D 2 M n (θ) -D 2 M n (θ ⋆ ) = | Φ n (t)| 2 [A 1 (t, θ) -A 1 (t, θ ⋆ )] w(t)dt + | Φ n (t 1 , 0)| 2 | Φ n (0, t 2 )| 2 [A 2 (t, θ) -A 2 (t, θ ⋆ )] w(t)dt + Re Φ n (-t) Φ n (t 1 , 0) Φ n (0, t 2 ) [A 3 (t, θ) -A 3 (t, θ ⋆ )] w(t)dt
for matrix-valued functions A 1 (t, θ), A 2 (t, θ), A 3 (t, θ) that are, in a neighborhood of θ ⋆ , continuous in the variable θ for all t and uniformly upper bounded. Thus

D 2 M n (θ n ) - D 2 M n (θ ⋆
) converges in P ⋆ -probability to 0 whenever θ n is a random variable converging in P ⋆ -probability to θ ⋆ . Finally, note that at point θ ⋆ the Hessian of M simplifies into:

D 2 M (θ ⋆ ) = 2 H(t)H(-t) T |φ F ⋆ (t 1 ) φ F ⋆ (t 2 )| 2 w(t)dt, with 
H(t) = Φ θ ⋆ (t)(φ θ ⋆ (t 1 )∇φ θ ⋆ (t 2 ) + ∇φ θ ⋆ (t 1 )φ θ ⋆ (t 2 )) -∇Φ θ ⋆ (t)φ θ ⋆ (t 1 )φ θ ⋆ (t 2 ).
Denote by H mj (t), j = 2, . . . , k ⋆ , H Qj 1 ,j 2 (t), j 1 , j 2 = 1, . . . , k ⋆ , (j 1 , j 2 ) = (k ⋆ , k ⋆ ) the components of the vector H(t). Definite positiveness of the second derivative of M at θ ⋆ can thus be established by proving that, if for all t ∈ S,

k j=2 U mj H mj (t) + (j1,j2) =(k,k) U j1,j2 H Qj 1 ,j 2 (t) = 0 (A.4) then U mj = 0, j = 2, • • • , k ⋆ , U j1,j2 = 0, j 1 , j 2 = 1, . . . , k ⋆ , (j 1 , j 2 ) = (k ⋆ , k ⋆ ).
By linear independence of the functions e ita and te itb this implies in particular that for all t = (t 1 , t 2 ),

k ⋆ j1,••• ,j4=1 U mj 1 µ ⋆ (j 1 ) µ ⋆ (j 2 ) Q ⋆ j3,j4 e it1(m ⋆ j 1 +m ⋆ j 3 )+it2(m ⋆ j 2 +m ⋆ j 4 ) = k ⋆ j1,••• ,j4=1 U mj 1 µ ⋆ (j 2 ) µ ⋆ (j 3 ) Q ⋆ j1,j4 e it1(m ⋆ j 1 +m ⋆ j 3 )+it2(m ⋆ j 2 +m ⋆ j 4 ) (A.5) with U m1 = 0. The smallest possible term m ⋆ j1 + m ⋆ j3 with j 1 > 1 is equal to m ⋆ 2 = m ⋆ 2 + m ⋆ 1
setting j 1 = 2 and j 3 = 1 only. Thus (A.5) implies that

U m2 µ ⋆ (2) k ⋆ j2,j4=1 µ ⋆ (j 2 ) Q ⋆ 1,j4 e it2(m ⋆ j 2 +m ⋆ j 4 ) = U m2 µ ⋆ (1) k ⋆ j2,j4=1 µ ⋆ (j 2 ) Q ⋆ 2,j4 e it2(m ⋆ j 2 +m ⋆ j 4 )
for all t 2 , i.e.

U m2 µ ⋆ (2) φ θ ⋆ (t 2 ) k ⋆ j4=1 Q ⋆ 1,j4 e it2m ⋆ j 4 = U m2 µ ⋆ (1) φ θ ⋆ (t 2 ) k ⋆ j4=1 Q ⋆ 2,j4 e it2m ⋆ j 4 .
Since φ θ ⋆ has only isolated zeros this is satisfied if and only if

U m2 µ ⋆ (2) k ⋆ j4=1 Q ⋆ 1,j4 e it2m ⋆ j 4 = U m2 µ ⋆ (1) k ⋆ j4=1 Q ⋆ 2,j4 e it2m ⋆ j 4 . Thus (A.5) is satisfied only if either U m2 = 0 or µ ⋆ (2) Q ⋆ 1,j = µ ⋆ (1) Q ⋆ 2,j for all j.
The latter is impossible since Q ⋆ is non singular, thus U m2 = 0 and (A.5) becomes

k ⋆ j1=3,j2,••• ,j4=1 U mj 1 µ ⋆ (j 1 ) µ ⋆ (j 2 ) Q ⋆ j3,j4 e it1(m ⋆ j 1 +m ⋆ j 3 )+it2(m ⋆ j 2 +m ⋆ j 4 ) = k ⋆ j1=3,j2,••• ,j4=1 U mj 1 µ ⋆ (j 2 ) µ ⋆ (j 3 ) Q ⋆ j1,j4 e it1(m ⋆ j 1 +m ⋆ j 3 )+it2(m ⋆ j 2 +m ⋆ j 4 )
The smallest possible value for m ⋆ j1 + m ⋆ j3 is then m ⋆ 3 which is obtained with the only configuration j 1 = 3, j 3 = 1. The same argument as before leads to U m3 = 0. Iteration of the argument leads to U mj = 0 for all j = 1, • • • , k ⋆ . We now study the derivatives associated to Q. We write U the k ⋆ × k ⋆ -matrix whose components are U j1,j2 for (j 1 , j

2 ) = (k ⋆ , k ⋆ ) and U k ⋆ ,k ⋆ = -(j1,j2) =(k ⋆ ,k ⋆ ) U j1,j2 . Then (j1,j2) =(k ⋆ ,k ⋆ ) U j1,j2 ∇ Qj 1 ,j 2 Φ θ ⋆ (t) = V (t 1 ) T U V (t 2 )
where for any t ∈ R, V (t) = ((e itm ⋆ j ) j=1,••• ,k ⋆ ) T , and

(j1,j2) =(k ⋆ ,k ⋆ ) U j1,j2 ∇ Qj 1 ,j 2 φ θ ⋆ (t 1 ) = V (t 1 ) T U 1l with 1l = (1, • • • , 1) T ∈ R k ⋆ , since φ θ ⋆ (t 1 ) = V (t 1 ) T Q ⋆ 1l and Φ θ ⋆ (t) = V (t 1 ) T Q ⋆ V (t 2 ).
We can then express (A.4) as

V (t 1 ) T Q ⋆ V (t 2 )V (t 2 ) T U 1l1l T (Q ⋆ ) T + Q ⋆ V (t 2 )V (t 2 ) T Q ⋆ 1l1l T U T -U V (t 2 )V (t 2 ) T Q1l1l T (Q ⋆ ) T V (t 1 ) = 0. (A.6) Note also that since all differences m ⋆ j1 -m ⋆ j2 , j 1 = j 2 , are distinct, if A is a k ⋆ × k ⋆ -matrix and I is an open subset of R, ∀t ∈ I, V (t) T AV (t) = 0 =⇒ A + A T = 0. (A.7) Then (A.6) implies Q ⋆ V (t 2 )V (t 2 ) T U 1l1l T (Q ⋆ ) T + Q ⋆ 1l1l T U T V (t 2 )V (t 2 ) T (Q ⋆ ) T + Q ⋆ V (t 2 )V (t 2 ) T Q ⋆ 1l1l T U T + U 1l1l T (Q ⋆ ) T V (t 2 )V (t 2 ) T (Q ⋆ ) T -U V (t 2 )V (t 2 ) T Q ⋆ 1l1l T (Q ⋆ ) T -Q ⋆ 1l1l T (Q ⋆ ) T V (t 2 )V (t 2 ) T U T = 0. (A.8)
Recall also that 1l T U 1l = 0 and that Q ⋆ 1l = µ ⋆ . Note that U 1l = αµ ⋆ with α ∈ R if and only if α = 0 since 1l T U 1l = 0 while 1l T µ ⋆ = 1. Therefore if U 1l = 0 there exists w ∈ R k ⋆ such that w T (U 1l) = 0 while (µ ⋆ ) T w = 0. Multiplying the above equality on the left by w T and on the right by w leads to

w T Q ⋆ V (t 2 )V (t 2 ) T (µ ⋆ )(U 1l) T w = 0
that for all t 2 in an open set. Using (A.7) again and since (U 1l) T w = 0 we get that

µ ⋆ [(Q ⋆ ) T w] T + [(Q ⋆ ) T w](µ ⋆ ) T = 0.
Since µ ⋆ (j) > 0 for all j this implies that (Q ⋆ ) T w = 0 which is impossible since Q ⋆ has full rank. Therefore U 1l = 0 and (A.8) becomes

V (t 2 ) T µ ⋆ [U V (t 2 )(µ ⋆ ) T + µ ⋆ V (t 2 ) T U T ] = 0, that is U V (t 2 )(µ ⋆ ) T + µ ⋆ V (t 2 ) T U T = 0 for all t 2
in an open set. Multiplying on the left by 1l implies that U V (t 2 ) = 0 for all t 2 in an open set so that U = 0.

B Proof of Theorem 3.2

Define for any θ ∈ Θ k ⋆ , L n (θ) = M n (θ) -M (θ). Then, since M n (θ n (K)) ≤ M n (θ ⋆ ), one easily gets M θ n (K) -M (θ ⋆ ) ≤ L n θ n (K) -L n (θ ⋆ ) .
Define for any t = (t 1 , t 2 ) and any θ

G (θ, t) = {Φ θ ⋆ (t) φ θ,1 (t 1 ) φ θ,2 (t 2 ) -Φ θ (t) φ θ ⋆ ,1 (t 1 ) φ θ ⋆ ,2 (t 2 )} φ F ⋆ (t 1 ) φ F ⋆ (t 2 )
and

B n (θ, t) = φ F ⋆ (t 1 ) φ F ⋆ (t 2 ) Z n (t) √ n φ θ,1 (t 1 ) φ θ,2 (t 2 ) -Φ θ (t) Z n (t 1 , 0) √ n φ θ,2 (t 2 ) + Z n (0, t 2 ) √ n φ θ,1 (t 1 ) + Z n (t 1 , 0)Z n (0, t 2 ) n Writing Φ n (t) = Zn(t) √ n + Φ θ ⋆ (t)φ F ⋆ (t 1 )φ F ⋆ (t 2 ) one gets L n (θ) = [B n (θ, t) + G (θ, t)] [B n (θ, -t) + G (θ, -t)] -|G (θ, t) | 2 w (t) dt.
Since G (θ ⋆ , t) = 0 for all t we obtain

L n (θ) -L n (θ ⋆ ) = |B n (θ, t) | 2 -|B n (θ ⋆ , t) | 2 + B n (θ, t) G (θ, -t) +B n (θ, -t) G (θ, t)} w (t) dt which gives |L n (θ) -L n (θ ⋆ )| ≤ {|B n (θ, t) -B n (θ ⋆ , t)| |B n (θ, t) + B n (θ ⋆ , t)| +2 |B n (θ, t)| |G (θ, t) -G (θ ⋆ , t)|} w (t) dt which leads to M θ n (K) -M (θ ⋆ ) ≤ CW n θ n (K) -θ ⋆ (B.1)
for some constant C and any integer n, and with

W n = V n √ n + V 2 n n + V 3 n n 3/2 + V 4 n n 2 , V n = sup t∈S |Z n (t)| .
Observe now that, since D 2 M is continuous and D 2 M (θ ⋆ ) is non singular, there exists λ > 0 and α > 0 such that, if θ -

θ ⋆ ≤ α, then M (θ) -M (θ ⋆ ) ≥ λ 2 θ -θ ⋆ 2 . Moreover, there exists δ > 0 such that, if θ ∈ K is such that θ -θ ⋆ ≥ α, then M (θ) -M (θ ⋆ ) ≥ δ. Using (B.1
) we obtain that for any real number M large enough,

P ⋆ √ n θ n (K) -θ ⋆ ≥ M ≤ P ⋆ W n ≥ δ 2CM (K) + P ⋆ √ nW n ≥ M λ 2C
where M (K) = sup θ∈K θ . This last equation together with Assumption (A3) gives the Theorem.

C Proof of Theorem 4.1

The proof follows the general methodology for model selection developed by [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF].

To prove Theorem 4.1 and Theorem 4.2, we will use a concentration inequality we state now.

Let us introduce some notations. For any real function f , denote

G n f = 1 √ n n i=1 f (Y i ) -f dP ⋆ .
Lemma 3 Assume (A4). Let F be a class of real functions, and F such that, for any

f ∈ F , |f | ≤ F . Assume that there exists c(F ) > 0 and C(F ) > 0 such that ∀j = 1, . . . , k ⋆ , |g(j)| ≤ C(F )
where g is defined by

g (j) = ln E P ⋆ exp 2c(F ) -1 |F (Y 2 )| |S 1 = j .
Then there exist universal constants

C 1 , C 2 , K 1 , K 2 and a constant C ⋆ depending only on Q ⋆ such that P ⋆ √ n sup f ∈F G n f ≥ K 1 √ nE P ⋆ sup f ∈F G n f + C 1 τ √ nx + C 2 C ⋆ c(F )C(F )x ≤ K 2 exp {-x} where τ 2 = sup f ∈F E P ⋆ f 2 (Y 1 ).

Proof of Lemma 3

The lemma is an application of Theorem 7 in [START_REF] Adamczak | Exponential concentration inequalities for additive functionals of Markov chains[END_REF] to the stationary Markov chain (X i ) i≥1 = (S i , Y i ) i≥1 and functions f (s, y) := f (y). Then, with the notations of [START_REF] Adamczak | Exponential concentration inequalities for additive functionals of Markov chains[END_REF] we get that:

• m = 1,
• the small set C is the whole space,

• the minorizing probability measure ν is that of ( Si , Y i ) i≥1 with ( Si ) i i.i.d. with uniform distribution, and δ = min i,j Q ⋆ i,j . • Since C is the whole space, the return times

σ(i) = i, so that s i (f ) = f (Y i ), thus the σ 2 of Theorem 7 is just sup f E P ⋆ (f 2 (Y 1 )).
Using the specific assumption of the lemma, taking α = 1, we can apply Corollary 1 of [START_REF] Adamczak | Exponential concentration inequalities for additive functionals of Markov chains[END_REF], to get (with their notations again)

a, b, c ≤ C ⋆ c(F )C(F )
for some constant C ⋆ > 0 depending only on min i,j Q ⋆ i,j . For any p ≥ 2, define

S p =    k ⋆ j=1 µ (j) f (• -m j ) , f ∈ F p , |m j | ≤ M (K), k ⋆ j=1 µ (j) = 1, µ (j) ≥ 0, j = 1, . . . , k ⋆ } ,
so that s p ∈ S p . We now fix, for any p ≥ 2, some sp ∈ S p such that:

∀t ∈ S p , √ s ⋆ -sp 2 ≤ 2 √ s ⋆ - √ t 2 . (C.1)
For any p ≥ 2 and any σ > 0, define

W p (σ) = sup t∈Sp, √ t- √ sp 2≤σ G n ln s ⋆ + t s ⋆ + sp ,
and let L p be an enveloppe function of {ln (s ⋆ + t) -ln (s ⋆ + sp ) , t ∈ S p }. Assume there exists functions ψ p such that ψ p (x)/x is non increasing and for all p ≥ 2 and σ > 0,

E P ⋆ [W p (σ)] ≤ ψ p (σ) . (C.2)
Define σ p (depending also on n) as the unique solution of

ψ p (σ p ) = √ nσ 2 p . (C.3)
Now we follow and adapt the proof of Theorem 7.11 in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF]. Let p be such that

K(s ⋆ , s p ) < +∞. If p ′ is such that D(p ′ ) ≤ D(p)
, then one gets, as in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF] p.241,

K s ⋆ , s ⋆ + s p ′ 2 - 1 2 √ n G n log s p s ⋆ ≤ K (s ⋆ , s p ) + pen (p, n) - 1 √ n G n ln s ⋆ + s p ′ 2s ⋆ -pen (p ′ , n) + V p (C.4)
where

V p = 1 n n i=1 ln k ⋆ j=1 µ(j)f p (Y i -m j ) k ⋆ j=1 µ ⋆ (j)f p (Y i -m ⋆ j )
.

Applying Lemma 4.23 in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF] p. 139, for any positive y p ′ :

E ⋆ sup t∈S p ′ G n ln (s ⋆ + t) -ln (s ⋆ + sp ′ ) y 2 p ′ + √ t - √ s p ′ 2 2 ≤ 4 ψ p ′ (y p ′ ) y 2 p ′ .
Using Lemma 3, the fact that 2y

p ′ √ t -sp ′ 2 ≤ y 2 p ′ + √ t -sp ′ 2
2 , and Lemma 7.26 p. 276 in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF], we obtain that for some constant C > 0, except on a set with probability less than K 2 exp -(x p ′ + x), for all x > 0:

1 √ n G n ln (s ⋆ + s p ′ ) -ln (s ⋆ + sp ′ ) y 2 p ′ + sp ′ -s p ′ 2 ≤ Cte y p ′ ψ p ′ (y p ′ ) y p ′ √ n + T (L p ′ )(x p ′ + x) ny p ′ + x p ′ + x n .
Here,

T (L p ′ ) = C 2 C ⋆ c(L p ′ )C(L p ′ ).
Using again Lemma 3 and Lemma 7.26 p. 276 in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF] we get that, for some constant C > 0, except on a set with probability less than K 2 exp -(x p ′ + x), for all x > 0:

1 √ n G n (ln (s ⋆ + sp ′ ) -ln (2s ⋆ )) y 2 p ′ + √ s ⋆ -sp ′ 2 ≤ C y p ′ T (L p ′ )(x p ′ + x) ny p ′ + x p ′ + x n .
and we finally obtain that, for some other constant C > 0 depending only on P ⋆ , except on a set with probability less than 2K 2 exp -(x p ′ + x), for all x > 0:

1 √ n G n ln (s ⋆ + s p ′ ) -ln (2s ⋆ ) y 2 p ′ + √ s ⋆ -s p ′ 2 ≤ C y p ′ ψ p ′ (y p ′ ) y p ′ √ n + T (L p ′ )(x p ′ + x) ny p ′ + x p ′ + x n .
Define for some constant a to be chosen

y p ′ = a -1 σ 2 p ′ + (x p ′ + x)(1 + T (L p ′ )) n .
Then we can follow the proof of Theorem 7.11 in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF] to obtain that, as soon as

pen (p, n) ≥ κ σ 2 p + x p (1 + T (L p )) n , (C.5)
one has for any n ≥ 2, for some real numbers κ > 0 and C > 0 depending only on

Q ⋆ E P ⋆ h 2 (s ⋆ , s p ) ≤ C inf p≥2 (K (s ⋆ , s p ) + pen (p, n) + E P ⋆ [V p ]) + Σ n .
But using the convexity of the Kullback-Leibler divergence to both arguments, we have, for any p ≥ 2, K (s ⋆ , s p ) ≤ K (f ⋆ , f p ). Thus to finish the proof of Theorem 4.1, one has to find functions ψ p verifying (C.2), evaluate σ p using (C.3), and evaluate T (L p ).

Let us first prove that there exists constants C, C ′ > 0 depending only on δ and Q ⋆ such that, as soon as (A4) holds, for any p ≥ 2,

T (L p ) ≤ C ln 1 + C ′ b δ p . (C.6)
First of all, we see that we can take

L p (y) = ln 1 + 1 b p √ 2πs ⋆ (y) ,
with c(L p ) = 2/δ, the function defined in Lemma 3 is given by To find functions ψ p , we shall use [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF]. Since (Y t ) t∈N is geometrically ergodic, Lemma 2 in [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF], implies that, for some constant C that depends only on Q ⋆ , for any real function f ,

g (s) = log   k ⋆ j=1 Q ⋆ s,j 1 + 1 b p √ 2πs ⋆ (u) δ f ⋆ (u -m ⋆ j )
f 2 β ≤ Cγ(f )(1 + log + (γ(f )), γ(f ) = f 2 (1 + log + |f |)dP ⋆
where • β is defined in [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF]. Now, since for all x > 0, x ln

+ x ≤ x 2 /e, f 2 β ≤ C e |f | 3 dP ⋆ 1 + log + ( 1 e |f | 3 dP ⋆ ) .
Using Lemma 7.26 in [START_REF] Massart | Concentration Inequalities and Model Selection : Ecole d'Et de Probabilits de Saint-Flour XXXIII -2003[END_REF], we thus get that for all t ∈ S p , ln (s ⋆ + t) -ln (s ⋆ + sp )

2 β ≤ 1 c 2 √ t -sp 2 2
for some constant c > 0 that depends only on Q ⋆ , and the same trick leads to

H β (u, {ln (s ⋆ + t) -ln (s ⋆ + sp ) , t ∈ S p }) ≤ H 2 cu, { √ t, t ∈ S p }
where H β (u, F ) is the bracketing entropy of a set F at level u with respect to • β , that is the logarithm of the minimum of the number of brackets of • β -width u needed to cover F , and H 2 (u, F ) is the bracketing entropy of a set F at level u with respect to • 2 . Let for any for σ > 0 and p ≥ 2

η p (σ) = σ/c 0 H 2 cu, { √ t, t ∈ S p } du.
Using Theorem 3 in [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] we get

E P ⋆ [W p (σ)] ≤ Aη p (σ) 1 + δ p (1 ∧ ǫ(σ, n)) σ , (C.7)
where ǫ(σ, n) is the unique solution of

x 2 /B(x) = η 2 p (σ)/nσ 2 , B(x) = x + C(x -x ln x)
for some constant C that depends only on Q ⋆ , and δ p is the function given by The variations of h p imply that there exists a universal constant b such that as soon as b p ≤ b, h(t) is increasing on (0, 1), so that

δ p (ǫ) = sup t≤ǫ Q (t) B(t) with for any t, Q (t) ≤ u iff P ⋆ (H p (Y 1 ) > u) ≤ t.
δ p (ǫ ∧ 1) = h p (ǫ ∧ 1) ≤ hp (ǫ ∧ 1) with hp (t) = C ln 1 b p √ t| ln t| | ln t| ∧ 1 ,
for some universal constant C. Using [START_REF] Maugis | Data-driven penalty calibration: A case study for gaussian mixture model selection[END_REF], we get that for some fixed constant K, for all u > 0,

H 2 u, { √ t, t ∈ S p } ≤ k ⋆ p 3 ln 1 u ∧ 1 + 3 4 ln 1 b p + ln A p + K + ln (k ⋆ p) .
Using the fact that for all ǫ ∈]0, 1],

ǫ 0 ln 1 x dx ≤ ǫ ln 1 ǫ + √ π
and since

η p (σ) = 1 c σ 0 H 2 c 2 u, { √ t, t ∈ S p } du
we get that for some other fixed constant K and all σ > 0

η p (σ) ≤ σ c t p (σ) (C.8) with t p (σ) = k ⋆ p 3 ln 1 σ ∧ 1 + 3 4 ln 1 b p + ln A p + K + ln(k ⋆ p).
Now, one may use the upper bound (C.8) to upper bound ǫ(σ, n), and we get that for some universal constant C,

ǫ (σ, n) ≤ C t 2 p (σ) n ln t 2 p (σ) 2n .
Then we may set

ψ p (σ) = σ c t p (σ)   1 + h C t 2 p (σ) n ln t 2 p (σ) 2n ∧ 1 σ    .
(C.2) holds, ψ p (x)/x is indeed non increasing, and if σ p is the unique solution of (C.3), we obtain that for some constant C depending only on P ⋆ , as soon as b p ≤ b, is taken from [START_REF] Kruijer | Adaptive bayesian density estimation with location-scale mixtures[END_REF]. Let ℓ ⋆ j denote the j-th derivative of log f ⋆ . A simple modification in the proof of Lemma 4 of [START_REF] Kruijer | Adaptive bayesian density estimation with location-scale mixtures[END_REF] gives that for any H and any H with H > H + 3β, there exists B such that if

σ 2 p ≥ C n k ⋆ p ln n + ln 1 b p + ln A p . (C.
D p := y : f ⋆ (y -m) ≥ b H p , |ℓ ⋆ j (y -m)| ≤ Bb -j p | log p| -j/2 , j ≤ β, |L(y -m)| ≤ Bb -β p | log p| -β/2 , ∀0 ≤ m ≤ 2m ⋆ k then, for all y ∈ D p and all 0 ≤ m ≤ m ⋆ k f p (y -m) = f ⋆ (y -m)(1 + O(R(y -m)b β p )) + O((1 + R(y -m))b H- H p ), (D.1)
where the function R(y) is a linear combination of L(y) and of the functions |ℓ ⋆ j (y)| β/j , j ≤ β, and where the constants entering the terms O(.) depend on H loc (β), B, H and H. Note that since the functions l ⋆ j are bounded by polynomials, there exists a constant

C such that |R(y -m)| ≤ C(1 + R(y)), ∀0 ≤ m ≤ 2m * k .
In the following we fix H > 4β + 2γ and H > H + 3β. Moreover, Lemma 4 in [START_REF] Kruijer | Adaptive bayesian density estimation with location-scale mixtures[END_REF] implies

K(f ⋆ , f p ) b 2β p , f ⋆ (log f ⋆ -log f p ) 2 (y)dy b 2β p . (D.2)
Here and further, will denote an upper bound up to a constant, where the constant entering the upper bound depends only on H loc (β). Throughout the proof C denotes a generic constant depending only on H loc (β) and Q ⋆ .

First of all, with such choices of p, b p , and A p , using Theorem 4.1 and (D.2), there remains to prove that E 2β+1) . For any θ and any y, set

P ⋆ [V p ] b 2β p or equivalently v n E P ⋆ [V p ] 1 with v n = n 2β 2β+1 (log n) -6β/(
w p (θ, y) = log k ⋆ j=1 µ(j)f p (y -m j ) k ⋆ j=1 µ ⋆ (j)f p (y -m ⋆ j ) . First note that log k j=1 µ ⋆ j f p (y -m j ) k j=1 µ ⋆ j f p (y -m ⋆ j ) ≤ max j (|y -m ⋆ j | + A p )|m j -m ⋆ j | b 2 p . (D.3)
Thus we can bound

v n n E P ⋆ n i=1 w p ( θ, Y i )1l θ-θ >M0 √ log n/n ≤ v n n max j n i=1 E P ⋆ 1l θ-θ >M0 √ log n/n (|Y i -m ⋆ j | + A p )| mj -m ⋆ j | b 2 p + |μ j -µ ⋆ j | µ ⋆ j v n log p b 2 p √ n + v n √ n P ⋆ θ -θ > M 0 log n/n = o(1)
by Theorem 3.2 and choosing M

0 = 1/ √ c ⋆ . Set now H 1 > 3 + 2β, C p,1 = D c p ∩ {|y| ≤ H 1 log(1/b p )τ -1 } and C p,2 = D c p ∩ {|y| > H 1 log(1/b p )τ -1 }. Using (D.3) we get, for all i = 1, • • • , n, E P ⋆ 1l Cp,1 (Y i )w p ( θ, Y i )1l θ-θ ≤M0 √ log n/n (log p) 3/2 b 2 p √ n Cp,1 s ⋆ (y)dy ≤ (log p) 3/2 b 2 p √ n b 2β+γ p v -1
n as soon as γ > (3/2 -β) + , where the last inequality comes from an adaptation of Lemma 2 in [START_REF] Kruijer | Adaptive bayesian density estimation with location-scale mixtures[END_REF], using the moment conditions (4.2). We also have

E P ⋆ 1l Cp,2 (Y i )w p ( θ, Y i )1l θ-θ ≤M0 √ log n/n (log p) 3/2 b 2 p √ n Cp,2 |y|s ⋆ (y)dy (log p) 3/2 b H1/2 p b 2 p √ n v -1 n (D.4) since H 1 > 3 + 2β
, where the last inequality comes from the tail condition (4.2). There thus remains to prove that

v n E P ⋆ 1 n n i=1 w p ( θ n , Y i )1l Dp (Y i )1l θ-θ ≤M0 √ log n/n 1.
We shall use:

v n E P ⋆ 1 n n i=1 w p ( θ n , Y i )1l Dp (Y i )1l θ-θ ≤M0 √ log n/n ≤ +∞ 0 P ⋆ v n n n i=1 w p ( θ n , Y i )1l Dp (Y i )1l θ-θ ≤M0 √ log n/n ≥ x dx. (D.5)
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Notice now that

P ⋆ v n n n i=1 w p ( θ n , Y i )1l Dp (Y i )1l θ-θ ≤M0 √ log n/n ≥ x ≤ P ⋆ √ n θ n -θ ⋆ ≥ M (x) +P ⋆   sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n/n v n √ n G n (w p (θ, •)1l Dp (•)) ≥ x 2   as soon as v n sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n E P ⋆ [w p (θ, Y 1 )1l Dp (Y 1 )] ≤ x 2 . (D.6) If moreover v n K 1 √ n E P ⋆ sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n G n (w p (θ, •)1l Dp (•)) ≤ x 4 , (D.7)
where K 1 is defined in Lemma 3, Appendix C, using Theorem 3.2 and Lemma 3 we get, for large enough x, with M (x) = x 1/4 ,

P ⋆ | v n n n i=1 w p ( θ n , Y i )1l Dp (Y i )1l θ-θ ≤M0 √ log n/n | ≥ x ≤ 2 exp - nx v n C n (x) + 2 exp - nx 2 v 2 n τ n (x) 2 + 8 exp -c ⋆ x 1/2 with τ n (x) 2 = 16C 2 1 sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n E P ⋆ [w 2 p (θ, Y 1 )1l Dp (Y 1 )], C n (x) = 4C 2 C ⋆ c (W n,p,x ) C (W n,p,x ) , where W n,p,x is such that sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n w p (θ, •)1l Dp ≤ W n,p,x (•).
For instance we may take

W n,p,x (y) = log p + C (|y| + A p )M (x) √ nb 2 p , leading, by choosing c(W n,p,x ) = C M(x) √ nb 2 p log n , to C n (x) = C A p x 1/2 √ nb 2 p log n . (D.8)
For any θ set

s p,θ (y) = k ⋆ j=1 µ(j)f p (y -m j ) and s ⋆ θ (y) = k ⋆ j=1 µ(j)f ⋆ (y -m j ).
We consider the following decomposition, log s p,θ (y)

s p,θ ⋆ (y) = log s p,θ (y) s ⋆ θ (y) + log s ⋆ θ (y) s ⋆ (y) + log s ⋆ (y) s p,θ ⋆ (y) . (D.9)
The first and third terms of (D.9) are treated similarly. (D.12) (D.8) and (D.12) give that, for all β ≥ 1/2, for large enough x, nx v n C n (x)

x 1/2 n 3/2 b 2β+2 p x 1/2 (log n) 3(2β+2)/(2β+1) , nx 2 v 2 n τ 2 n (x)

x 1/2 n, so that for large enough x, To Prove (D.7) we use (D.9). We first control

P ⋆ v n n n i=1 w p ( θ n , Y i )1l Dp (Y i )1l θ-θ ≤M0 √ log n/n ≥ x exp -Cx 1/2 (D.
E P ⋆ sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n
G n (1l Dp log(s p,θ /s ⋆ θ )) . Therefore using Theorem 2 of [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] and the fact that the chain is geometrically ergodic, we obtain that Hence using the same tricks as before and applying Theorem 2 of [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF] we obtain that for large enough n,

E P ⋆ sup √ n θ-θ ⋆ ≤M(x
E P ⋆ sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n G n (1l Dp log(s p,θ /s ⋆ θ )) M (x)n -(β∧1)/2 log n = o(x √ n/v n ) (D.16
) for all x and (D.7) is satisfied. Finally, (D.13) holds, which, together with (D.5) ends the proof of Theorem 4.2.

  ), on gets that there exists constants C > 0 depending only in Q ⋆ and δ such that g is bounded by the constant C ln 1 + C ′ b δ p and (C.6) follows (for maybe another constant C).

  For simplicity's sake we denote in the followingH loc (β) := H loc (β, γ, P). Set p = p 0 ⌊(n/ log n) 1/(2β+1) (log n) 4β/(2β+1 with p 0 > 0 fixed which we shall determine later, b p = b 0 (log p) 2 /p for some positive b 0 and A p = a 0 | log b p | for some positive a 0 . The approximating f p ∈ F p f p (y) = p i=1 π i ϕ bp (y -α i )

  (D.1) gives that for any θ, over D p , log s p,θ (y)s ⋆ θ (y) R(y)b β p . (D.10)For the second term, sincef ⋆ ∈ H loc (β, γ, P) with β ≥ 1/2, | log f ⋆ (y -m j ) -log f ⋆ (y -m ⋆ j )| ≤ L(y -m ⋆ j )| m j -m ⋆ j | β∧1 .Moreover, if y ∈ D p , and√ n θ -θ ⋆ ≤ M (x) ∧ M 0 √ log n, then for large enough n, L(y -m ⋆ j )| m j -m ⋆ j | β∧1 ≤ 1 so that we have, for θ such that √ n θ -θ ⋆ ≤ M (x) ∧ M 0 √ log n, over D p , for large enough n, the fact that β ≥ 1/2, for large enough x, sup √ n θ-θ ⋆ ≤M(x)∧M0 √ log n E P ⋆ [w 2 p (θ, Y 1 )1l Dp (Y 1 )] = O(M (x) 2 b 2β p ).

  13) as soon as (D.6) and (D.7) hold for large enough x.We now prove (D.6).E P ⋆ [w p (θ, Y 1 )1l Dp (Y 1 )] = Dp (s ⋆ (y) -s p,θ ⋆ (y)) log s p,θ (y) s p,θ ⋆ (y) dy -K(s p,θ ⋆ , s p,θ ) ≤ Dp (s ⋆ (y) -s p,θ ⋆ (y)) log s p,θ (y) s p,θ ⋆ (y) dy.Moreover, (D.1) and (D.10) give thatDp |s * (y) -s p,θ ⋆ (y)| log s p,θ (y) s ⋆ , s p,θ ⋆ ) Dp |R(y)| 2 (s ⋆ (y) + s p,θ ⋆ (y))dy . Also, (D.1) and (D.11) give that for θ such that√ n θ-θ ⋆ ≤ M (x)∧M 0 √ log n, Dp |s ⋆ (y) -s p,θ ⋆ (y)| log s ⋆ θ (y) s ⋆ (y) dy b 2β p M (x) β∧1so that for β ≥ 1/2, uniformly for θ such that√ n θ -θ ⋆ ≤ M (x) ∧ M 0 √ log n, E P ⋆ [w p (θ, Y 1 )1l Dp (Y 1 )] = O(M (x)b 2β p )and (D.6) holds for large enough x.

0 H

 0 any f in the form log (s p,θ /s ⋆ θ ). We denoteϕ 1 (σ) = σ (u, S n,p,1 (σ), . 2 )du with S n,p,1 (σ, x) = {log (s p,θ /s ⋆ θ ) , √ n θ -θ ⋆ ≤ M (x) ∧ M 0 log n, log(s p,θ /s ⋆ θ ) 2 ≤ σ}.Then for all y ∈ D p , since |y| ≤ A p , and for all|m j -m ′ j | ≤ η, f p (y -m ′ j ) = p l=1 π l ϕ bp (y -m j -α l )e -m j -α l )(m j -m ′ j ) b 2 p ≤ f p (y -m j )e (|y|+m k ⋆ +Ap )η b 2 p ≤ f p (y -m j )e 3Ap η b 2 p := f U (y -m j ) ≥ f p (y -m j )e L (y -m j ) and f ⋆ (y -m ′ j ) ≤ f ⋆ (y -m j )e η β∧1 sup |m-m j |<η | l(y-m)| ≥ f ⋆ (y -m j )e -η β∧1 sup |m-m j |<η | l(y-m)| (D.14) where l(y -m) = ℓ 1 (y -m) if β > 1 and l(y -m) = L(y -m j ) if β ≤ 1, so that a bracket for log(s p,θ ′ /s * θ ′ )1l Dp is given on D p by U p,θ :u > 0 and η ≤ η 0 (u 1/2 b 2 p /A p ∧ u (β∧1)/2 ) with η 0 > 0 small enough, Dp (U p,θ -L p,θ ) 2 (y)s ⋆ (y)dy ≤ u, so that ϕ 1 (σ) σ log + (1/σ) + log(nM (x)).Moreover for all θ -θ ⋆ ≤ M 0 √ log n/ √ n, (D.1) implies that log(s p,θ ′ /s ⋆ θ ′ ) 2 2 ≤ b 2β p C.

  /µ ⋆ j -1) 2 + max j s ⋆ (y)(log f ⋆ (y -m j ) -log f ⋆ (y -m ⋆ j )) 2 dy (M (x) 2 /n) β∧1 .

  Here, H p is an envelope function of{ln (s ⋆ + t) -ln (s ⋆ + sp ) , √ t -sp ≤ σ, t ∈ S p }.Taking H p = L p one gets easily

	Q (t) ≤ ln 1 +	tb p	1 √	2π	,
	so that δ p (ǫ) ≤ sup t≤ǫ h p (t) with				
	h p (t) = ln 1 +	tb p	1 √	2π		t + C(t -t ln t).

  )∧M0 √ log n G n (1l Dp log(s p,θ /s ⋆ θ )) b β p (log n + log M (x))

						(D.15)
						≤ x/8,
	for x ≥ 1 and large enough n. We now study
	Using (D.14), if	E P ⋆ √ n|θ -θ ⋆ ≤ M (x) ∧ M 0 sup √ √ n|θ-θ ⋆ ≤M(x)∧M0 √ log n log n, G n 1l Dp log	s ⋆ θ (y) s ⋆ (y)	.
					log	s ⋆ θ (y) s ⋆ (y)	b -(β∧1) p	log n/	√ n = o(1),
	so that				
	log	s ⋆ θ (y) s ⋆ (y)	2 2,β	log	s ⋆ θ (y) s ⋆ (y)

Now, using (C.1), we getsp ′ -s p ′ 2 ≤ sp ′ -√ s ⋆ + √ s ⋆ -s p ′ 2 ≤ 6 √ s ⋆ -s p ′ 2 and √ s ⋆ -sp ′ 2 ≤ 2 √ s ⋆ -s p ′ 2
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